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Abstract

Speech recognition has become common in many
application domains, from dictation systems for
professional practices to vocal user interfaces for
people with disabilities or hands-free system control.
However, so far the performance of Automatic Speech
Recognition (ASR) systems are comparable to Human
Speech Recognition (HSR) only under very strict
working conditions, and in general much lower.
Incorporating acoustic-phonetic knowledge into ASR
design has been proven a viable approach to raise
ASR accuracy. Manner of articulation attributes such
as vowel, stop, fricative, approximant, nasal, and
silence are examples of such knowledge. Neural
networks have already been used successfully as
detectors for manner of articulation attributes starting
from representations of speech signal frames. In this
paper the full system implementation is described. The
system has a first stage for MFCC extraction followed
by a second stage implementing a sinusoidal based
multi-layer perceptron for speech event classification.
Implementation details over a Celoxica RC203 board
are given.

1. Introduction

In [1] the authors proposed a real time
implementation of a bank of Multi Layer Perceptron
(MLP) with sinusoidal activation function to detect

speech attributes, namely fricative, vowel, stop, nasal,
approximant, and silence. Inside the speech
community, these aforementioned attributes are
referred to as manner of articulation events, and they
are strongly related to human speech production [2].
Moreover, they show robustness to speech variations
[3]. These speech attributes are generated directly from
Mel-Frequency Cepstrum Coefficients (MFCCs), and
the six detectors actually perform a sort of mapping
from the acoustic domain (MFFCs) to the articulatory
domain. The term “‘mel’” denotes a measurement of
perceived frequency of a tone, which does not vary
linearly with the physical frequency of the
corresponding tone. A non linear scale is employed
since it was found that human auditory system does not
perceive pitch in linear manner. The mapping between
the real frequency scale (Hz) and the perceived
frequency scales (mels) is given in formula (1)

F
F, ., = 2595log(l + =< 1

The mapping is approximately linear below 1KHz,
and logarithmic at higher frequency, and such an
approximation is wusually adopted in speech
recognition.

In this paper we propose the chip design for the
entire system, aimed at embedded applications. Our
interest in generating the manner of articulation system
is because it is part of the Automatic Speech Attribute
Transcription (ASAT) project [4], in which a software



neural network-based architecture for these manner of
articulation attributes was already implemented in [5].

The main idea of the ASAT project is that the
performance of conventional knowledge-ignorant
modeling approaches can be improved integrating the
knowledge sources available in a large body of speech
science literature. In [3] it is showed that the idea of a
direct incorporation of acoustic-phonetic knowledge
into ASR design raises its accuracy. These
“knowledge-based” features (also referred to as speech
attributes in the same work) are used to augment the
front-end module of a conventional ASR system by
means of a set of feature detectors able to capture the
speech attributes.

The rest of the paper is organized as follows.
Section 2 describes the general framework of the event
detector module, which we will call knowledge
extraction t0 be consistent with the nomenclature used
in [1]. In sections 3 and 4 the MFCCs and its digital
implementation are given respectively. An overview of
the digital implementation of the six MLP detectors is
shown in section 5. Section 6 presents the experimental
set-up and results with comparison to the baseline
architecture. Concluding remarks are given in the last
section of the paper to summarize its main
contributions.

2. Knowledge Extraction Module

The Knowledge Extraction (KE) module uses a
frame-based approach to provide K manner of
articulation attributes 4,, where i=1,2, ... K, from an
input speech signal s(). In this paper the manner
classes were chosen as in [6], and are listed in Table 1.

The KE module, depicted in Figure 1, is composed
of two fundamentals blocks: the feature extraction
module (FE), and the attribute scoring module (SC).
The FE module consists of a bank of K feature
extraction blocks FE;, where i=1,2, ... K, and it maps a
speech waveform into a sequence of speech parameter
vectors Y;, i=1,2, ... K. Actually, each of the FE; is fed
by the same speech waveform s(z,) and for each speech-
frame it computes a thirteen MFCC feature vector X;
(12 MFCCs + Energy). The frame length is of 30 msec
overlapped by 20 msec.  Finally, FE; produces as
output a 117-feature vector Y; combining the actual
frame with the eight surrounding frames, 4 frames
before and after, so that each speech parameter vector
represents nine frames.

The SC module is composed of six feed-forward neural
networks, and its goal is to attach a score, referred to as
knowledge score (KS;), to each vector Y;. The input of
each network is a 9 frames of 12 MFCCs + energy, so

that the input layer is of 117 nodes. The output layer
has two nodes, one for the desired class, and one for
the anti-class. Actually, the value obtained for the
desired class for case i is defined to be the KS;

Table 1. Manner of articulation attribute definition

Articulation Class Anti-Class Elements

Manner Elements
Vowel B W, cH, s, SH, z, zH,
AR AA BTV, DH, B, D, G
AW, AY, AH, - p' K DX, M, N, NG
AO, OY, OW, e\ "RIW. Y, HH, EL,
UH, UW, ER, DI bR WY HH, EL,
AX, IX
ioati JH.CH, S, ¥, TH, EF, EY, AE, AA,
Fricative SH, Z, ZH, AW, AY, AH, AO, OY,  OW,
F, TH, V, UH, UW, ER, AX, IX, B,
DH D, G, P, T, K, DX, M,
N. NG, EN, L, R, W, Y,
HH, EL, SIL
Stop B.D.G,P, Y, IH, EF, EY, AE, AA,
T, K, DX AW, AY, AH, AO, OY,  OW,
UH, UW, ER, AX, IX, JH,
CH S, SH, Z, ZH. F,
TH, V. DH, M, N, NG,
EN, L, R, W, Y, HH, EL,
SIL
M, N, NG, Y, TH, EF, EY, AE, AA,
Nasal EN AW, AY, AH, AO, OY,  OW,
UH, UW, ER, AX, IX, JH,
CH S, SH, Z, ZH. F,
TH, v, DH, B, D, G. P,
T, K, DX, L, R, W, Y,
HH, EL, SIL
Silence ST Y, H, EF, EY, AE, AA,

AW, AY, AH, AO, OY, aw,
UH, UW, ER, AX, IX, JH,

CH, S, SH, Z, ZH, F,

TH, V, DH, B, D, G, P,

T, K, DX, M, N, NG,
EN,L,R,W, Y, HH, EL

LRWYEL IYIHEHEY AE AAAW AY

ApprOXImant AH AO OY OW UH UW ER AX

(App.) HHIXJHCHSSHZ ZHF
THVDHBDGPTKDX
M N NG EN SIL
FE module SC module
‘ Y, i KS,
J > cosion
} Y, ks, o Max
module
W v, i X5,

Fig. 1. Knowledge Extraction Module, adapted
from[6]. The detectors are based on a MLP neural
network.

3. Mel-Frequency Cepstrum Coefficients
Extractor

In the feature extraction phase a set of useful
parameters termed as Mel-frequency cepstrum
coefficients (MFCC) are extracted directly from the
speech waveforms. To compute the MFCCs, the speech



waveform of the input utterance is partitioned into
sequence of consecutive frames using windowing
analysis. For each frame, the vector of mel frequency
cepstrum coefficients are extracted from the frame
samples. The resulting sequence of feature vectors
represents the input utterance.

The general form of this filter bank is illustrated in
Figure 2. As can be seen the filters used are triangular
and they are not equally spaced along the mel-scale but
which is defined by equation (1).

Fig. 2. Triangular weighted functions in frequency
domain.

The block diagram of the entire process is depicted in
Fig. 3.

Hanning window Mel Filterbank

é FFT
— FFT

Input speech frame

—®
Spectrum
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Data windowed
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Fig. 3. Block diagram of the entire MFCC
extraction module.

A description of each individual step is given below.
Step 1: Frame Blocking

In this step the continuous speech signal is blocked
into frames of N samples, with adjacent frames being
separated by M (M < N). This process continues until
all the speech is accounted for within one or more
frames. Typical values for N and M are N = 256
(which is equivalent to ~ 30 msec windowing and
facilitate the fast radix-2 FFT) and M = 100.

Step 2: Windowing

The next step in the processing is to window each
individual frame so as to minimize the signal

discontinuities at the beginning and end of each frame.
If we define the window as w(n) with 0" n "N-1, where
N is the number of samples in each frame, then the
result of windowing is the signal

yi(n)=x,(m)wn), 0<n<N-1 2

Step 3: Fast Fourier Transform (FFT)

The next processing step is the Fast Fourier
Transform, which converts each frame of N samples
from the time domain into the frequency domain. The
FFT is a fast algorithm to implement the Discrete
Fourier Transform (DFT) which is defined on the set of
N samples {xn}, as follow:

N-1

_ —2mknl N
.
k=0

n=012...N-1 (3

Step 4: Mel-frequency Wrapping

An approach to simulate the human being auditory
system is to process the spectrum S(w) of Xn by a filter
bank spaced uniformly on the mel scale (see Figure 2).
That filter bank has a triangular bandpass frequency
response, and the spacing as well as the bandwidth is
determined by a constant mel frequency interval. The
number of mel spectrum coefficients, K, is typically 20.

Step 5: Cepstrum

In this final step, we convert the log mel spectrum
back to time. The result is called the mel frequency
cepstrum coefficients (MFCC). Because the mel
spectrum coefficients (and so their logarithm) are real
numbers, we can convert them to the time domain
using the Discrete Cosine Transform (DCT).
Therefore if we denote those mel power spectrum
coefficients that are the result of the last step

§k, k=12,...,K , we can calculate the MFCC's (¢, ) as
T

E,,=§l(log§k)cos{n[k—;jl(}, n=12..K 4

3.1. Implementation on FPGA

The front-end has been implemented and prototyped
onto a Celoxica RC203 board equipped with a Virtex 11
XC2V3000-4 donated by Xilinx. The extractor is



element of the confusion matrix measures the rate of
the p-th attribute being classified into the g-th class.

The digital version Knowledge-based Automatic
Speech Classifier is implemented on Celoxica RC203
board [11] equipped with a Xilinx Virtexll
XC2V3000-4 FPGA. Neural architectures were
described using the VHDL language and were
synthesized using the Xilinx ISE 6.3 tools.

According with the results reached in [7], the
number of hidden virtual neurons for each of the MLPs
has been fixed to 10, representing the best trade-off
between execution time and allocated resource. The
above MLP digital implementation requires 1187
cycles and, consequently, 0,0236ms for its execution.
Combined with the 2 ms execution of the front-end, the
execution time clearly allows for real-time execution.
Table 3 illustrates the synthesis report for the MFCC
Extractor Module, for the entire scoring module and
the total allocated resources required by the entire
system. It is easy to see that the chosen configuration
for each MLP allows the implementation of the 6
detectors in a single FPGA.

Table 3. Synthesis report for the MFCC Extractor
Module, for the entire scoring module and the total
allocated resources required by the entire system

i Slices FFs LUTs RAMs
Available Resources
14336 28672 28672 96
6439 1319 11205 3
MFCC Extractor
44,9% 4,6% 39,1% 3,1%
. 4830 4058 8234 60
MLP scoring module
33,7% 14,2% 28,7% 62,5%
11269 5377 19439 63
Total Resources
78,6% 18,8% 67,8% 65,6%

Implementation results on FPGA show that use of
sinusoidal activation functions decrease hardware
resource usage of more than 50% for slices, FFs, LUTs
and of more than 35% for FPGA RAM when compared
with the standard sigmoid-based neuron
implementation. Furthermore, neuron virtualization
allows for a significant decrease of concurrent memory
access, resulting in improved performance for the
entire attribute scoring module [7].

6. Summary

The performance of Automatic Speech Recognition
(ASR) systems are comparable to Human Speech
Recognition (HSR) only under very strict working
conditions, and in general far lower. Incorporating
acoustic-phonetic knowledge into ASR design has been

proven a viable approach to raise ASR accuracy.
Manner of articulation attributes such as vowel, stop,
fricative, approximant, nasal, and silence are examples
of such knowledge. Neural net-works have already
been used successfully as detectors for manner of
articulation attributes starting from representations of
speech signal frames.

The preliminary experimental results offer good
evidence of the real-time capability of the system. and
they demonstrates its implementation on embedded
devices as part of full speech recognition systems.

In this paper an embedded knowledge-based speech
detectors for real-time execution is described. The
system has a first stage for MFCC extraction followed
by a second stage implementing a sinusoidal based
multi-layer Perceptron for speech event classification.
Implementation details over a Celoxica RC203 board
have been given.

Execution time for the entire system is slightly
above 2 ms per frame and allows for real-time speech
event classification on embedded devices.

Currently research works underway to incorporate
the other stages for full large dictionary speech
recognition embedded IP engine.
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