
Scalable Core-Based Methodology and Synthesizable Core for Systematic Design
Environment in Multicore SoC (MCSoC)

Ben A. Abderazek, Tsutomu Yoshinaga and Masahiro Sowa
The University of Electro-communications
Graduate School of Information Systems

1-5-1 Chofu-gaoka, Chofu-shi, Tokyo 1828585
E-mail: [ben,yosinaga,sowa]@is.uec.ac.jp

Abstract

The strong demand for complex and high performance
embedded system-on-chip requires quick turn around de-
sign methodology and high performance cores. Thus, there
is a clear need for new methodologies supporting efÞcient
and fast design of these systems on complex platforms im-
plementing both hardware and software modules.
In this paper, we describe a novel scalable core-based
methodology for systematic design environment of applica-
tion speciÞc heterogeneous multicore systems-on-chip (MC-
SoC). We also developed a high performance 32-bit Syn-
thesizable QueueCore (QC-2) with single precision ßoating
point support. The core is targeted for special purpose ap-
plications within our target MCSoC system. We present the
architecture description and design results in a fair amount
of details.

1. Introduction

System on chips designs have evolved from fairly sim-
ple uni-core, single memory designs to complex multicore
systems on-chip consisting of a large number of IP blocks
on the same silicon. As more and more cores (macros)
are integrated into these designs to share the ever increas-
ing processing load, the main challenge lies in efÞciently
and quickly integrating them into a single system capable
of leveraging their individual ßexibility. Moreover, to con-
nect the heterogeneous cores, the multi-core architecture
requires high performance complex communication archi-
tectures and efÞcient communication protocols architecture,
such as hierarchical bus [1, 2], point-to-point connection
[15], or Time Division Multiplexed Access based bus [3].
Current design methods tend toward mixed HD/SW co-
designs targeting multicore system-on-chip for speciÞc ap-

plications [16, 18, 21]. To decide on the lowest cost mix
of cores, designers must iteratively map the deviceÕs func-
tionality to a particular HW/SW partition and target archi-
tecture. Every time the designers explore a different system
architecture, the interfaces must be redesigned.
Unfortunately, the speciÞc target applications generally lead
to a narrow application domain and also managing all of
these details is so time consuming that designers typically
cannot afford to evaluate several different implementations.
Automating the interface generation is an alternative solu-
tion and a critical part of the development of embedded sys-
tem synthesis tools. Currently most automation algorithms
implement the system based on a standard bus protocol
(input/output interface) or based on a standard component
(processing) protocol. Recent work has used a more gener-
alize model consisting of heterogeneous multicore with ar-
bitrary communication links. The SOS algorithm [19] uses
an integer linear programming approach. The co-synthesis
algorithm, developed in [20], can handle multiple objec-
tives such as costs, performance, power and fault tolerance.
Unfortunately, such design practices allow only limited au-
tomation and designers resort to manual architecture design,
which is time consuming and error-prone especially in such
complex SoCs.
Our design automation algorithm generates generic-
architecture-template (GAT), where both processing and in-
put/output interface may be customized to Þt the speciÞc
needs of the application. Therefore, the utilization of the
GAT enables a designer to make a basic architecture design
without detailed knowledge of the architecture.
High performance processor cores are also needed for high
performance heterogeneous multicore SoCs. Thus, we
also describe a high performance synthesizable soft-core
architecture, which will be used as a task-distributor-core
(TDC) in the MCSoC system. The system may consist,
then, of multiple processing cores of various types (i.e.,
QueueCore(s), general purpose processor(s), domain spe-
















