
Scalable Core-Based Methodology and Synthesizable Core for Systematic Design
Environment in Multicore SoC (MCSoC)

Ben A. Abderazek, Tsutomu Yoshinaga and Masahiro Sowa
The University of Electro-communications
Graduate School of Information Systems

1-5-1 Chofu-gaoka, Chofu-shi, Tokyo 1828585
E-mail: [ben,yosinaga,sowa]@is.uec.ac.jp

Abstract

The strong demand for complex and high performance
embedded system-on-chip requires quick turn around de-
sign methodology and high performance cores. Thus, there
is a clear need for new methodologies supporting efÞcient
and fast design of these systems on complex platforms im-
plementing both hardware and software modules.
In this paper, we describe a novel scalable core-based
methodology for systematic design environment of applica-
tion speciÞc heterogeneous multicore systems-on-chip (MC-
SoC). We also developed a high performance 32-bit Syn-
thesizable QueueCore (QC-2) with single precision ßoating
point support. The core is targeted for special purpose ap-
plications within our target MCSoC system. We present the
architecture description and design results in a fair amount
of details.

1. Introduction

System on chips designs have evolved from fairly sim-
ple uni-core, single memory designs to complex multicore
systems on-chip consisting of a large number of IP blocks
on the same silicon. As more and more cores (macros)
are integrated into these designs to share the ever increas-
ing processing load, the main challenge lies in efÞciently
and quickly integrating them into a single system capable
of leveraging their individual ßexibility. Moreover, to con-
nect the heterogeneous cores, the multi-core architecture
requires high performance complex communication archi-
tectures and efÞcient communication protocols architecture,
such as hierarchical bus [1, 2], point-to-point connection
[15], or Time Division Multiplexed Access based bus [3].
Current design methods tend toward mixed HD/SW co-
designs targeting multicore system-on-chip for speciÞc ap-

plications [16, 18, 21]. To decide on the lowest cost mix
of cores, designers must iteratively map the deviceÕs func-
tionality to a particular HW/SW partition and target archi-
tecture. Every time the designers explore a different system
architecture, the interfaces must be redesigned.
Unfortunately, the speciÞc target applications generally lead
to a narrow application domain and also managing all of
these details is so time consuming that designers typically
cannot afford to evaluate several different implementations.
Automating the interface generation is an alternative solu-
tion and a critical part of the development of embedded sys-
tem synthesis tools. Currently most automation algorithms
implement the system based on a standard bus protocol
(input/output interface) or based on a standard component
(processing) protocol. Recent work has used a more gener-
alize model consisting of heterogeneous multicore with ar-
bitrary communication links. The SOS algorithm [19] uses
an integer linear programming approach. The co-synthesis
algorithm, developed in [20], can handle multiple objec-
tives such as costs, performance, power and fault tolerance.
Unfortunately, such design practices allow only limited au-
tomation and designers resort to manual architecture design,
which is time consuming and error-prone especially in such
complex SoCs.
Our design automation algorithm generates generic-
architecture-template (GAT), where both processing and in-
put/output interface may be customized to Þt the speciÞc
needs of the application. Therefore, the utilization of the
GAT enables a designer to make a basic architecture design
without detailed knowledge of the architecture.
High performance processor cores are also needed for high
performance heterogeneous multicore SoCs. Thus, we
also describe a high performance synthesizable soft-core
architecture, which will be used as a task-distributor-core
(TDC) in the MCSoC system. The system may consist,
then, of multiple processing cores of various types (i.e.,
QueueCore(s), general purpose processor(s), domain spe-

ciÞc DSPs, and custom hardware), and communication
links. The ultimate goal of our systematic design automa-
tion and architecture generation is the to improve perfor-
mance and the design efÞciency of large scale heteroge-
neous multicore SoC. The rest of the this work is organized
as follow: Section 2 give conventional SoC design method-
ology. Section three gives our multicore architecutre plat-
form description. Section four gives our core-based method
for a systematic environment in a heterogeneous MCSoC.
Section Þve gives the synthesizable QC-2 core architecture.
Section six describes the QC-2 core evaluation. In the last
section we give the conclusion.

2. Problem identiÞcation and background

The gate densities achieved in current ASIC and FPGA
devices give the designers enough logic elements to im-
plement all the different functionalities on the same chip
(SoC) by mixing self-design modules with third party one
[3, 8, 18]. This possibility opens new horizons especially
for embedded systems where space constraints are as im-
portant as performance. The most fundamental character-
istic of an SoC is complexity. The SoC is generally tai-
lored to the application rather than general-purpose chip,
and may contain memory, one or several specialized cores,
buses, and several other digital functions. Therefore, em-
bedded applications cannot use general-purpose computers
(GPPs) either because a GPP machine is not cost effective
or because it cannot provides the necessary requirements
and performance. In addition, a GPP machine canÕt provide
reliable real-time performance.
In Fig. 1, a typical multicore architecture is shown. The typ-

ARM/QC-2 DMA
A/V

Encoder
MEM2

MEM1
SDRAM

controller
USB T imer

UART1 ITC

UART2MEM3

AHB/
APB

Bridge
system AHB bus peripheral APB bus

Figure 1. SoC typical architecture

ical model is made of a set of cores communicating through
an AMBA communication architecture [1]. The communi-
cation architecture constitutes the hardware links that sup-
port the communication between cores. It also provides
the system with the required support for the general data
transfer with external devices common to most applications.
Inter-component link is often in the critical path of such a
system and is a very common source of performance bottle-
necks [23]. It thus becomes imperative for system designers
to focus on exploring the communication design space.

Conventional SoC architectures are classiÞed into tow
types: single-processor and multiprocessor architectures. A
single-processor architecture consists of a single CPU and
one or several ASICs. A master-slave synchronization pat-
tern is adopted in this type. The single-processor SoC type
can only offer a restricted performance capability in many
applications because of the lack of true parallelism. A mul-
tiprocessor SoC architecture is a system that contains multi-
ple instruction set processors (CPUs) and also one or several
ASICs. In term of performance, multiprocessor SoCs per-
form better for several embedded applications. However,
they (multiprocessor SoCs) introduce new challenges: Þrst,
the inter-processor communication may require more so-
phisticated networks than a simple shared bus; and second,
the architecture may include more than one master proces-
sor. In either type, high processing performance is required
because most of the applications for which SoCs are used
have precise performance requirements deadlines. This is
different from conventional computing, where care is gen-
erally about processing speed. We will discuss the perfor-
mance issue in the following section when we introduce the
QC-2 core.
In general, the architectures used in conventional methods
of multiprocessor SoC design and custom multiprocessor
architectures are not ßexible enough to meet the require-
ments of different application domains (e.g. only point-to-
point or shared bus communication is supported.) and not
scalable enough to meet different computation needs and
different complexity of various applications. A promising
approach was proposed in [20]. This method is a core-
based solution, which enables integration of heterogeneous
processors and communications protocols by using abstract
interconnections. Behaviour and communication must be
separated in the system speciÞcation. Hence, system com-
munication can be described at a higher-level and reÞned
independently of the behaviour of the system. There are
two component-based design approaches: usage of a stan-
dard bus (i.e., IBM CoreConnect) protocol and usage of a
standard component (i.e., VSIA) protocol [16, 18, 21].
For the Þrst approach, a wrapper is designed to adapt the
protocol of each component to CoreConnect protocols. For
the second case, the designer can choose a bus protocol and
then design wrappers to interconnect using this protocol.
This paper presents a new concepts, called virtual architec-
ture, to cover both methods listed above. The virtual sys-
tem represents an architecture as an abstract netlist of vir-
tual cores, which should use wrappers to get adapt accesses
from the internal component to the external port.

3. ESPOIR multicore architecture platform

The target model of our architecture consists of CPUs
(i.e., QueueCore (QC-2), GPPs), hardware blocks, memo-

ries, and communication interfaces. The addition of new
CPUs will not change the main principle of the proposed
methodology. The processors are connected to the shared
communication architecture via communication network,
which maybe of whatever complexity from a single bus
to a network with complex protocols. However, to ensure
modularity, standard and speciÞc interfaces to link cores to
the communication architecture should be used. This gives
the possibility to design separately each part of the applica-
tion. For this purpose, we proposed in [22] a modular de-
sign methodology. One important feature of the proposed
method is that the generic assembling scheme largely in-
creases the architecture modularity. Figure 2 show a typi-

QC-2memory

communication network

comm. interface

SHmemory

comm. interface

memoryQC-2

comm. interface

memorySH

comm. interface

p_in

p_out

Figure 2. MCSoC system platform. This is a
typical instance of the architecture. In this
system, the addition of a new core will not
change the principle of the methodology.

cal instance of the platform made of 4 processors (2*QC-2
cores and 2*SH cores -Hitachi SuperH core). The QC-2
core is a special purpose synthesizable core (described in
details in section 5).
The designer can conÞgure: the number of CPUs, I/O ports
for each processor and interconnections between proces-
sors, the communication protocols and the external connec-
tions (peripherals). The communication interface depends
on the processor attributes and on the application-speciÞc
parameters. The communication interface that we intend
to use to connect a given processor to the communication
architecture, consists of two parts: one part speciÞc to the
processorÕs bus; the second part is generic and depends on
communication protocols and on the number of communi-
cation channels used. This structure allows the ÓisolationÓ
of the CPU core from the communication network.
Each interface module acts as a co-processor for the cor-
responding CPU. The application dependent part may in-

clude several communication channels. The arbitration is
done by the CPU-dependent part and the overhead induced
by this communication co-processor depends on the design
of the basic components and may be very low. The use of
this architecture for interfaces, provides huge ßexibility and
allows for modularity and scalability.

4. Application speciÞc MCSoC design method

In our design methodology, the application-speciÞc pa-
rameters should be used to conÞgure the architecture plat-
form and an application-speciÞc architecture is produced.
These parameters result from an analysis of the application
to be designed. The design ßow graph (DFG) is divided into
14 ”linked Š tasks” as shown in Fig. 3 (a)-(b) and sum-
marized in Table 1. The Þrst task (node T1) deÞnes the

(a)

T6

T1 T2

T3

T7

T8

T10

T9

T5

T4

T11

T2

T12

T14

T8 T13

T8T6

(b)

Figure 3. Linked-task design ßow graph
(DFG).(a) Hardware related tasks,(b) Applica-
tion related tasks.

architecture platform using all Þxed architectural parame-
ters: (1) Network type, (2) Memory architecture, (3) CPU
types, and (4) other HW modules. Using the application
system level description (second task) and the architectural
Þxed parameters, the selection of the actual design param-
eters (number of CPUs, the memory sizes for each core,
I/O ports for each core and interconnections, between cores,
the communication protocols and the external peripherals)
is performed in task 3 (node T3). The outputs of task 3 are:
an abstract architecture description (node T7) and a map-

Table 1. Linked-task description.
Task Description
T1 DeÞne architecture platform
T2 Describe application system level
T3 select design parameters
T4 Instantiate Pr. att.
T5 Instantiate communication
T6 mapping table
T7 Describe abstract architecture
T8 Design architecture
T9 Inst.IP cores (Pr.and Mem)
T10 H-SoC synthesis
T11 Software adaptation
T12 Binary code
T13 Pr. and Mem. emulators
T14 H-SoC validation

ping table (node T6). Node T7 is the internal structure of
the target system architecture. It contains all the application
speciÞc parameters. The mapping table (T7) contains the
addresses allocation and memory map for each core. The
complete architecture design task (T8) is linked to the ab-
stract architecture and the mapping table nodes (tasks). Fi-
nally, binary programs that will run on the target processors
are produced in task 11 (node T11). For validation, cycle
accurate simulation for CPUs and HDL (Verilog or VHDL)
modeling for other cores/modules can be used for the whole
architecture.

5. QC-2 core architecture

We proposed in [5, 6] a produced order parallel Queue
processor (QueueCore) architecture. The key ideas of the
produced order queue computation model of our architec-
ture are the operands and results manipulation schemes.
The Queue computing scheme stores intermediate results
into a circular queue-register (QREG). A given instruc-
tion implicitly reads its Þrst operand from the head of the
QREG, its second operand from a location explicitly ad-
dressed with an offset from the Þrst operand location. The
computed result is Þnally written into the QREG at a po-
sition pointed by a queue-tail pointer (QT). An important
feature of this scheme is that, write after read false data de-
pendency does not occur [5]. Furthermore, since there is
no explicit referencing to the QREG, it is easy to add ex-
tra storage locations to the QREG when needed. The other
feature of the POC computing model is its important affect
on the instruction issue hardware. The QC-1 core [6] ex-
ploits instruction-level parallelism without considerable ef-
fort and need for heavy run time data dependence analysis,

resulting in a simple hardware organization when compared
with conventional Superscalar processors. This also allows
the inclusion of a large number of functional units into a
single chip, increasing parallelism exploitation. Since the
operands and result addresses of a given static-instruction
(compiler generated) are implicitlycomputed during run-
time, an efÞcient and fast hardware mechanism is needed
for parallel execution of instructions. The queue processor
implements a so named queue computation mechanism that
calculates operands and result addresses for each instruction
(discussed later). The QC-2 core, presented in this work,
implements all hardware features found in QC-1 core and
also supports single precision ßoating point accelerator.
In this section we describe the QC-2 (extended and opti-
mised version of the QueueCore processor) architecture and
prototyping results. As we explained in earlier section, the
QC-2 core will be integrated into our H-SoC system.

5.1 Hardware pipeline structure

The QC-2 supports a subset of the produced order queue
processor instruction set architecture [6]. All instructions
are 16-bit wide, allowing simple instructions fetch and
decode stages and facilitate instructions pipelining. The
pipelineÕs regular structure allows instructions fetching,
data memory references, and instruction execution to pro-
ceed in parallel. Data dependencies between instructions
are automatically handled by hardware interlocks. Bellow
we describe the salient characteristics of the QueueCore ar-
chitecture.
(1) Fetch (FU): The instruction pipeline begins with the
fetch stage, which delivers four instructions to the de-
code unit each cycle. This is the same bandwidth as the
maximum execution rate of the functional units. At the
beginning of each cycle, assuming no pipeline stalls or
memory wait states occur, the address pointer hardware
of the fetched instructions issues a new address to the
Data/Instruction memory system. This address is either the
previous address plus 8 bytes or the target address of the
currently executing ßow-control instruction.
(2) Decode (DU): The QC-2 decodes four instructions in
parallel during the second phase and writes them into the
decode buffer. This stage also calculates the number of
consumed (CNBR) and produced (PNBR) data for each in-
struction [5]. The CNBR and PNBR are used by the next
pipeline stage to calculate source and destination locations
for each instruction. Decoding stops if a queue becomes
full.
(3) Queue computation (QCU): The QCU calculates the
Þrst operand (source1) and destination addresses for each
instruction. The mechanism used for calculating the
source1 address in given in Fig. 4. The QCU unit keeps
track on the current value of the queue-head and queue-tail

pointers. Four instructions arrive to the QCU unit each cy-
cle.
(4) Barrier: The major goal of this unit/stage is to insert
barrier ßags for all barrier type instructions.
(5) Issue: Four instructions are issued for execution each
cycle. In this stage, the second operand (source2) of a
given instruction is Þrst calculated by adding the address
source1 to the displacement that comes with the instruc-
tion. The second operandÕs address calculation could be
earlier calculated in the QCU stage. However, for a bal-
anced pipeline consideration, thesource2 is calculated in
this stage. The hardware mechanism used for calculating
the second operand (source2) address is shown in the left
part of Fig. 4 (discussed later).
An instruction is ready to be issued if its data operands and
its corresponding functional unit are available. The proces-
sor reads the operands from the QREG in the second half of
stage 5 and execution begins in stage 6.
6) Execution (EXE): The macrodataßow execution core
consists of 1 integer ALU unit, 1 ßoating-point accelera-
tor unit, 1 branch unit, 1 multiply unit, 4 set-units, and 2
load/store units.
The load and store units share a 16-entry address window
(AW), while the integer unit and the branch unit share a 16-
entry integer window (IW). The FPA has its own 16-entries
ßoating point window (FW). The load/store units have their
own address generation logic. Stores are executed to mem-
ory in-order.

QH1 QT1

CNBR
++

PNBR

QH0 QT0

CNBR
++

PNBR

QHn+1

QTn+1

PNBR :number of produced data
CNBR :number of consumed data
QH0 :initial queue head value
QT0 :initial queue tail value
NQH : next queue head value
NQT : next queue teail value
QHn+1:next queue head value
 QTn+1: next queue tail value

NQT

NQH

OFFSET(n) +
SRS2n

SRC1n

DESTn
QTn

OFFSET: positive/negative integer value that indiactes
the location of SRC2(n-1) from the QH(n-1)
QTn : queue tail value of instruction n
DESTn : destination location of instruction n
SRC1(n-1): source data 1 of instruction (n-1)
SRC2(n-1): source data 2 of instruction (n-1)

QHn

OFFSET(n-1) +
SRS2(n-1)

SRC1(n-1)

DEST(n-1)
QTn-1

QHn-1

Figure 4. QC-2Õs operands addresses calcu-
lation hardware.

5.2 Dynamic operands calculation

To execute instructions in parallel, the QC-2 core must
calculate the operands addresses (source1,source2 and
destination) for each instruction. Fig. 4 illustrates QC-
2Õs dynamic operands computation hardware. To calculate

thesource1address, the consumed operands (CNBR) Þeld
(port Þeld) is added to the current QH value (QH0). To Þnd
the address of the Þrst operand and the number of produced
results (PNBR- 8-bit Þled) is added to the current QT value
(QT0) to calculate the result address (QT1) of the Þrst in-
struction. Similar mechanism is used for the other three
instructions. Because the next QH and QT values are de-
pendent on the current QH and QT values, the calculation
is performed sequentially. Each QREG entry is written ex-
actly once and it is busy until it is written. If a subsequent
instruction needs its value, that instructions must wait until
it is written. After QREG entry is written, it is ready.

5.3 Floating point organization

The QC-2 ßoating-point accelerator (FPA) is a pipelined
structure and implements a subset of the IEEE-754 single
precision ßoating-point standard [13, 14]. The FPA con-
sists of a ßoating-point ALU (FALU), ßoating-point mul-
tiplier (FMUL), and ßoating point divider (FDIV). The
FALU, FMUL, FDIV and the ßoating-point queue-register
(FQREG) employ 32-wide data paths. Most FPA operations
are completed within three execution cycles. The FPAÕs exe-
cution pipelines are simple in design for high speeds that the
QC-2 core requires. All frequently used operations are di-
rectly implemented in the hardware. The FPA unit supports
the four rounding modes speciÞed in the IEEE 754 ßoating
point standard: round toward-to-nearest-even, round toward
positive inÞnity, round toward negative inÞnity, and round
toward zero.

Exponent
A (8-bit)

Mantissa
A (23-bit)

Exponent
B (8-bit)

Exponent
comparator

Mantissa
B (23-bit)

pre-shifter

Result
 mantissa

Result
exponent

LD

shiftersub

adder

sa
tg

e
1

st
ag

e
2

st
ag

e
3

normalizer/
rounding

exponent
difference

larger
exponent

Sign
A (1-bit)

Sign
B (1-bit)

Exponent
A (8-bit)

Mantissa
A (23-bit)

Exponent
B (8-bit)

Mantissa
B (23-bit)

Sign
A (1-bit)

Sign
B (1-bit)

Exponent
Adder

Denorm

Mantissa
Multiplier

Normalise &
Rounding

Result
mantissa

Result
exponent

Result
sign

XOR

Figure 5. QC-2Õs FPA hardware.

5.3.1 Floating point ALU implementation

The FALU does ßoating-point addition, subtraction, com-
pare and conversion operations. Its Þrst stage subtracts
the operands exponents (for comparison), selects the larger
operand, and aligns the smaller mantissa. The second stage
adds or subtracts the mantissas depending on the operation
and the signs of the operands. The result of this operation

