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Abstract 
 

Speech recognition has become common in many 
application domains, from dictation systems for 
professional practices to vocal user interfaces for 
people with disabilities or hands-free system control. 
However, so far the performance of Automatic Speech 
Recognition (ASR) systems are comparable to Human 
Speech Recognition (HSR) only under very strict 
working conditions, and in general much lower. 
Incorporating acoustic-phonetic knowledge into ASR 
design has been proven a viable approach to raise 
ASR accuracy. Manner of articulation attributes such 
as vowel, stop, fricative, approximant, nasal, and 
silence are examples of such knowledge. Neural 
networks have already been used successfully as 
detectors for manner of articulation attributes starting 
from representations of speech signal frames. In this 
paper the full system implementation is described. The 
system has a first stage for MFCC extraction followed 
by a second stage implementing a sinusoidal based 
multi-layer perceptron for speech event classification. 
Implementation details over a Celoxica RC203 board 
are given.  
 
1. Introduction 
 

In [1] the authors proposed a real time 
implementation of a bank of Multi Layer Perceptron 
(MLP) with sinusoidal activation function to detect 

speech attributes, namely fricative, vowel, stop, nasal, 
approximant, and silence. Inside the speech 
community, these aforementioned attributes are 
referred to as manner of articulation events, and they 
are strongly related to human speech production [2]. 
Moreover, they show robustness to speech variations 
[3]. These speech attributes are generated directly from 
Mel-Frequency Cepstrum Coefficients (MFCCs), and 
the six detectors actually perform a sort of mapping 
from the acoustic domain (MFFCs) to the articulatory 
domain.  The term ‘‘mel’’ denotes a measurement of 
perceived frequency of a tone, which does not vary 
linearly with the physical frequency of the 
corresponding tone.  A non linear scale is employed 
since it was found that human auditory system does not 
perceive pitch in linear manner. The mapping between 
the real frequency scale (Hz) and the perceived 
frequency scales (mels) is given in formula (1) 
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The mapping is approximately linear below 1KHz, 

and logarithmic at higher frequency, and such an 
approximation is usually adopted in speech 
recognition.  

In this paper we propose the chip design for the 
entire system, aimed at embedded applications. Our 
interest in generating the manner of articulation system 
is because it is part of the Automatic Speech Attribute 
Transcription (ASAT) project [4], in which a software 



neural network-based architecture for these manner of 
articulation attributes was already implemented in [5]. 

The main idea of the ASAT project is that the 
performance of conventional knowledge-ignorant 
modeling approaches can be improved integrating the 
knowledge sources available in a large body of speech 
science literature. In [3] it is showed that the idea of a 
direct incorporation of acoustic-phonetic knowledge 
into ASR design raises its accuracy. These 
“knowledge-based” features (also referred to as speech 
attributes in the same work) are used to augment the 
front-end module of a conventional ASR system by 
means of a set of feature detectors able to capture the 
speech attributes.  

The rest of the paper is organized as follows. 
Section 2 describes the general framework of the event 
detector module, which we will call knowledge 
extraction to be consistent with the nomenclature used 
in [1]. In sections 3 and 4 the MFCCs and its digital 
implementation are given respectively. An overview of 
the digital implementation of the six MLP detectors is 
shown in section 5. Section 6 presents the experimental 
set-up and results with comparison to the baseline 
architecture. Concluding remarks are given in the last 
section of the paper to summarize its main 
contributions. 

 
2. Knowledge Extraction Module 
 

The Knowledge Extraction (KE) module uses a 
frame-based approach to provide K manner of 
articulation attributes Ai, where i=1,2, … K, from an 
input speech signal s(t). In this paper the manner 
classes were chosen as in [6], and are listed in Table 1.  

The KE module, depicted in Figure 1, is composed 
of two fundamentals blocks: the feature extraction 
module (FE), and the attribute scoring module (SC). 
The FE module consists of a bank of K feature 
extraction blocks FEi, where i=1,2, … K, and it maps a 
speech waveform into a sequence of speech parameter 
vectors Yi,  i=1,2, … K. Actually, each of the FEi is fed 
by the same speech waveform s(t,) and for each speech-
frame it computes a thirteen MFCC feature vector Xi 
(12 MFCCs + Energy). The frame length is of 30 msec 
overlapped by 20 msec.   Finally, FEi produces as 
output a 117-feature vector Yi combining the actual 
frame with the eight surrounding frames, 4 frames 
before and after, so that each speech parameter vector 
represents nine frames. 
The SC module is composed of six feed-forward neural 
networks, and its goal is to attach a score, referred to as 
knowledge score (KSi), to each vector Yi.  The input of 
each network is a 9 frames of 12 MFCCs + energy, so 

that the input layer is of 117 nodes. The output layer 
has two nodes, one for the desired class, and one for 
the anti-class. Actually, the value obtained for the 
desired class for case i is defined to be the KSi. 

Table 1. Manner of articulation attribute definition 

Articulation 
Manner 

Class  
Elements 

Anti-Class Elements 

Vowel IY, IH, EH, 
EY, AE, AA, 
AW, AY, AH, 
AO, OY, OW, 
UH, UW, ER, 
AX, IX 

JH, CH, S, SH, Z, ZH, 
F, TH, V, DH, B, D, G, 
P, T, K, DX, M, N, NG, 
EN, L, R, W, Y, HH, EL, 
SIL 

Fricative JH, CH, S, 
SH, Z, ZH, 
F, TH, V, 
DH 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, B, 
D, G, P, T, K, DX, M, 
N, NG, EN, L, R, W, Y, 
HH, EL, SIL 

Stop B, D, G, P, 
T, K, DX 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH, M, N, NG,
EN, L, R, W, Y, HH, EL, 
SIL 

Nasal M, N, NG, 
EN 

IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH, B, D, G, P, 
T, K, DX, L, R, W, Y, 
HH, EL, SIL 

Silence SIL IY, IH, EH, EY, AE, AA, 
AW, AY, AH, AO, OY, OW, 
UH, UW, ER, AX, IX, JH, 
CH, S, SH,  Z, ZH, F, 
TH, V, DH,  B, D, G, P, 
T, K,  DX, M, N, NG,
EN, L, R, W, Y, HH, EL 

Approximant 
(App.) 

L R W Y EL IY IH EH EY AE AA AW AY 
AH AO OY OW UH UW ER AX 
HH IX JH CH S SH Z ZH F 
TH V DH B D G P T K DX 
M N NG EN SIL 
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Fig. 1. Knowledge Extraction Module, adapted 

from[6]. The detectors are based on a MLP neural 
network. 

 
 

3. Mel-Frequency Cepstrum Coefficients 
Extractor 
 

In the feature extraction phase a set of useful 
parameters termed as Mel-frequency cepstrum 
coefficients (MFCC) are extracted directly from the 
speech waveforms. To compute the MFCCs, the speech 



waveform of the input utterance is partitioned into 
sequence of consecutive frames using windowing 
analysis. For each frame, the vector of mel frequency 
cepstrum coefficients are extracted from the frame 
samples. The resulting sequence of feature vectors 
represents the input utterance.   

The general form of this filter bank is illustrated in 
Figure 2. As can be seen the filters used are triangular 
and they are not equally spaced along the mel-scale but 
which is defined by equation (1). 

 

 
Fig. 2. Triangular weighted functions in frequency 

domain. 
 
The block diagram of the entire process is depicted in 
Fig. 3.  
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Fig. 3. Block diagram of the entire MFCC 

extraction module. 
 
A description of each individual step is given below. 
 
Step 1: Frame Blocking 
 

In this step the continuous speech signal is blocked 
into frames of N samples, with adjacent frames being 
separated by M (M < N). This process continues until 
all the speech is accounted for within one or more 
frames. Typical values for N and M are N = 256 
(which is equivalent to ~ 30 msec windowing and 
facilitate the fast radix-2 FFT) and M = 100. 
 
Step 2: Windowing 
 

The next step in the processing is to window each 
individual frame so as to minimize the signal 

discontinuities at the beginning and end of each frame. 
If we define the window as w(n) with 0≤ n ≤N-1, where 
N is the number of samples in each frame, then the 
result of windowing is the signal 

10),()()( −≤≤= Nnnwnxny ll  
 

(2) 

 
Step 3: Fast Fourier Transform (FFT) 
 

The next processing step is the Fast Fourier 
Transform, which converts each frame of N samples 
from the time domain into the frequency domain.  The 
FFT is a fast algorithm to implement the Discrete 
Fourier Transform (DFT) which is defined on the set of 
N samples {xn}, as follow: 
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Step 4: Mel-frequency Wrapping 
 

An approach to simulate the human being auditory 
system is to process the spectrum S(ω) of Xn by a filter 
bank spaced uniformly on the mel scale (see Figure 2). 
That filter bank has a triangular bandpass frequency 
response, and the spacing as well as the bandwidth is 
determined by a constant mel frequency interval. The 
number of mel spectrum coefficients, K, is typically 20. 
 
Step 5: Cepstrum 
 

In this final step, we convert the log mel spectrum 
back to time. The result is called the mel frequency 
cepstrum coefficients (MFCC). Because the mel 
spectrum coefficients (and so their logarithm) are real 
numbers, we can convert them to the time domain 
using the Discrete Cosine Transform (DCT).  
Therefore if we denote those mel power spectrum 
coefficients that are the result of the last step 
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3.1. Implementation on FPGA 
 

The front-end has been implemented and prototyped 
onto a Celoxica RC203 board equipped with a Virtex II 
XC2V3000-4 donated by Xilinx. The extractor is 



described using a C-like hardware description 
language, Handel-C, developed by the Oxford 
Hardware Compilation Group at the University of 
Oxford (UK). 

The actual prototype runs at a rather low operating 
frequency of 12.5 MHz, operating on 10 ms windows 
and requiring 2.1 ms per input frame.  
 
4. Feed Forward Neural Network digital 
design 
 

In [7] an efficient MLP digital implementation for 
road signs recognition and high energy physics 
experiments classification has been proposed. This 
initial design has been adapted and optimized for 
automatic speech classification and is presented in this 
section.  

A single MLP digital architecture is used to 
implement each of the detectors described in Figure 1. 
As depicted in Figure 4, this architectural design aims 
to satisfy high design modularity, high density of 
neurons on device, high recognition rate and speed. As 
a result, (a) data input acts in a serial way; (b) data 
processing acts in parallel among the neurons and 
serially within each neuron; (c) second layer processing 
is pipelined with first layer processing. The Winners 
Takes All (WTA) circuit selects, among a set of m 
numbers, the greatest activation level units.  

 
Fig. 4. Functional block diagram of the MLP 

architecture 
 

The basic digital neural network elements, as 
multipliers and accumulators, are designed following 
the standard solutions. The output activation function is 
a linear function, whilst sinusoidal activation function 
is employed as activation function of the hidden layer. 
Fixed point arithmetic with two's complement 
representation is used for the chip implementation of 

the MLP. Principal constrains of this project are the 
compromise between the neural network accuracy  and 
the bit depth for input and weight data, and the 
compromise between the neural network accuracy and 
the bit depth for the pre-synaptic value and the post-
synaptic value of the hidden activation function. 
 
5. Experiments and results 
 

The evaluation of the proposed Manner of 
Articulation Extraction module was performed on the 
TIMIT Acoustic-Phonetic Continuous Speech Corpus 
database [8], which is a well-known speech corpus in 
the speech recognition field. This database is composed 
of a total of 6300 sentences; it has a one-channel, 16-
bit linear sampling format, and it was sampled at 16000 
samples/sec. The MLP detectors were trained on 3504 
randomly selected utterances, and to be consistent with 
[3] and [9] the four phones  “cl”, “vcl”, “epi”, and “sil” 
were treated as a single class, thus reducing the TIMIT 
phone set to a set of 45 context-independent (CI) 
phones. The front-end module is in the process of being 
implemented following the guidelines given in [10]. 
Instead the max module is a simple comparator circuit. 
The MLP module is the focus of this work, and a 
detailed description is given in what follows. 

Each of the six detectors is a three-layer network the 
input of which is a window of nine frames, that is, 117 
parameters. The nodes of hidden layers are 100. The 
output layer contains two units, and a simple linear 
activation function is used. Finally, the max module 
applies a max function to the KSi outputs in order to 
compute the overall confusion matrix.   

As previously stated, the detectors work in a frame-
based paradigm, so that their performance was 
evaluated in term of frame error rate. Each frame was 
classified according to the neural network with the 
largest value.  

Table 2. Hardware phoneme percentages 
accuracies for the manner of articulation attributes 

using sinusoidal activation function 
% Vowel Fricative Stop Nasal App. Silence

Vow. 89,85 1,38 1,53 1,26 4,64 0,19 

Fric. 3,16 87,02 5,53 1,02 0,89 1,24 

Stop 6,32 7,41 79,89 1,71 1,57 1,96 

Nas. 9,65 2,44 3,25 81,04 2,20 0,90 

App. 30,82 2,88 3,26 2,74 58,07 1,19 

Sil. 1,10 1,09 1,88 0,61 0,58 94,21 

 
The global confusion matrix for the manner of 

articulation attributes is given in Table 2. The (p, q)-th 



element of the confusion matrix measures the rate of 
the p-th attribute being classified into the q-th class.   

The digital version Knowledge-based Automatic 
Speech Classifier is implemented on Celoxica RC203 
board [11] equipped with a Xilinx VirtexII 
XC2V3000-4 FPGA. Neural architectures were 
described using the VHDL language and were 
synthesized using the Xilinx ISE 6.3 tools. 

According with the results reached in [7], the 
number of hidden virtual neurons for each of the MLPs 
has been fixed to 10, representing the best trade-off 
between execution time and allocated resource. The 
above MLP digital implementation requires 1187 
cycles and, consequently, 0,0236ms for its execution. 
Combined with the 2 ms execution of the front-end, the 
execution time clearly allows for real-time execution. 
Table 3 illustrates the synthesis report for the MFCC 
Extractor Module, for the entire scoring module and 
the total allocated resources required by the entire 
system. It is easy to see that the chosen configuration 
for each MLP allows the implementation of the 6 
detectors in a single FPGA. 

Table 3. Synthesis report for the MFCC Extractor 
Module, for the entire scoring module and the total 
allocated resources required by the entire system 

Slices FFs LUTs RAMs 
Available Resources 

14336 28672 28672 96 

6439 1319 11205 3 
MFCC Extractor 

44,9% 4,6% 39,1% 3,1% 

4830 4058 8234 60 
MLP scoring module 

33,7% 14,2% 28,7% 62,5% 

11269 5377 19439 63 
Total Resources 

78,6% 18,8% 67,8% 65,6% 

 
 
Implementation results on FPGA show that use of 

sinusoidal activation functions decrease hardware 
resource usage of more than 50% for slices, FFs, LUTs 
and of more than 35% for FPGA RAM when compared 
with the standard sigmoid-based neuron 
implementation. Furthermore, neuron virtualization 
allows for a significant decrease of concurrent memory 
access, resulting in improved performance for the 
entire attribute scoring module [7]. 
 
6. Summary 
 

The performance of Automatic Speech Recognition 
(ASR) systems are comparable to Human Speech 
Recognition (HSR) only under very strict working 
conditions, and in general far lower. Incorporating 
acoustic-phonetic knowledge into ASR design has been 

proven a viable approach to raise ASR accuracy. 
Manner of articulation attributes such as vowel, stop, 
fricative, approximant, nasal, and silence are examples 
of such knowledge. Neural net-works have already 
been used successfully as detectors for manner of 
articulation attributes starting from representations of 
speech signal frames.  

The preliminary experimental results offer good 
evidence of the real-time capability of the system. and 
they demonstrates its implementation on embedded 
devices as part of full speech recognition systems.  

In this paper an embedded knowledge-based speech 
detectors for real-time execution is described. The 
system has a first stage for MFCC extraction followed 
by a second stage implementing a sinusoidal based 
multi-layer Perceptron for speech event classification. 
Implementation details over a Celoxica RC203 board 
have been given. 

Execution time for the entire system is slightly 
above 2 ms per frame and allows for real-time speech 
event classification on embedded devices. 

Currently research works underway to incorporate 
the other stages for full large dictionary speech 
recognition embedded IP engine. 
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