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Abstract 
Efficient data movement is one of the key attributes 

for high performance computing. This paper advocates 
the use of stream descriptors to convey memory access 
patterns from the programmer to the compiler. This 
explicit separation of computation and data movement 
enables the compiler to manipulate the stream 
descriptors to match the system’s interconnect 
capabilities. Data movement is optimized by 
manipulating stream descriptors to target specific 
optimizations such as bandwidth management and 
buffer allocation. In this paper, bandwidth 
improvements are shown for an example system 
performing video analysis using computer vision 
methods. The system includes key hardware 
mechanisms that use stream descriptors to prefetch 
and align data for stream processors.  

1. Introduction 

In today’s System-on-a-Chip (SoC), multiple 
specialized computing units are used to delegate heavy 
computation load from conventional processors. These 
computing units operate on vast amounts of data, 
making data movement the performance bottleneck. 
Scheduling data movement is a challenge for a 
compiler, and even the best of programmers. This is 
because traditional programming models lack the 
ability to orchestrate data movement and computation 
among the computing units and memories. It is 
possible to rely on hardware circuits to dynamically 
predict the access patterns and pre-fetch the required 
data from main memory into faster local memory. This 
approach has limited performance because the access 
patterns may be difficult to predict in the general case. 
Also, the access patterns may change from one 
hierarchy level to the next, requiring pre-fetch 
hardware for each level of the hierarchy. The 
associated pre-fetch circuits consume energy and chip 
area that can otherwise be allocated to actual data 
processing. 

This paper advocates the stream programming 
model for its ability to explicitly express data 
movement separately from data-parallel computation. 

This separation of data movement from computation 
enables the programmer to express data access patterns 
through a standardized application program interface 
(API). A compiler can then use the description of data 
movement to schedule data transfers ahead of the 
computation without performing complex dataflow 
analysis. 

This paper has two main contributions. The first 
contribution is a description of memory access 
patterns, called stream descriptors, capable of 
capturing the shape and movement of the data 
throughout the interconnect and memory hierarchies. 
The second contribution is a collection of stream 
descriptor manipulations that optimize data movement, 
locally as well as globally, to better match the 
hardware capabilities. These optimizations can lead to 
better latency resulting in an efficient usage of the 
interconnect and memory hierarchies in the SoC. 

The structure of the paper is as follows: Section 2 
presents the related work; Section 3 introduces the 
stream descriptor notation, gives some examples on 
stream descriptor usage, and presents some hardware 
mechanisms and their interface to the stream 
descriptors; Section 4 shows examples of stream 
manipulation methods; Section 5 defines the 
benchmark kernels and the evaluation setup used to 
assess the benefits of stream manipulations; Section 6 
shows the improvements introduced by the stream 
manipulations; Section 7 presents the conclusions and 
directions of future research. 

2. Related Work 

Stream programs exhibit data parallelism, regular 
communication patterns, and short data lifetimes [1]. In 
this model, large sequences of ordered data (streams) 
are passed through a series of computation kernels 
(filters). The programmer separately defines the data 
access and computation in an explicit manner, thereby 
facilitating the compiler’s ability to schedule both in 
hardware. Examples of stream programming languages 
include StreamIt [2], Brook [3], and StreamC/KernelC 
[4]. The proposed stream descriptors extend these 
programming languages with an interface that 



facilitates the description of the data structures’ shape 
and their access patterns for each computation kernel. 
Because the data streams exhibit regular access 
patterns, the compiler can optimize data movement by 
analyzing stream descriptors along with information 
that models the underlying hardware. The salient 
feature in stream descriptors is the ability for the 
compiler to manipulate different fields of the stream 
descriptors to match different hardware structures, 
while maintaining the programmers’ intent. Stream 
descriptors can also be used to target new streaming 
architectures that use the stream model of computation 
[5, 6, and 7]. 

There is a significant body of research in data pre-
fetching techniques and reordering of memory accesses 
to improve performance. Readers are referred to [8] for 
an overview of compile-time and run-time techniques. 
The proposed stream descriptors use compile-time 
techniques to optimize the access order of each data 
element in the interconnect hierarchy. Stream 
descriptors can be used to describe the shape of data in 
memory, such as the regular data access patterns 
occurring in tight loops, thus enabling data prefetching 
and alignment. The compiler can use information about 
the physical attributes of the system when 
manipulating stream descriptors to optimize desired 
performance metrics accordingly. The descriptors can 
also be modified at run-time if the underlying hardware 
provides run time support. 

There are numerous compiler techniques that 
extract data parallelism by removing data dependencies 
from loop structures [9, 10]. The compiler applies a 
series of code transformations to eliminate 
dependencies, and then generates sequences of 
load/store instructions based on new access patterns of 
the transformed loop. This means that data transfer 
depends on the access pattern inferred by the compiler 
from the loop structure. In contrast, stream descriptors 
enable complex access patterns that are not easily 
discernible from nested loop structures. Stream 
descriptors also decouple memory address generation 
and alignment from computation such that the 
processor and memory hierarchy can be optimized 
separately. 

There are different ways to describe data shapes. 
This paper uses an extension on the format presented in 
[11]. Stream descriptors have been used to optimize 
transfers from I/O devices [12] and from memory [13] 
without any manipulation. Similar techniques that 
describe the shape of memory access have also been 
used for trace generation [14, 15]. This paper explores 
further optimizations by manipulating the stream 
descriptors to better match the underlying memory and 
interconnect hierarchies. 

3. Stream Descriptors 

From the point of view of the stream processor, data 
appear as a stream of contiguous elements even though 
they may be scattered throughout memory. Stream data 
elements are grouped into logical units, or records, that 
can be processed in parallel. Unlike vector data, stream 
records can represent more complex structures, 
patterns and shapes [16]. In the following subsections 
the proposed stream descriptor API is presented and 
some examples are given. 

3.1 Stream Descriptor Definition 

Stream descriptors have a programming interface 
that allows the programmer to describe the shape of 
data structures and their movement in the memory 
hierarchy. In this paper, stream descriptors are 
represented by the 7-tuple (Start Address, Offset(), 
Stride, Span, Skip, Type, Element_Count) where: 
• Start Address is the memory address of the first 
element of the data stream. 
• Offset() represents a user-defined function that 
computes the displacement of the next stream record 
from the base address. 
• Stride is the spacing between two consecutive 
stream record elements. The units for the spacing are in 
data elements. 
• Span indicates how many elements are gathered into 
the stream record before the skip displacement is 
applied. 
• Skip is the displacement in data elements that is 
applied between groups of Span elements. 
• Type indicates how many bytes are in each data 
element, for example 8-bit data is associated with a 
type value of one, 16-bit of data associates a value of 
two and so on. 
• Element_Count indicates how many stream 
elements are in the data stream. 

The Stride, Span, Skip, and Type fields define the 
shape of the data structure or stream record. These 
fields are manipulated by the compiler to match the 
functional units in the hardware to the computation 
kernel requirements and to match the capabilities of the 
interconnect hierarchy and memory bandwidth in the 
system. 

The Offset() and Element_Count fields describe 
how the stream records are assembled into a stream. 
The access pattern of stream records is expressed as 
memory address displacements from a base address, 
which is updated per record by the Offset() function. 
The function can be used to describe either regular or 
irregular access patterns and can be synthesized as part 
of the address generation circuit when reconfigurable 
hardware is used; otherwise, it represents the sequence 



of instructions used to program the Direct Memory 
Access (DMA) unit. In both cases, the compiler must 
be aware of the target platform to produce the 
appropriate code or hints for the hardware synthesis 
process. Section 3.4 presents an example of such a 
DMA unit. 

The Offset() and Element_Count fields may not be 
needed for simple stream record movement, such as 
traversing images one pixel at a time, but keeping them 
in the API gives the programmer the ability to describe 
complex movement of data structures. 

3.2 Stream Descriptor Examples 

Consider a kernel that operates on stream records of 
three data elements. Suppose that there is a gap of a 
single space between each data element, and that there 
is a gap of three spaces between each group of three 
elements. In this case the stride is two, the span is 
three, and the skip is four, as shown in Figure 1. 

Stream Record

STRIDE=2 SKIP=4SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

STRIDE=2

SPAN = 3 Stream Record

STRIDE=2 SKIP=4SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

STRIDE=2

SPAN = 3

 
Figure 1. Stream record components 

The stride and skip displacements can be positive or 
negative, but the span is always positive. Additional 
displacements can be included to describe more 
complex access patterns, but the template described 
above allows the description of two-dimensional sub-
arrays within larger arrays (useful in imaging 
applications), uniform sub-samples of arrays, circular 
access of a sub-array (using negative skip values), or a 
combination of them 

It is possible to have more than one representation 
of the same access pattern, but this is not important, as 
the compiler will manipulate this representation to 
better match the capabilities of the memory and 
interconnect hierarchies. 

As an example of the Offset() function consider a 
two-dimensional sub-array which comprises a stream 
record. The shape of the next stream record has the 
same dimension, but the Start_Address includes an 
additional displacement defined by the Offset() 
function. The Offset() function can express any 
arbitrary sequence that describe locations of stream 
records throughout memory. 

3.3 Hardware Parameters 

To perform stream descriptor manipulation, the 
compiler needs information about the physical 
attributes of the memory hierarchy and its associated 
interconnect. Examples of these physical attributes are 

bus width, latency, capacitance, operation frequency, 
burst capability, and internal buffering. A complex 
system may consist of a hierarchy of busses, DMA 
units, local memories, and bus bridges. The stream 
descriptors are manipulated by the compiler to match 
the capabilities of each of these elements to optimize 
the flow of data. Data transfers are performed by the 
DMA units, but it is also possible for some high-
bandwidth peripherals to have their own DMA circuits. 

3.4 Stream Descriptors and DMA engines 

The DMA units use stream descriptor information 
to perform address generation, byte alignment, data 
ordering, and interfacing to their respective buses. 
Depending on the attached peripheral, a DMA unit 
may have one or more input and output stream 
modules. An example of a DMA unit with two input 
stream modules and one output stream module is 
shown in Figure 2. An arbiter unit with a bus bridge 
handles simultaneous requests from the input and 
output modules. A control register unit stores the 
stream descriptors as presented in Section 3.1. 
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Figure 2. DMA unit block diagram 

The input stream module has three key components: 
Address Generation Unit (AGU), Line buffer, and 
Stream Buffer. The AGU produces bus addresses 
based on stream descriptors. Pending requests from the 
AGU are stored on an address queue. The next bus 
address is selected from the address queue such that 
there are no duplicated bus addresses. Once the request 
has been granted by the bus, the data elements are 
stored in a line buffer. A stream buffer then selects and 
aligns stream elements based on the order required by 
the streaming peripheral. 

The output stream module has similar components 
but data flow in the opposite direction. In this case, 
data elements are selected from the stream buffer and 
placed in a line buffer so that the bus interface can 
proceed with a bus transfer. Bus burst transfers are 



used whenever possible to move data in and out of the 
stream modules. 

The configurations of the internal components for 
the input and output stream modules vary according to 
the target streaming peripheral. Readers are referred to 
[17] for more details on the DMA unit. 

4. Stream Descriptor Manipulation1 

This paper presents two stream manipulation 
operations. The first one changes the stream descriptor 
fields to match the bus width at each stage in the 
interconnect hierarchy. The second one merges two 
stream descriptors into one to better match the 
interconnect capabilities. 

In both stream descriptor manipulations the 
compiler takes a description of the interconnect 
hierarchy capabilities and optimization goals to guide 
the manipulation. The optimization goals can be 
energy consumption, reduced number of transfers, bus 
utilization, buffer usage of the bus bridges, etc. 

4.1 Stream Descriptor Bus Width Matching 

Most systems optimize bandwidth by matching the 
width of the busses between elements of the memory 
hierarchy. For example, the main bus matches that of 
the cache line width. To reduce capacitance, however, 
the width is reduced for the other system buses, or 
across the interconnect hierarchy. This implies that the 
programmer must be aware of these details to perform 
efficient data transfers. 

The first manipulation takes the initial stream 
descriptor and changes the stride, skip and span fields 
to match the bus width across the entire hierarchy. 
First, the type field is matched to the bus width and 
then the stride and span fields are divided by the new 
type value. If the division yields a remainder the stride 
and/or span fields are rounded up. When the access 
pattern does not match evenly with the bus width, 
some additional data elements are fetched but not used 
by the destination. In this case, the unused data 
elements are discarded by the DMA engines or by the 
bus bridges, thus reducing the bandwidth requirements 
for the hierarchy levels that are closer to the 
destination. With compiler-driven manipulations of 
stream descriptors, the programmer does not need to 
know the bus widths throughout the hierarchy, and the 
software for the streaming computation becomes 
architecture independent. 

                                                        
1 A patent is pending that claims aspects of items and methods 
described in this paper. 
 

For example, assume that the high-bandwidth bus 
has a width of 32 bits and the programmer uses one of 
the hardware accelerator (HA) to process 8-bit data 
with an access pattern indicated by the stream 
descriptor (5, Offset(), 100, 4, -299, 1, N). Also assume 
that the width of the main bus is 128-bits. The 
compiler can manipulate this descriptor to match the 
capabilities of the high-bandwidth bus by indicating to 
the DMA unit that the data needed by the HA is (5, 
Offset(), 25, 4, -74, 4, N). The compiler can also 
program the bridge and the memory controller so that 
the stream descriptor from the point of view of the 
memory controller is (5, Offset(), 7, 4, -20, 16, N), in 
both cases the manipulation of the descriptors exploit 
the bus width and data locality. Note that the Offset() 
function is not affected by this manipulation. Section 6 
shows the ability of the DMA units to deliver packed 
data to the accelerators. 

4.2 Stream Descriptor Merging 

This operation merges two stream descriptors into 
one and is useful when two streams have references to 
common elements in the same regions in memory. For 
example, assume that two HAs have the access patterns 
shown in Figure 3. For this case, the compiler 
generates a stream descriptor that merges the access 
patterns of both accelerators, which is then used to 
program the DMA engine in a bus bridge. By 
combining both descriptors, the bus bridge will 
generate fewer requests to the memory controller. Note 
that the compiler generates the load instructions for the 
two addresses (address one and two, as shown in 
Figure 3) that do not appear in the new stream 
descriptor. The DMA engine in the bus bridge splits 
the incoming stream from the memory controller and 
delivers two streams of data to the respective HAs. 

This manipulation starts by modifying the type field 
in both descriptors so that it is in bytes. The start 
address of the output stream is the smallest of the start 
addresses of the input streams. In the simplest case, 
both stream descriptors have the same values for each 
field and only differ in the start address. Otherwise, the 
input streams are analyzed to find out the largest span 
that results from combining data elements from both 
input streams. This step generates the span field for the 
output stream and captures the overlap between the 
input streams.  The stride field for the output stream is 
set to one and the skip field for the output stream is just 
the displacement between those elements that were 
grouped by the span field. 
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(4, Offset (), 1, 3, 2, 1, N)  
Figure 3. Merging of Stream Descriptors 

The efficiency of stream descriptor merging 
depends on the amount of overlap between the two 
original streams. In Section 6, we explore the 
bandwidth savings for different amounts of overlap. 

The stream descriptors disassociate memory 
accesses from computation, enabling the compiler to 
schedule data transfers ahead of the actual 
computation. As a result, the stream memory requests 
do not have to occur at the same time for the compiler 
to merge stream descriptors. Furthermore, the compiler 
can perform more than one manipulation to optimize 
data transfers. 

5. Stream Descriptor Evaluation 

5.1 Benchmark Kernels 

A significant number of image processing and 
computer vision algorithms are inherently data parallel 
as they apply the same computation to each pixel in the 
image. Applications in these domains are built using 
well-known kernels that perform compute intensive 
tasks. These kernels manipulate image data in a 
predefined sequence, making them ideal candidates for 
the stream computation model. Some of the most used 
kernels are convolution and morphological filters, 
image segmentation, region labeling, and pattern 
matching.  

Convolution filters are applied to the entire image 
as tiles, where each tile is the same size as the 
convolution mask. The mask is square with an odd 
number of elements (i.e. 3x3, 5x5, 7x7, etc). 
Morphological filters operate in a similar way but can 
have linear or rectangular masks. The pattern-matching 
kernel is implemented using a template-matching 
algorithm, which applies a series of templates in 
sequence to the entire image, in a similar way as the 
convolution filters do. Image segmentation is used to 
separate the objects of interest (foreground) from the 
rest of the scene (background). The benchmark kernel 
uses a global threshold because it is the most common 
algorithm. Once the image has been segmented, region 
labeling assigns a label to each of the objects of 
interest, or regions, in the image. The benchmark 
kernel implements the simplest algorithm, which 
traverses the image twice, first row-wise and then 
column-wise in reverse order. 

The following characteristics are common to the 
above kernels and have been translated into stream 
descriptors for evaluation: 
• Dimensionality and size of the stream element: 
Stream elements can represent 2D or 1D masks. For a 
square 2D mask the input stream descriptor is (SA, 
Offset(), 1, m, (W – m), 1, WxH) with SA being the start 
address of the image, m being the width/length of the 
2D mask, and W and H the width and height of the 
image. The Offset() function can describe either row-
wise or column-wise traversal. A 1D mask has the 
input stream descriptor (SA, Offset(), 1, l, (W – l), 1, 
WxH) where l is the length of the 1D mask. Section 6 
presents results for filters of dimensions 1x3, 3x1, 1x5, 
5x1, 3x3, and 5x5. 
• Traversal order: The image can be traversed 
normally starting from the first pixel until the last pixel 
is reached, or backward starting from the last pixel to 
the first pixel. The choice in traversal order decides 
whether the offsets are added or subtracted from the 
start address. 
• Row-wise or Column-wise traversal: The image 
can be traversed in either row-major or column-major 
form. The Offset() function is used to describe the 
traversal. For row-wise traversal, once all elements of 
the stream record are gathered, a counter in the Offset() 
function is incremented by one and added to the Start 
Address (SA). For column-wise traversal, two counters 
in the Offset() function can be used, one for rows and 
one for columns. After the elements from the stream 
record are fetched, the displacement is incremented by 
the width of the image and the row counter is increased 
by one, unless the stream record contains the last 
element in the column. If this is the case, the column 
counter is incremented by one, the row counter is reset 
to zero, and the displacement is set to the column 
counter. In both traversals Element_Count is equal to 
the total number of pixels in the image. 

All the above kernels write one pixel at a time, and 
thus the output stream descriptor is the same (SA, 
Offset(), 1, 1, 1, 1, WxH) where the Offset() function 
implements a row-major traversal. 

5.2 Evaluation Setup 

An integrated simulation platform has been built to 
show the viability of the stream descriptors by 
simulating the bus and memory performance during 
data transfers. For our purposes, the actual 
computations in these stream applications are not 
important. Instead, our focus is on the access pattern 
generated by the benchmarks described in this paper 
using stream descriptors. By simulating only the access 
patterns of the benchmark applications we reduced 



simulation time significantly, enabling a more detailed 
exploration on the impact of stream manipulation. 

 The platform is presented in Figure 4. This 
platform was built using Verilog HDL to accurately 
observe system behavior. 
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16 output)

 
Figure 4. Simulation platform of a system 
using stream descriptors 

In our simulation platform, the DMA unit is 
designed specifically to use stream descriptors and 
initiate all memory transfers. The DMA unit, which is 
described in Section 3.4, has an address generation 
module that produces memory addresses according to 
the preloaded stream descriptors, thereby pre-fetching 
data elements before they are needed. The DMA unit 
has one line-buffer per stream that is sized to the bus 
width. It also has FIFO buffers to store stream 
elements in the order requested by the HA. Unlike 
regular DMA designs, this DMA unit organizes the 
data received from memory into streams for the HA. It 
also writes the stream data produced by the HA by 
grouping multiple stream elements into a line buffer 
before initiating write transfers.  

The memory controller (MC) and processor model 
(Proc) are open-source designs [18] that are modified 
only to include circuits to measure performance. The 
main bus follows the open-source Wishbone protocol 
[19] and runs at 200MHz. The SDRAM module is the 
Micron memory model for a 64Mb SDRAM (2M x 32 
x 4banks, 100MHz, CAS latency of 2 cycles) [20]. 
This memory controller, bus protocol, and memory 
model do not have specialized functionality and were 
chosen to provide the readers with a baseline reference 
of performance. 

The configuration of the components in the 
simulation platform is chosen to represent different 
system configurations. As an example, the HA and 
DMA units shown in Figure 4 can represent an 
independent memory mapped peripheral or accelerator 
on the main bus. The same units can also represent a 
tightly coupled coprocessor that has direct access to 
memory without interaction through the cache. Finally, 
the HA unit in Figure 4 can also represent memory 
traffic generated by another bus segment. The 
abstraction allows for a simplified simulation platform 
in which simulation times are greatly reduced without 
sacrificing the investigation in the use and scalability 

of stream descriptors in the entire interconnect 
hierarchy. 

6. Evaluation Results 

We present our results in two categories: a baseline 
bandwidth of the individual stream descriptors and 
results from merging two stream descriptors. In Figure 
5, we show our results as the effective bandwidth in 
terms of bytes per transfer. The name of the kernel 
indicates the dimensionality of the filter mask (1D, 
2D), its size (3x3 or 5x5), its access (c for column-
wise), and its traversal order (forward or backward). 
This illustrates the ability of the DMA unit to utilize 
stream descriptors to deliver packed requests on the 
bus, and is calculated from the total number of bytes 
and total number of busy cycles required for data 
transfer. 
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transfer 

As described in Section 5, the simulations are 
performed over 1D and 2D filters, in row-wise and 
column-wise traversals, and different filter mask sizes. 
We also varied the number of FIFO buffers in the 
DMA unit that stores stream elements to measure their 
impact on data transfers. An output stream to write 
processed data is included in all simulations. The last 
set of results (rgb,r&g) is a merged stream descriptor 
for comparison against the baseline result (rgb,r). This 
represents the access patterns for a set of color pixels 
in a frame buffer that has interlaced red, green, and 
blue pixels. In this case, the baseline access pattern 
fetches only red pixels, while the merged stream 
descriptor fetches both red and green ones. For 
example, one HA would request red pixels to filter and 
identify regions of interest for red objects such as a 
traffic sign. Another HA would request for green pixels 
to perform an averaging function, typically found in an 
autofocus algorithm. The merged stream descriptor 
describes a new stream record in which the access 



overlaps, requiring the DMA unit to fetch two bytes 
(red, green) in the three color pixel data structure. 

In general, the performance of the bus and memory 
controller is very low, thereby reducing the percentage 
of useful bandwidth for the DMA unit to 
approximately 10%, with a read request per 29 cycles 
and write request per 14 cycles. A bus protocol that 
supports multiple accesses per requestor, together with 
a memory controller that can reorder accesses [8], will 
allow the DMA unit to transfer data more efficiently. 
However, this limitation only sets the baseline 
performance as a relative comparison point. Unlike 
traditional caches that store entire cache lines, the 
DMA unit stores data based on access patterns and can 
rely on locality of the stream record access with 
appropriately sized buffers. Furthermore, data 
prefetching and buffering allow for effective 
bandwidth that is higher than normal bus width.  

For column traversals, there are opportunities to 
improve bandwidth utilization with specialized buffers 
that store a tile of data; that is, the shape of the buffer 
is configured based on the stream record shape. The 
baseline (rgb,r) result is similar to the seq_fwd result as 
the two share common access patterns despite having 
different stride values. The behavior of the output 
streams is also similar to seq_fwd. As expected, the 
performance of the merge output (rgb,r&g) is 
effectively twice the baseline (rgb,r) because the bus 
width and FIFO buffers are larger than the record size, 
allowing the stream descriptors to properly capture a 
merged transfer for the DMA unit. Although not 
shown, the access patterns for different color planes 
(e.g. red & blue) in the interlaced frame buffer would 
observe the same effective bandwidth. 

Figure 6 shows an example of merged stream 
descriptors and their associated bandwidth savings. As 
shown in Figure 6a, two HAs are requesting 
simultaneously a 3x3 image block in row traversal. 
Their stream descriptors are then merged into a new 
data stream. Depending on the operating phase of the 
two HAs, the stream record requests could overlap 
completely during execution. This would provide 
maximum bandwidth improvements, similar to the 
result of (rgb,r&g) presented earlier in Figure 5. 
However, when the computation is off-phase in terms 
of accessing data, the DMA unit can fetch a larger 
block depending on the amount of overlap. The 
measured data, shown in Figure 6b, indicate that even 
when the stream records are apart by several columns, 
there are still bandwidth improvements. This is due in 
part to the bus width being larger than the width of the 
stream record. Furthermore, the eight FIFO buffers 
used in this example are able to store stream elements 
for later use by either HA. The compiler can schedule 

execution of the kernels on each HA and use merged 
stream descriptors to describe the overlap access. 

0 1 2 a b c
3 4 5 d e f
6 7 8 g h i

Bus width

Increasing
OverlapHA1

(3x3)
HA2
(3x3)

Merged
Stream

0 1 2 a b c
3 4 5 d e f
6 7 8 g h i

Bus width

Increasing
OverlapHA1

(3x3)
HA2
(3x3)

Merged
Stream

(a) 

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

Perfect 
Overlap

Adjacent
(1 record apart) 

2 records
apart

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

Perfect 
Overlap

Adjacent
(1 record apart) 

2 records
apart

(b) 
Figure 6. (a) Overlapping stream record 
access, and (b) Bandwidth improvements of 
merged stream access 

With stream descriptors, the memory access 
patterns are decoupled from the computation, allowing 
pre-fetching of ordered data in parallel with 
computation. This makes the system architecture 
susceptible to average access latency rather than 
instantaneous latency. In comparison, standard cache 
accesses are normally bursty and less tolerant to large 
latencies of slow memories. To compensate for the 
cache characteristics, microarchitecture designs have 
included specialized buffers in caches and memory 
controller to handle data streams [8, 21]. Alternatively, 
new processor designs avoid the collusion of stream 
data with cache traffic with tightly coupled DMA units. 
This paper advocates the use of the stream 
programming model and stream descriptors to 
efficiently schedule data movement on these DMA 
units. Furthermore, the use of stream descriptors can be 
applied to other devices [12,13] improving data 
movement throughout the system. 

7. Conclusions and Future Work 

This paper illustrates the use of stream descriptors 
to express memory accesses patterns while 
disassociating the computation from data movement. 
The stream descriptors are then manipulated by the 
compiler to improve a desired target performance 
metric. Depending on the amount of overlap and buffer 



size, merging of data streams using stream descriptor 
manipulations can reduce bandwidth significantly. 

The memory performance results in this paper can 
be improved with further research in the stream 
descriptors. First, the API of the stream descriptors can 
be enhanced with experiments on applications that use 
traditional data structures such as linked-lists and hash 
tables. This can lead to more standardized stream 
descriptors beyond those shown in the paper. Second, 
the level of compiler interaction with the DMA unit 
and with the rest of the system can be explored. 
Complex interconnect hierarchies that include several 
streaming peripherals, DMA units, and conventional 
I/O units can be constructed to find the effects of a 
system-wide management of streaming data. 

It is also worthwhile to explore the implications of 
the stream descriptors on the stream programming 
model and on hardware implementations. In particular, 
research on streaming language modifications and the 
impact on its associated compiler can uncover new 
methods to better orchestrate stream data movements. 
The issue of compile time versus run time stream 
descriptors can also be explored. This paper assumed 
that the data access patterns could be resolved at 
compile time, but there are applications that change 
access patterns at run-time. We have explored several 
techniques that handle dynamic streams, but that work 
needs to be formalized. 
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