
Compiler Manipulation of Stream Descriptors for Data Access Optimization

Abelardo López-Lagunas
ITESM Campus Toluca

abelardo.lopez@itesm.mx

Sek M. Chai
Motorola Labs

sek.chai@motorola.com

Abstract
Efficient data movement is one of the key attributes

for high performance computing. This paper advocates
the use of stream descriptors to convey memory access
patterns from the programmer to the compiler. This
explicit separation of computation and data movement
enables the compiler to manipulate the stream
descriptors to match the system’s interconnect
capabilities. Data movement is optimized by
manipulating stream descriptors to target specific
optimizations such as bandwidth management and
buffer allocation. In this paper, bandwidth
improvements are shown for an example system
performing video analysis using computer vision
methods. The system includes key hardware
mechanisms that use stream descriptors to prefetch
and align data for stream processors.

1. Introduction

In today’s System-on-a-Chip (SoC), multiple
specialized computing units are used to delegate heavy
computation load from conventional processors. These
computing units operate on vast amounts of data,
making data movement the performance bottleneck.
Scheduling data movement is a challenge for a
compiler, and even the best of programmers. This is
because traditional programming models lack the
ability to orchestrate data movement and computation
among the computing units and memories. It is
possible to rely on hardware circuits to dynamically
predict the access patterns and pre-fetch the required
data from main memory into faster local memory. This
approach has limited performance because the access
patterns may be difficult to predict in the general case.
Also, the access patterns may change from one
hierarchy level to the next, requiring pre-fetch
hardware for each level of the hierarchy. The
associated pre-fetch circuits consume energy and chip
area that can otherwise be allocated to actual data
processing.

This paper advocates the stream programming
model for its ability to explicitly express data
movement separately from data-parallel computation.

This separation of data movement from computation
enables the programmer to express data access patterns
through a standardized application program interface
(API). A compiler can then use the description of data
movement to schedule data transfers ahead of the
computation without performing complex dataflow
analysis.

This paper has two main contributions. The first
contribution is a description of memory access
patterns, called stream descriptors, capable of
capturing the shape and movement of the data
throughout the interconnect and memory hierarchies.
The second contribution is a collection of stream
descriptor manipulations that optimize data movement,
locally as well as globally, to better match the
hardware capabilities. These optimizations can lead to
better latency resulting in an efficient usage of the
interconnect and memory hierarchies in the SoC.

The structure of the paper is as follows: Section 2
presents the related work; Section 3 introduces the
stream descriptor notation, gives some examples on
stream descriptor usage, and presents some hardware
mechanisms and their interface to the stream
descriptors; Section 4 shows examples of stream
manipulation methods; Section 5 defines the
benchmark kernels and the evaluation setup used to
assess the benefits of stream manipulations; Section 6
shows the improvements introduced by the stream
manipulations; Section 7 presents the conclusions and
directions of future research.

2. Related Work

Stream programs exhibit data parallelism, regular
communication patterns, and short data lifetimes [1]. In
this model, large sequences of ordered data (streams)
are passed through a series of computation kernels
(filters). The programmer separately defines the data
access and computation in an explicit manner, thereby
facilitating the compiler’s ability to schedule both in
hardware. Examples of stream programming languages
include StreamIt [2], Brook [3], and StreamC/KernelC
[4]. The proposed stream descriptors extend these
programming languages with an interface that

facilitates the description of the data structures’ shape
and their access patterns for each computation kernel.
Because the data streams exhibit regular access
patterns, the compiler can optimize data movement by
analyzing stream descriptors along with information
that models the underlying hardware. The salient
feature in stream descriptors is the ability for the
compiler to manipulate different fields of the stream
descriptors to match different hardware structures,
while maintaining the programmers’ intent. Stream
descriptors can also be used to target new streaming
architectures that use the stream model of computation
[5, 6, and 7].

There is a significant body of research in data pre-
fetching techniques and reordering of memory accesses
to improve performance. Readers are referred to [8] for
an overview of compile-time and run-time techniques.
The proposed stream descriptors use compile-time
techniques to optimize the access order of each data
element in the interconnect hierarchy. Stream
descriptors can be used to describe the shape of data in
memory, such as the regular data access patterns
occurring in tight loops, thus enabling data prefetching
and alignment. The compiler can use information about
the physical attributes of the system when
manipulating stream descriptors to optimize desired
performance metrics accordingly. The descriptors can
also be modified at run-time if the underlying hardware
provides run time support.

There are numerous compiler techniques that
extract data parallelism by removing data dependencies
from loop structures [9, 10]. The compiler applies a
series of code transformations to eliminate
dependencies, and then generates sequences of
load/store instructions based on new access patterns of
the transformed loop. This means that data transfer
depends on the access pattern inferred by the compiler
from the loop structure. In contrast, stream descriptors
enable complex access patterns that are not easily
discernible from nested loop structures. Stream
descriptors also decouple memory address generation
and alignment from computation such that the
processor and memory hierarchy can be optimized
separately.

There are different ways to describe data shapes.
This paper uses an extension on the format presented in
[11]. Stream descriptors have been used to optimize
transfers from I/O devices [12] and from memory [13]
without any manipulation. Similar techniques that
describe the shape of memory access have also been
used for trace generation [14, 15]. This paper explores
further optimizations by manipulating the stream
descriptors to better match the underlying memory and
interconnect hierarchies.

3. Stream Descriptors

From the point of view of the stream processor, data
appear as a stream of contiguous elements even though
they may be scattered throughout memory. Stream data
elements are grouped into logical units, or records, that
can be processed in parallel. Unlike vector data, stream
records can represent more complex structures,
patterns and shapes [16]. In the following subsections
the proposed stream descriptor API is presented and
some examples are given.

3.1 Stream Descriptor Definition

Stream descriptors have a programming interface
that allows the programmer to describe the shape of
data structures and their movement in the memory
hierarchy. In this paper, stream descriptors are
represented by the 7-tuple (Start Address, Offset(),
Stride, Span, Skip, Type, Element_Count) where:
• Start Address is the memory address of the first
element of the data stream.
• Offset() represents a user-defined function that
computes the displacement of the next stream record
from the base address.
• Stride is the spacing between two consecutive
stream record elements. The units for the spacing are in
data elements.
• Span indicates how many elements are gathered into
the stream record before the skip displacement is
applied.
• Skip is the displacement in data elements that is
applied between groups of Span elements.
• Type indicates how many bytes are in each data
element, for example 8-bit data is associated with a
type value of one, 16-bit of data associates a value of
two and so on.
• Element_Count indicates how many stream
elements are in the data stream.

The Stride, Span, Skip, and Type fields define the
shape of the data structure or stream record. These
fields are manipulated by the compiler to match the
functional units in the hardware to the computation
kernel requirements and to match the capabilities of the
interconnect hierarchy and memory bandwidth in the
system.

The Offset() and Element_Count fields describe
how the stream records are assembled into a stream.
The access pattern of stream records is expressed as
memory address displacements from a base address,
which is updated per record by the Offset() function.
The function can be used to describe either regular or
irregular access patterns and can be synthesized as part
of the address generation circuit when reconfigurable
hardware is used; otherwise, it represents the sequence

of instructions used to program the Direct Memory
Access (DMA) unit. In both cases, the compiler must
be aware of the target platform to produce the
appropriate code or hints for the hardware synthesis
process. Section 3.4 presents an example of such a
DMA unit.

The Offset() and Element_Count fields may not be
needed for simple stream record movement, such as
traversing images one pixel at a time, but keeping them
in the API gives the programmer the ability to describe
complex movement of data structures.

3.2 Stream Descriptor Examples

Consider a kernel that operates on stream records of
three data elements. Suppose that there is a gap of a
single space between each data element, and that there
is a gap of three spaces between each group of three
elements. In this case the stride is two, the span is
three, and the skip is four, as shown in Figure 1.

Stream Record

STRIDE=2 SKIP=4SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

STRIDE=2

SPAN = 3 Stream Record

STRIDE=2 SKIP=4SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

STRIDE=2

SPAN = 3

Figure 1. Stream record components

The stride and skip displacements can be positive or
negative, but the span is always positive. Additional
displacements can be included to describe more
complex access patterns, but the template described
above allows the description of two-dimensional sub-
arrays within larger arrays (useful in imaging
applications), uniform sub-samples of arrays, circular
access of a sub-array (using negative skip values), or a
combination of them

It is possible to have more than one representation
of the same access pattern, but this is not important, as
the compiler will manipulate this representation to
better match the capabilities of the memory and
interconnect hierarchies.

As an example of the Offset() function consider a
two-dimensional sub-array which comprises a stream
record. The shape of the next stream record has the
same dimension, but the Start_Address includes an
additional displacement defined by the Offset()
function. The Offset() function can express any
arbitrary sequence that describe locations of stream
records throughout memory.

3.3 Hardware Parameters

To perform stream descriptor manipulation, the
compiler needs information about the physical
attributes of the memory hierarchy and its associated
interconnect. Examples of these physical attributes are

bus width, latency, capacitance, operation frequency,
burst capability, and internal buffering. A complex
system may consist of a hierarchy of busses, DMA
units, local memories, and bus bridges. The stream
descriptors are manipulated by the compiler to match
the capabilities of each of these elements to optimize
the flow of data. Data transfers are performed by the
DMA units, but it is also possible for some high-
bandwidth peripherals to have their own DMA circuits.

3.4 Stream Descriptors and DMA engines

The DMA units use stream descriptor information
to perform address generation, byte alignment, data
ordering, and interfacing to their respective buses.
Depending on the attached peripheral, a DMA unit
may have one or more input and output stream
modules. An example of a DMA unit with two input
stream modules and one output stream module is
shown in Figure 2. An arbiter unit with a bus bridge
handles simultaneous requests from the input and
output modules. A control register unit stores the
stream descriptors as presented in Section 3.1.

Input Stream1

Output Stream

Bus
addr
data

Control Registers

Arbiter
&

Bridge

Stream
Buffer

AGU

Line
Buffer

Addr
Queue

Request/Grant

Input Stream2

Request/Grant

Stream
Buffer

AGU

Line
Buffer

Addr
Queue

Request/Grant

Input Stream1

Output Stream

Bus
addr
data

Control Registers

Arbiter
&

Bridge

Stream
Buffer

AGU

Line
Buffer

Addr
Queue

Request/Grant

Input Stream2

Request/Grant

Stream
Buffer

AGU

Line
Buffer

Addr
Queue

Request/Grant

Figure 2. DMA unit block diagram

The input stream module has three key components:
Address Generation Unit (AGU), Line buffer, and
Stream Buffer. The AGU produces bus addresses
based on stream descriptors. Pending requests from the
AGU are stored on an address queue. The next bus
address is selected from the address queue such that
there are no duplicated bus addresses. Once the request
has been granted by the bus, the data elements are
stored in a line buffer. A stream buffer then selects and
aligns stream elements based on the order required by
the streaming peripheral.

The output stream module has similar components
but data flow in the opposite direction. In this case,
data elements are selected from the stream buffer and
placed in a line buffer so that the bus interface can
proceed with a bus transfer. Bus burst transfers are

used whenever possible to move data in and out of the
stream modules.

The configurations of the internal components for
the input and output stream modules vary according to
the target streaming peripheral. Readers are referred to
[17] for more details on the DMA unit.

4. Stream Descriptor Manipulation1

This paper presents two stream manipulation
operations. The first one changes the stream descriptor
fields to match the bus width at each stage in the
interconnect hierarchy. The second one merges two
stream descriptors into one to better match the
interconnect capabilities.

In both stream descriptor manipulations the
compiler takes a description of the interconnect
hierarchy capabilities and optimization goals to guide
the manipulation. The optimization goals can be
energy consumption, reduced number of transfers, bus
utilization, buffer usage of the bus bridges, etc.

4.1 Stream Descriptor Bus Width Matching

Most systems optimize bandwidth by matching the
width of the busses between elements of the memory
hierarchy. For example, the main bus matches that of
the cache line width. To reduce capacitance, however,
the width is reduced for the other system buses, or
across the interconnect hierarchy. This implies that the
programmer must be aware of these details to perform
efficient data transfers.

The first manipulation takes the initial stream
descriptor and changes the stride, skip and span fields
to match the bus width across the entire hierarchy.
First, the type field is matched to the bus width and
then the stride and span fields are divided by the new
type value. If the division yields a remainder the stride
and/or span fields are rounded up. When the access
pattern does not match evenly with the bus width,
some additional data elements are fetched but not used
by the destination. In this case, the unused data
elements are discarded by the DMA engines or by the
bus bridges, thus reducing the bandwidth requirements
for the hierarchy levels that are closer to the
destination. With compiler-driven manipulations of
stream descriptors, the programmer does not need to
know the bus widths throughout the hierarchy, and the
software for the streaming computation becomes
architecture independent.

1 A patent is pending that claims aspects of items and methods
described in this paper.

For example, assume that the high-bandwidth bus
has a width of 32 bits and the programmer uses one of
the hardware accelerator (HA) to process 8-bit data
with an access pattern indicated by the stream
descriptor (5, Offset(), 100, 4, -299, 1, N). Also assume
that the width of the main bus is 128-bits. The
compiler can manipulate this descriptor to match the
capabilities of the high-bandwidth bus by indicating to
the DMA unit that the data needed by the HA is (5,
Offset(), 25, 4, -74, 4, N). The compiler can also
program the bridge and the memory controller so that
the stream descriptor from the point of view of the
memory controller is (5, Offset(), 7, 4, -20, 16, N), in
both cases the manipulation of the descriptors exploit
the bus width and data locality. Note that the Offset()
function is not affected by this manipulation. Section 6
shows the ability of the DMA units to deliver packed
data to the accelerators.

4.2 Stream Descriptor Merging

This operation merges two stream descriptors into
one and is useful when two streams have references to
common elements in the same regions in memory. For
example, assume that two HAs have the access patterns
shown in Figure 3. For this case, the compiler
generates a stream descriptor that merges the access
patterns of both accelerators, which is then used to
program the DMA engine in a bus bridge. By
combining both descriptors, the bus bridge will
generate fewer requests to the memory controller. Note
that the compiler generates the load instructions for the
two addresses (address one and two, as shown in
Figure 3) that do not appear in the new stream
descriptor. The DMA engine in the bus bridge splits
the incoming stream from the memory controller and
delivers two streams of data to the respective HAs.

This manipulation starts by modifying the type field
in both descriptors so that it is in bytes. The start
address of the output stream is the smallest of the start
addresses of the input streams. In the simplest case,
both stream descriptors have the same values for each
field and only differ in the start address. Otherwise, the
input streams are analyzed to find out the largest span
that results from combining data elements from both
input streams. This step generates the span field for the
output stream and captures the overlap between the
input streams. The stride field for the output stream is
set to one and the skip field for the output stream is just
the displacement between those elements that were
grouped by the span field.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...19

(1, Offset (), 1, 2, 3, 1, N)

(4, Offset (), 1, 2, 3, 1, N)

(4, Offset (), 1, 3, 2, 1, N)
Figure 3. Merging of Stream Descriptors

The efficiency of stream descriptor merging
depends on the amount of overlap between the two
original streams. In Section 6, we explore the
bandwidth savings for different amounts of overlap.

The stream descriptors disassociate memory
accesses from computation, enabling the compiler to
schedule data transfers ahead of the actual
computation. As a result, the stream memory requests
do not have to occur at the same time for the compiler
to merge stream descriptors. Furthermore, the compiler
can perform more than one manipulation to optimize
data transfers.

5. Stream Descriptor Evaluation

5.1 Benchmark Kernels

A significant number of image processing and
computer vision algorithms are inherently data parallel
as they apply the same computation to each pixel in the
image. Applications in these domains are built using
well-known kernels that perform compute intensive
tasks. These kernels manipulate image data in a
predefined sequence, making them ideal candidates for
the stream computation model. Some of the most used
kernels are convolution and morphological filters,
image segmentation, region labeling, and pattern
matching.

Convolution filters are applied to the entire image
as tiles, where each tile is the same size as the
convolution mask. The mask is square with an odd
number of elements (i.e. 3x3, 5x5, 7x7, etc).
Morphological filters operate in a similar way but can
have linear or rectangular masks. The pattern-matching
kernel is implemented using a template-matching
algorithm, which applies a series of templates in
sequence to the entire image, in a similar way as the
convolution filters do. Image segmentation is used to
separate the objects of interest (foreground) from the
rest of the scene (background). The benchmark kernel
uses a global threshold because it is the most common
algorithm. Once the image has been segmented, region
labeling assigns a label to each of the objects of
interest, or regions, in the image. The benchmark
kernel implements the simplest algorithm, which
traverses the image twice, first row-wise and then
column-wise in reverse order.

The following characteristics are common to the
above kernels and have been translated into stream
descriptors for evaluation:
• Dimensionality and size of the stream element:
Stream elements can represent 2D or 1D masks. For a
square 2D mask the input stream descriptor is (SA,
Offset(), 1, m, (W – m), 1, WxH) with SA being the start
address of the image, m being the width/length of the
2D mask, and W and H the width and height of the
image. The Offset() function can describe either row-
wise or column-wise traversal. A 1D mask has the
input stream descriptor (SA, Offset(), 1, l, (W – l), 1,
WxH) where l is the length of the 1D mask. Section 6
presents results for filters of dimensions 1x3, 3x1, 1x5,
5x1, 3x3, and 5x5.
• Traversal order: The image can be traversed
normally starting from the first pixel until the last pixel
is reached, or backward starting from the last pixel to
the first pixel. The choice in traversal order decides
whether the offsets are added or subtracted from the
start address.
• Row-wise or Column-wise traversal: The image
can be traversed in either row-major or column-major
form. The Offset() function is used to describe the
traversal. For row-wise traversal, once all elements of
the stream record are gathered, a counter in the Offset()
function is incremented by one and added to the Start
Address (SA). For column-wise traversal, two counters
in the Offset() function can be used, one for rows and
one for columns. After the elements from the stream
record are fetched, the displacement is incremented by
the width of the image and the row counter is increased
by one, unless the stream record contains the last
element in the column. If this is the case, the column
counter is incremented by one, the row counter is reset
to zero, and the displacement is set to the column
counter. In both traversals Element_Count is equal to
the total number of pixels in the image.

All the above kernels write one pixel at a time, and
thus the output stream descriptor is the same (SA,
Offset(), 1, 1, 1, 1, WxH) where the Offset() function
implements a row-major traversal.

5.2 Evaluation Setup

An integrated simulation platform has been built to
show the viability of the stream descriptors by
simulating the bus and memory performance during
data transfers. For our purposes, the actual
computations in these stream applications are not
important. Instead, our focus is on the access pattern
generated by the benchmarks described in this paper
using stream descriptors. By simulating only the access
patterns of the benchmark applications we reduced

simulation time significantly, enabling a more detailed
exploration on the impact of stream manipulation.

 The platform is presented in Figure 4. This
platform was built using Verilog HDL to accurately
observe system behavior.

HA

DMA Proc

MC

SDRAM

Main Bus (32bit)

Memory Bus (32bit)

FIFO bus
(32bit input,
16 output)

HA

DMA Proc

MC

SDRAM

Main Bus (32bit)

Memory Bus (32bit)

FIFO bus
(32bit input,
16 output)

Figure 4. Simulation platform of a system
using stream descriptors

In our simulation platform, the DMA unit is
designed specifically to use stream descriptors and
initiate all memory transfers. The DMA unit, which is
described in Section 3.4, has an address generation
module that produces memory addresses according to
the preloaded stream descriptors, thereby pre-fetching
data elements before they are needed. The DMA unit
has one line-buffer per stream that is sized to the bus
width. It also has FIFO buffers to store stream
elements in the order requested by the HA. Unlike
regular DMA designs, this DMA unit organizes the
data received from memory into streams for the HA. It
also writes the stream data produced by the HA by
grouping multiple stream elements into a line buffer
before initiating write transfers.

The memory controller (MC) and processor model
(Proc) are open-source designs [18] that are modified
only to include circuits to measure performance. The
main bus follows the open-source Wishbone protocol
[19] and runs at 200MHz. The SDRAM module is the
Micron memory model for a 64Mb SDRAM (2M x 32
x 4banks, 100MHz, CAS latency of 2 cycles) [20].
This memory controller, bus protocol, and memory
model do not have specialized functionality and were
chosen to provide the readers with a baseline reference
of performance.

The configuration of the components in the
simulation platform is chosen to represent different
system configurations. As an example, the HA and
DMA units shown in Figure 4 can represent an
independent memory mapped peripheral or accelerator
on the main bus. The same units can also represent a
tightly coupled coprocessor that has direct access to
memory without interaction through the cache. Finally,
the HA unit in Figure 4 can also represent memory
traffic generated by another bus segment. The
abstraction allows for a simplified simulation platform
in which simulation times are greatly reduced without
sacrificing the investigation in the use and scalability

of stream descriptors in the entire interconnect
hierarchy.

6. Evaluation Results

We present our results in two categories: a baseline
bandwidth of the individual stream descriptors and
results from merging two stream descriptors. In Figure
5, we show our results as the effective bandwidth in
terms of bytes per transfer. The name of the kernel
indicates the dimensionality of the filter mask (1D,
2D), its size (3x3 or 5x5), its access (c for column-
wise), and its traversal order (forward or backward).
This illustrates the ability of the DMA unit to utilize
stream descriptors to deliver packed requests on the
bus, and is calculated from the total number of bytes
and total number of busy cycles required for data
transfer.

0

1

2

3

4

5

6

7

8

C
on

v1
d_

m
3

C
on

v1
d_

m
3c

C
on

v1
d_

m
5

C
on

v1
d_

m
5c

C
on

v2
d_

m
3

C
on

v2
d_

m
3c

C
on

v2
d_

m
5

C
on

v2
d_

m
5c

Se
q_

fw
d

se
q_

rv
r

rg
b,

 r

rg
b,

 r&
g

FIFO_8

FIFO_6
FIFO_4

B
yt

es
 p

er
 tr

an
sf

er

Figure 5. Effective bandwidth in bytes per
transfer

As described in Section 5, the simulations are
performed over 1D and 2D filters, in row-wise and
column-wise traversals, and different filter mask sizes.
We also varied the number of FIFO buffers in the
DMA unit that stores stream elements to measure their
impact on data transfers. An output stream to write
processed data is included in all simulations. The last
set of results (rgb,r&g) is a merged stream descriptor
for comparison against the baseline result (rgb,r). This
represents the access patterns for a set of color pixels
in a frame buffer that has interlaced red, green, and
blue pixels. In this case, the baseline access pattern
fetches only red pixels, while the merged stream
descriptor fetches both red and green ones. For
example, one HA would request red pixels to filter and
identify regions of interest for red objects such as a
traffic sign. Another HA would request for green pixels
to perform an averaging function, typically found in an
autofocus algorithm. The merged stream descriptor
describes a new stream record in which the access

overlaps, requiring the DMA unit to fetch two bytes
(red, green) in the three color pixel data structure.

In general, the performance of the bus and memory
controller is very low, thereby reducing the percentage
of useful bandwidth for the DMA unit to
approximately 10%, with a read request per 29 cycles
and write request per 14 cycles. A bus protocol that
supports multiple accesses per requestor, together with
a memory controller that can reorder accesses [8], will
allow the DMA unit to transfer data more efficiently.
However, this limitation only sets the baseline
performance as a relative comparison point. Unlike
traditional caches that store entire cache lines, the
DMA unit stores data based on access patterns and can
rely on locality of the stream record access with
appropriately sized buffers. Furthermore, data
prefetching and buffering allow for effective
bandwidth that is higher than normal bus width.

For column traversals, there are opportunities to
improve bandwidth utilization with specialized buffers
that store a tile of data; that is, the shape of the buffer
is configured based on the stream record shape. The
baseline (rgb,r) result is similar to the seq_fwd result as
the two share common access patterns despite having
different stride values. The behavior of the output
streams is also similar to seq_fwd. As expected, the
performance of the merge output (rgb,r&g) is
effectively twice the baseline (rgb,r) because the bus
width and FIFO buffers are larger than the record size,
allowing the stream descriptors to properly capture a
merged transfer for the DMA unit. Although not
shown, the access patterns for different color planes
(e.g. red & blue) in the interlaced frame buffer would
observe the same effective bandwidth.

Figure 6 shows an example of merged stream
descriptors and their associated bandwidth savings. As
shown in Figure 6a, two HAs are requesting
simultaneously a 3x3 image block in row traversal.
Their stream descriptors are then merged into a new
data stream. Depending on the operating phase of the
two HAs, the stream record requests could overlap
completely during execution. This would provide
maximum bandwidth improvements, similar to the
result of (rgb,r&g) presented earlier in Figure 5.
However, when the computation is off-phase in terms
of accessing data, the DMA unit can fetch a larger
block depending on the amount of overlap. The
measured data, shown in Figure 6b, indicate that even
when the stream records are apart by several columns,
there are still bandwidth improvements. This is due in
part to the bus width being larger than the width of the
stream record. Furthermore, the eight FIFO buffers
used in this example are able to store stream elements
for later use by either HA. The compiler can schedule

execution of the kernels on each HA and use merged
stream descriptors to describe the overlap access.

0 1 2 a b c
3 4 5 d e f
6 7 8 g h i

Bus width

Increasing
OverlapHA1

(3x3)
HA2
(3x3)

Merged
Stream

0 1 2 a b c
3 4 5 d e f
6 7 8 g h i

Bus width

Increasing
OverlapHA1

(3x3)
HA2
(3x3)

Merged
Stream

(a)

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

Perfect
Overlap

Adjacent
(1 record apart)

2 records
apart

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

0

20

40

60

80

100

120

1 2 3 4 5 6 7

Overlap distance [columns]

0 1 2 3 4 5 6
0

20

40

60

80

100

120

Pe
rc

en
ta

ge
 b

an
dw

id
th

 im
pr

ov
em

en
ts

 [%
]

Perfect
Overlap

Adjacent
(1 record apart)

2 records
apart

(b)
Figure 6. (a) Overlapping stream record
access, and (b) Bandwidth improvements of
merged stream access

With stream descriptors, the memory access
patterns are decoupled from the computation, allowing
pre-fetching of ordered data in parallel with
computation. This makes the system architecture
susceptible to average access latency rather than
instantaneous latency. In comparison, standard cache
accesses are normally bursty and less tolerant to large
latencies of slow memories. To compensate for the
cache characteristics, microarchitecture designs have
included specialized buffers in caches and memory
controller to handle data streams [8, 21]. Alternatively,
new processor designs avoid the collusion of stream
data with cache traffic with tightly coupled DMA units.
This paper advocates the use of the stream
programming model and stream descriptors to
efficiently schedule data movement on these DMA
units. Furthermore, the use of stream descriptors can be
applied to other devices [12,13] improving data
movement throughout the system.

7. Conclusions and Future Work

This paper illustrates the use of stream descriptors
to express memory accesses patterns while
disassociating the computation from data movement.
The stream descriptors are then manipulated by the
compiler to improve a desired target performance
metric. Depending on the amount of overlap and buffer

size, merging of data streams using stream descriptor
manipulations can reduce bandwidth significantly.

The memory performance results in this paper can
be improved with further research in the stream
descriptors. First, the API of the stream descriptors can
be enhanced with experiments on applications that use
traditional data structures such as linked-lists and hash
tables. This can lead to more standardized stream
descriptors beyond those shown in the paper. Second,
the level of compiler interaction with the DMA unit
and with the rest of the system can be explored.
Complex interconnect hierarchies that include several
streaming peripherals, DMA units, and conventional
I/O units can be constructed to find the effects of a
system-wide management of streaming data.

It is also worthwhile to explore the implications of
the stream descriptors on the stream programming
model and on hardware implementations. In particular,
research on streaming language modifications and the
impact on its associated compiler can uncover new
methods to better orchestrate stream data movements.
The issue of compile time versus run time stream
descriptors can also be explored. This paper assumed
that the data access patterns could be resolved at
compile time, but there are applications that change
access patterns at run-time. We have explored several
techniques that handle dynamic streams, but that work
needs to be formalized.

8. References

[1] Saman P. Amarasinghe, Bill Thies, “Architectures,
Languages, and Compilers for the Streaming Domain,”
Parallel Architectures and Compilation Techniques (PACT)
2003 Tutorial
[2] William Thies, Michal Karczmarek, Saman Amarasinghe,
“StreamIt: A Language for Streaming Applications,”
Proceedings of the 2002 International Conference on
Compiler Construction, pp. 179-195, April 2002
[3] Ian Buck, “Current Brook Specification (0.2),” October
2003. http://merrimac.stanford.edu/brook/brookspec-v0.2.pdf
[4] Ujval Kapasi, et. al., “Stream Scheduling,” Proceedings
of the 3rd Workshop on Media and Streaming Processors,
pp. 101-106, December 2001, Austin, TX
[5] William J. Dally, et. al., "Merrimac: Supercomputing
with Streams", SC2003, pp. 35-43, November 2003, Phoenix,
Arizona
 [6] Eylon Caspi, et. al. “A Streaming Multi-Threaded
Model,” Workshop on Media and Stream Processors,
December 2001
[7] K. Sankaralingam, et. al., "Exploiting ILP, TLP, and DLP
with the Polymorphous TRIPS Architecture" Proceedings of
the 30th Annual International Symposium on Computer
Architecture, pp. 422–433, June 2003

[8] S. A. McKee, et. al., “Dynamic Access Ordering for
Streamed Computations,” IEEE Transactions on Computers,
Vol. 49, No. 11, pp. 1255-1271, November 2000
[9] A. W. Lim, S. W. Liao and M. S. Lam, “Blocking and
Array Contraction Across Arbitrarily Nested Loops Using
Affine Partitioning,” Proceedings of the ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, June 2001.
[10] Pierre Boulet, et. al., “Loop parallelization algorithms:
From parallelism extraction to code generation” Parallel
Computing, vol.24, no. 3-4, pp. 421-444, 1998
[11] Sek Chai, et. al.,“Streaming Processors for Next
Generation Mobile Imaging Applications,” IEEE
Communications Magazine, vol.43, no.12, pp. 81-89, Dec
2005
[12] Sek Chai, Abelardo López-Lagunas, “Streaming I/O for
Imaging Applications,” International Workshop on
Computer Architecture for Machine Perception, July 2005,
pp. 178-183
[13] Abelardo López-Lagunas, Sek Chai, “Memory
Bandwidth Optimization through Stream Descriptors,”
MEmory performance: DEaling with Applications, systems
and architecture (MEDEA), September 2005
[14] P. Havlak, K. Kennedy, “An implementation of
interprocedural bounded regular section analysis”, IEEE
Transactions on Parallel and Distributed Systems, vol. 2, no.
3, pp. 350-360, July 1991
[15] J. Marathe, et. al., “METRIC: Tracking down
inefficiencies in the memory hierarchy via binary rewriting”,
International Symposium on Code Generation and
Optimization, pp. 289-300, March 2003
[16] Nuwan Jayasena, William J. Dally, “Streams and
Vectors: A Memory System Perspective”, Workshop on
Media and Stream Processing, December 2004
[17] Sek Chai, Nikos Bellas, Malcolm Dwyer, Dan
Linzmeier, “Stream Memory Subsystem in Reconfigurable
Platforms,” Workshop on Architecture Research on FPGA
Platforms (WARFP), Austin, TX, Feb 2006, 4 pages.
[18] Rudolf Usselmann, “Memory Controller IP Core”,
January 2002, www.opencores.org
[19] OpenCores Organization, “WISHBONE System-on-
Chip (SoC) Interconnection Architecture for Portable IP
Cores”, revision B.3, September 2002, www.opencores.org
[20] Micron Technology Inc, “Synchonous SDRAM”, Data
Sheet for MT48LC2M32B2, January 2002,
www.micron.com/dramds
[21] Subbarao Palacharla, R.E. Kessler, "Evaluating Stream
Buffers as a Secondary Cache Replacement", Proceedings of
21st Annual International Symposium on Computer
Architecture, pp. 24-33, April 1994

