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Abstract 

In retargeting loop-based code for multimedia 
instruction set extensions, a critical issue is that vector 
data types of mixed precision within a loop body 
complicate the parallelization process since 
corresponding array elements are misaligned in the 
packed vectors.  This paper presents a reverse-
engineering approach to parallelization which extracts 
from the source code a multidimensional dataflow 
graph representation with explicit parallel semantics.  
The multidimensional annotations facilitate generating 
vector data type conversion code during code 
synthesis.  This representation is independent of 
sequential artifacts, allowing code synthesis to proceed 
based on an abstract data-parallel model of the 
program and the constraints imposed by the 
architecture, such as vector length and available data 
types.  Our results show that this representation 
facilitates parallelization of a wider range of loops 
than traditional vectorization.  The results of this 
parallelization indicate loop speedups of 2 to 27 times 
over sequential execution.  

1. Introduction 

Multimedia software applications, such as video 
playback, image processing, and 3D video games, 
typically have a high degree of inherent data-level 
parallelism (DLP), since they often perform the same 
operation(s) over all the elements of a large data set.  
To harness this data parallelism, the instruction sets of 
general purpose and embedded processors have been 
extended with multimedia instructions that incorporate 
single-instruction, multiple-data (SIMD) functionality.  
Examples are Intel’s SSE2 [1] and AMD’s 3DNow! 
[2].  These subword parallel instructions 
simultaneously operate on multiple data elements 
packed into a single register, resulting in execution 
speedup.  For example, the PADDW (“Packed Add 
Word”) instruction included with Intel’s SSE2 [1] 
extensions adds the corresponding elements of two 

vectors of eight 16-bit data elements, providing an 
ideal speedup of 8 over a sequential execution. 

However, developing and porting applications for 
these instruction sets has proven challenging.  
Typically, loop kernels employing multimedia 
instructions must be hand-optimized using in-lined 
assembly code or intrinsic functions.  Traditional loop 
vectorization has been employed to generate SIMD 
code automatically, but is, in general, a transliteration 
technique that can only specify (to a back-end code 
generator) which loop statements can be executed in 
parallel.  A deeper program understanding is required 
to deal with issues beyond loop-carried dependencies, 
such as architectural constraints.  One such issue is that 
of misaligned data accesses resulting from mixed-
precision data types; vectorization has no knowledge of 
how these data types interact.  In this paper, we 
provide a program representation that explicitly 
encodes the array regions operated upon by the loop, 
allowing a code generator to recognize these 
misaligned data accesses and generate appropriate 
alignment code.  

The main architectural constraint that must be 
considered when parallelizing loops for multimedia 
instruction sets is that all accesses to the elements of an 
array must be consecutive, i.e., having a stride of one.  
This follows from the parallel load and store operations 
common to these instruction sets where an entire 
vector of consecutive data is read from or written to 
memory in a single instruction (e.g., 16 consecutive 
bytes in SSE2 [1]).   

A loop kernel that is not carefully written can 
easily violate this unit stride constraint.  The simplest 
case is a loop where the array indices are 
monotonically increasing by a stride greater than one.  
We have shown in earlier work [9] that some loops can 
be restructured to have unit stride. However, a 
common case where unit stride becomes an issue is the 
presence of vector data types of different precisions 
within a loop body.  For example, a loop having both 
16- and 32-bit types will not align corresponding 
elements properly; in this case, the 16-bit vectors have 



unit stride but the 32-bit vectors have a stride of two 
with respect to the smaller type.  The compiler must 
deal with multiple parallel factors (e.g., 8-way and 4-
way parallelism for the above types, assuming a 128-
bit SIMD register size) in the same loop.   

This research addresses the mixed data-type issue 
(and, as shown in [9], the non-unit stride issue), 
increasing the range of loops that can be optimized 
using multimedia instruction sets.  Specifically, we 
take a reverse-engineering approach in which data-
parallel access patterns are recognized in the program.  
These are abstracted to an explicitly-parallel, 
multidimensional dataflow (MDDF) graph-based 
representation of the program.  The MDDF 
representation explicitly encodes array region 
annotations that facilitate resolving differing vector 
data types along graph edges.   We developed a 
system, called PARRET (for PARallel RETargeter), 
for extracting MDDF from sequential source code and, 
from that representation, synthesizing data-parallel 
code.  The MDDF representation abstracts out the 
sequential details used to implement the algorithm as 
well as architectural details specific to particular 
hardware. After extracting the MDDF specification, 
PARRET generates the appropriate subword parallel 
code for multimedia ISAs, using knowledge of array 
regions formed by each vector data type to generate 
type-conversion code to properly align mixed-precision 
vector types. The back-end code generator attempts to 
find best-case parallelism at a platform-independent 
level, for example, using knowledge of loop nesting to 
normalize loops with non-unit stride into unit stride 
when possible.   

The MDDF representation also facilitates multi-
target code generation.  We have previously 
demonstrated PARRET’s ability to generate code for 
SIMD processor arrays where parallelism is achieved 
via independent processing units  [9].  This paper 
demonstrates its applicability to multimedia instruction 
set extensions that must instead deal with packed data 
issues such as data alignment and mixed data types. 

We show that this method is capable of 
parallelizing a range of loop kernels beyond that of 
traditional vectorization.  We identified a set of 
production programs that exhibit parallelization 
challenges, particularly in misaligned mixed-precision 
data types.  These are nine programs from the Texas 
Instruments (TI) IMGLIB [13] suite for the TI 
TMS320C62xx line of DSPs; all nine were 
successfully parallelized by PARRET while only two 
were parallelized by a vectorizing compiler.  
Retargeting produces an average speedup of 2 over 
sequential across our test suite, with a maximum of 27.   

The remainder of this section presents related 
work on vectorization to parallelize program loops for 

multimedia ISA extensions.  Section 2 gives an 
overview of MDDF, PARRET’s recognition process, 
and the synthesis of code for multimedia ISAs from 
MDDF.  Section 3 validates the correctness of 
programs retargeted to Intel’s SSE2 [1] by PARRET, 
compares their speedup over sequential, and compares 
the ability of PARRET to parallelize loops with that of 
ICL, Intel’s commercial vectorizing compiler.  The last 
section presents conclusions and discussion. 

1.1. Related Work 

The traditional method for parallelization of loops 
is vectorization, i.e., partitioning the iteration space and 
data set of a loop such that each partition can be 
executed on parallel hardware.  The main constraint for 
vectorization is that loops not have any loop-carried 
dependencies [5].  Once a vectorizing compiler is 
satisfied that dependence constraints have been met, it 
can schedule concurrent iterations for parallel 
execution based on the hardware resources available. 

1.1.1. Vectorization for Multimedia ISAs.  Several 
projects have implemented vectorization for generating 
code using multimedia ISAs, including the Intel C/C++ 
compiler [4], the MOM project [6], and work such as 
that by Sreraman et al. [7].  In general, these projects 
attempt to vectorize the inner loop of a loop nest.  First, 
loop dependency analysis is performed.  Then any 
applicable loop transforms are applied, such as loop 
distribution to isolate dependent statements into 
separate loops and scalar expansion (distributing the 
value of a scalar to an array that replaces the scalar) to 
break unnecessary loop-carried dependencies.  Finally, 
if the loop is determined to be vectorizable, it is strip-
mined to vector length, i.e., the loop step is changed 
from one to the vector length, such that each iteration 
operates on a single vector [8].  Code generation 
usually produces inlined assembly instructions from 
the multimedia ISA extension (or function calls that 
execute those instructions).  Some, like the Intel 
compiler, perform low-level pattern recognition to 
identify code fragments, such as reduction operations 
(e.g., summation, minimum/maximum, etc.), that 
contain true dependencies, but that can still be 
parallelized when understood as the higher-level 
operation. 

The Matrix-Oriented Multimedia (MOM) project 
[6] takes a unique approach to both multimedia ISAs 
and their compiler support.  The MOM ISA provides 
two-dimensional, i.e., matrix, packed data types.   
These matrix types are modeled as a vector (the matrix 
rows) of packed words (the elements in each row).  
The MOM compiler builds these matrices by extending 
vectorization into two-dimensions.  First, the inner 



loop (of a doubly-nested loop) is vectorized in the 
usual manner.  Then the outer loop is itself vectorized, 
using the results of the first step, to produce the 
matrices as vectors of vectors. 

The main limitation of these types of compilers is 
their dependence on the syntactic details of the 
program.  Compiler intermediate representations (IRs, 
e.g., abstract syntax trees, data-dependence graphs, 
triples/quads, register-transfer language, control-flow 
graphs, static single-assignment, etc.) are tightly 
coupled to the sequential details of the program (use of 
variables, loops, assignment statements, etc.) and as 
such still follow an inherently sequential computational 
model.  They use explicit array accesses to determine 
loop-carried dependencies (or lack thereof) with the 
intention of strip-mining the loop to a specific vector 
length (i.e., changing the original loop stride to be the 
vector length).  Here, the strip-mining process provides 
some basic understanding of the array regions, but only 
for a single vector length.  However, in the presence of 
mixed-precision data types, this single-vector-length 
creates vectors of varying bit-width, violating the 
fixed-width constraint for multimedia registers, and the 
vectorization-and-strip-mining combination falls short.  
Our program representation encodes all region 
annotations separately and represents compositions of 
the region operations with dataflow arcs.  This exposes 
the interaction between the operations on mixed-
precision types and facilitates the generation of code 
that properly aligns elements between mixed-precision 
arrays.  

 

 
Fig. 1.  Retargeting process. 

1.1.2. Data alignment optimizations.  An issue 
related to mixed-precision data alignment is the 
alignment of memory addresses for vector load and 
store operations for efficient access.  For example, in 
SSE2, 128-bit vector data aligned to 16-byte 
boundaries can be accessed with the MOVDQA 
memory instruction much faster than with the 
unaligned MOVDQU [1]; it is desirable that a compiler 
use the aligned instructions as often as possible.  

Larsen et al. [3] have addressed this via memory 
congruence analysis.  Bik et al. [4] address this by loop 
peeling, i.e., running sequential iterations of the loop 
until an aligned address is found, at which point 
execution of an aligned and vectorized version of the 
loop commences. These techniques are complementary 
to our work:  our analysis of mixed-precision data 
types would generate load and store code to resolve the 
precision issues, after which that code could be further 
optimized using the above techniques in order to align 
those accesses at (e.g., in SSE2) 16-byte boundaries. 

2. Approach 

Fig. 1 illustrates the retargeting process.  Our 
recent work [9] has investigated using recognition-
based reverse engineering techniques to identify data-
parallel memory access and computation patterns in 
sequential source code.  Once identified, these patterns 
are used to create a high-level program representation 
with explicitly data-parallel semantics, from which 
data-parallel source code can be synthesized.  The 
remainder of this section will give a brief overview. 

2.1. Extracting an Explicitly-Parallel 
Program Representation 

2.1.1. Target Representation.  The goal in 
recognizing data-parallel patterns in source code is to 
create a high-level, explicitly parallel program 
representation.  We chose a representation based on the 
multidimensional synchronous dataflow (MDSDF) 
[10] model of computation (MOC).  MDSDF specifies 
a task-concurrency model where tasks, represented as 
nodes in a flow graph, communicate by sending tokens 
along the graph edges.  These tokens are 
multidimensional entities where each dimension has a 
known integer size, e.g., a particular token may have 
three rows and two columns.  Additionally, the 
producer for an edge may produce a token with 
different sizes and dimensions than the consumer of a 
node, resulting in differing rates of execution for each 
task.  For example, if task T1 produces a 4×2 token 
onto edge E1,2 and task T2 consumes a 2×1 token from 
E1,2, then T2 must execute four times for every 
execution of T1.  These execution rates can be used by 
a task scheduler to create a static execution schedule 
for all tasks in the system. 

Even though our domain is data-parallel program 
representation and not task-concurrency, the MDSDF 
model comes very close to providing the required data-
parallel interpretation.  If the multidimensional tokens 
are viewed as regions of array data, they become a 
natural way to express the data structures common to 
multimedia applications, such as images and audio 

for (i=1;i<rows-1;i) {
a = in+(i*cols+1); 
b = in+(i*cols+1); 
for (j=1;j<cols-1;j++) {

nw = *(b-cols-1);  n = *(b-cols);  
ne = *(b-cols+1); w = *(b-1);
h = *(b);   e = *(b+1);
sw = *(b+cols-1);  s = *(b+cols);
se = *(b+cols+1);
*a++ = (m1*nw + m2*n + m3*ne

+ m4*w + m5*h + m6*e 
+ m7*sw + m8*s + m9*se) / 16; }

b++; }

Sequential Source Code

for (i=1;i<rows-1;i) {
a = in+(i*cols+1); 
b = in+(i*cols+1); 
for (j=1;j<cols-1;j++) {

nw = *(b-cols-1);  n = *(b-cols);  
ne = *(b-cols+1); w = *(b-1);
h = *(b);   e = *(b+1);
sw = *(b+cols-1);  s = *(b+cols);
se = *(b+cols+1);
*a++ = (m1*nw + m2*n + m3*ne

+ m4*w + m5*h + m6*e 
+ m7*sw + m8*s + m9*se) / 16; }

b++; }

Sequential Source Code

array a[rows][cols];
array b[rows][cols];
a = 

(  m1*b@(-1,-1) 
+ m2*b@(-1,0) 
+ m3*b@(-1,1) 
+ m4*b@(0,-1) 
+ m5*b 
+ m6*b@(0,1) 
+ m7*b@(1,-1) 
+ m8*b@(1,0) 
+ m9*b@(1,1)
) / 16;

SIMD Source Code

array a[rows][cols];
array b[rows][cols];
a = 

(  m1*b@(-1,-1) 
+ m2*b@(-1,0) 
+ m3*b@(-1,1) 
+ m4*b@(0,-1) 
+ m5*b 
+ m6*b@(0,1) 
+ m7*b@(1,-1) 
+ m8*b@(1,0) 
+ m9*b@(1,1)
) / 16;

SIMD Source Code

Graph Representation & Pattern Matching

Graph
Grammar

re
ad

-a
rr

ay

w
rit

e-
ar

ra
y

F(
 )

Data-Parallel Program Representation



streams, as well as the partitions of these data 
structures that are often operated upon in isolation, 
e.g., columns and rows of images, sub-blocks of 
images and data-streams, etc.  For example, consider 
the abstract algorithm representation in Fig. 2.  This 
algorithm reads in a 512×512-pixel image and a 
1×128-element coefficient array, partitions the image 
into 1×128-pixel sub-blocks, multiplies the sub-blocks 
element-wise with the elements of the coefficient 
array, and then re-assembles the resulting blocks into 
the 512×512-pixel output array.  With the program in 
this representation, data-parallel code can be generated 
such that the multiplication operation is performed in 
parallel on SIMD hardware. 

 

 
Fig. 2.  Sample image-processing algorithm 

with a MDSDF-like representation. 

We refer to our representation as multidimensional 
dataflow (MDDF) since we do not use it for 
synchronous task scheduling.  We refer to the edge 
annotations describing the tokens as regions, similar to 
the notion of array regions described in [11], and 
notate our regions as (starty:rangey:stepy, 
startx:rangex:stepx), where starti, rangei, and stepi refer 
to the first index of the region, the number of elements 
in the region, and the stride between elements, 
respectively, in each dimension i.  For one-dimensional 
regions, the y-fields are removed for convenience, e.g., 
(startx:rangex:stepx). 

2.1.2. Pattern Recognition.  The recognition begins 
by performing control- and data-flow analyses on the 
source code, producing a dataflow graph-based 
intermediate form.  For example, the loop of Fig. 3, a 
Sobel edge-detection algorithm from the TI IMGLIB 
suite [13], is converted into the intermediate dataflow 
graph (DFG) of  Fig. 4.  For brevity, portions of the 
code are elided.  Note this example points out the 
mixed vector data type problem discussed in the 
introduction (see annotations in  Fig. 4).   Our previous 
work [9] presents an example where the loop stride is 
not one, but where PARRET is able to recognize from 
the loop nesting structure that the program is operating 
on contiguous data with a stride of one. 

 

 
Fig. 3.  Sobel example source code. 

 Fig. 4. Intermediate DFG representation. 

Once the intermediate representation has been 
built, pattern matching can begin.  The recognizer, 
using a graph-matching technique (see [9]), searches 
for instances of data-parallel patterns.  Example 
patterns are shown in Fig. 5; a full description of the 
pattern library is given in [12].  Fig. 6 shows the 
recognition of a count pattern (a function that 
generates a linear sequence of values) from the cyclic 
structure created by the induction variable i.  This 
corresponds to the shaded region in  Fig. 4.  Fig. 7 then 
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01: unsigned char * in; 
02: unsigned char * out; 
03: short cols, rows; 
04: int H, O, V, i, j; 
05: int i00=0, i01=0, i02=0; 
06: int i10=0,      i12=0; 
07: int i20=0, i21=0, i22=0; 
08: int w = cols; 
09: for(i=0;i<cols*(rows-2)-2;i++){ 
10:   i00=in[i      ];  
11:   i01=in[i  +1  ];  
12:   i02=in[i  +2  ]; 
13:   i10=in[i+  w  ]; 
14:   i12=in[i+  w+2]; 
15:   i20=in[i+2*w  ];  
16:   i21=in[i+2*w+1];  
17:   i22=in[i+2*w+2]; 
18:   H= -i00-2*i01-i02+ 
19:        +i20+2*i21+i22; 
20:   V= -i00+i02 
21:        -2*i10+2*i12 
22:        -i20+i22; 
23:  A  = abs(H) + abs(V); 
24:  if (A > 255) A = 255; 
25:  out[i + 1] = A; 
26:  } 



shows the recognition of parallel input and output 
primitives (array-read and array-write, 
respectively) from the memory access subgraphs (the 
LOAD_ptr and STORE_ptr blocks with their 
address calculation inputs) and the count pattern (see 
shaded regions in Fig. 6), producing the final MDDF 
specification for this loop. 

 

 
Fig. 5.  Pattern examples: (a) Count pattern, (b) 
array-read pattern based on a count pattern 
and LOAD operation. 

In this example, the SELECT node (and every 
other computational node, i.e, those not involved in 
memory address calculations) persists from the original 
DFG intermediate representation.  Its semantics are 
that if the first input is a “true” value (non-zero value 
in C) the second input is quoted to the output, 
otherwise the third input is quoted to the output.  This 
operator extends to a data-parallel domain by making 
arrays of all inputs and its output, applying the basic 
SELECT operation to corresponding elements of its 
inputs.  This operation is equivalent to the bit-masking 
transformations used in mainstream vectorizing 
compilers [4][7]. 

This example illustrates PARRET’s knowledge of 
mixed vector data types and how they can be resolved.  
Consider the edge labeled Edge 1 on  Fig. 4 and Fig. 7.  
We chose the data type of the loop body calculations to 
be 16-bits (twice that of the input data, to provide 
adequate precision for the multiplication operations) 
and signed (because of the subtractions and negation).  
This means that the head of Edge 1 is 8-bit unsigned 
(the input type) and its tail is 16-bit signed.  In a 
multimedia ISA (assuming 128-bit vector registers), 
the head type would have 16 elements and the tail type 
would have 8 elements.  The semantics of the 
representation dictate that two instances of the node 
supplying data to Edge 1 (the array-read node) 
would have to execute for each instance of the node 

that receives data from Edge 1 (the negation node).  A 
back-end code generator uses these relative execution 
ratios to generate the appropriate number of instances 
of data-parallel instructions for each operation. 

2.1. Code Synthesis 

Intel’s Streaming SIMD Extensions 2 (SSE2) [1] 
was chosen for analysis as a representative ISA with 
SIMD extensions.  SSE2 is implemented in the 
Pentium 4 generation of x86 processors, facilitating 
analysis on commodity desktop workstations.  It is 
supported at the assembly level by Microsoft’s Visual 
Studio, and at the source level, via vectorization, by 
Intel’s C/C++ Compiler. 

 

 
Fig. 6.  Recognition of a count pattern. 

Our approach to code generation for SSE2, 
particularly in the presence of mixed data types, is to 
generate code based on the highest-precision type.  
This could mean, for instance, that we load in 8-bit 
unsigned data, promote to 16-bit unsigned to perform 
higher-precision calculations such as multiplication, 
and then demote back to 8-bit unsigned for write-back, 
as must happen for the example of Fig. 3 through Fig. 
7.  The main constraint imposed by the architecture is 
that the parallel loads and stores must have the data 
packed consecutively, e.g., if all internal calculations 
are performed at 16-bit precision and the original 
program specifies output to an array of 32-bit integers, 
datatype promotion must occur before write-back. 
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R := global range expression
I0 := initial value of I

I:count 1



 

 
Fig. 7.  Recognition of array-read and array-
write patterns for finalized MDDF 
representation. 

For brevity, the full details of code synthesis are 
not shown in this paper.  A more thorough discussion 
can be found in [12].  The C code generated by 
PARRET for the sobel example can be obtained from 
http://www.westga.edu/~lewisb/sobel_parret.c. 

3. Results 

This section presents our experiments retargeting 
loops with inherent DLP to SSE2, a representative 
multimedia instruction set with SIMD functionality.  
We show PARRET is capable of synthesizing 
optimized code for SSE2 from the architecture-
independent MDDF program representation.  
Additionally, we compare PARRET with a commercial 
vectorizing compiler and show that PARRET is 
capable of parallelizing programs the compiler cannot. 

As a baseline for comparison, we chose Intel’s 
C/C++ Compiler (ICL), version 8.0.  It employs 
traditional loop vectorization to generate data-parallel 
code as well as providing a set of intrinsic functions for 
inlining SIMD operations in C/C++ source code.  Our 
analysis will make use of ICL’s vectorizing capabilities 
in characterizing whether or not applications can be 

parallelized using traditional methods.  The intrinsic 
functions provide a convenient set of primitives for 
PARRET to use when generating its own data-parallel 
code. 

Table I lists the loop-based applications in our test 
suite.  These are taken from the TI IMGLIB [13] 
library, a suite of image processing applications 
originally written for the Texas Instruments 
TMS320C62xx line of DSPs.   

Table I.  IMGLIB test programs. 
Program Description: Application(s) 
conv_3x3 Convolution: Noise removal, image smoothing 
corr_3x3 Correlation: Motion estimation 
perimeter Comput object perimeter: Object 

detection/recognition 
pix_sat Saturate pixels: Compression (i.e., clip values to a 

certain bit precision) 
quantize Quantize pixels: Compression (e.g., used in JPEG) 

sobel Edge detection: Object detection/recognition 
threshold Threshold pixels: Image dilation/erosion, perimeter 

detection 
fdct_8x8 Discrete cosine transform: Image compression 

(e.g., used in JPEG) 
mad_16x16 Min. absolute difference: Video compression (e.g., 

MPEG) 

3.1. Retargeting of Image Processing 
Programs to SSE2 

Table II reports on the ability of PARRET and 
ICL to parallelize the test programs.  For each of the 
programs, ICL was executed using the “/QxW /O3 
/Qvec_report3” flags.  These flags specify, 
respectively, Pentium 4 code generation (including 
vectorization for SSE2), speed optimizations, and 
detailed reporting on vectorization attempts. 

Table II.  Suite coverage test. 
Benchmark PARRET ICL 

conv_3x3 Yes No 
corr_3x3 Yes No 
perimeter Yes No 
pix_sat Yes No 
quantize Yes No 

sobel Yes No 
threshold Yes Yes 
fdct_8x8 Yes No 

mad_16x16 Yes Yes 

3.2. Correctness Validation 

To validate correctness, each of the programs in 
the test suite retargeted by PARRET was executed for 
a 256-by-256 pixel input image and the results 
compared with those of a baseline execution of the 
original program as compiled by ICL (without 
vectorizing).  Average distance (Equation 1) was used 
to compare the matrix results of each trial (except for 
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mad_16x16, which has a scalar result); these results are 
listed in Table III.  Here, lower values are better, i.e, 
the matrix results closely match. 

∑∑
= =

−=
N

n

M

m
nmnm ba

MN
distavg

1 1

1_  (1) 

The two non-zero values listed in Table III 
(perimeter and sobel) result from precision differences 
caused by the saturation arithmetic used in SSE2. 

3.3. Performance Evaluation 

The performance gains of using parallelized code 
generated by PARRET are shown in Fig. 8.  These 
were calculated as the time taken to execute the 
sequential version (as compiled by ICL) one hundred 
times divided by the time taken to execute the 
PARRET version one hundred times.  Execution time 
was measured using the _ftime() function available 
from the Microsoft C/C++ runtime library (required for 
the Microsoft Windows version of ICL).  All execution 
time tests were performed on a Pentium 4 1.80 GHz 
with 512 MB of RAM running Windows 2000. 

Table III.  Comparison of computational 
results, retargeted vs. sequential. 

Program Average Distance 
perimeter 0.11 
corr_3x3 0 
quantize 0 
sobel 0.01 
pix_sat 0 
thr_le2thr 0 
conv_3x3 0 
fdct_8x8 0 
mad_16x16 Scalar result, exact match 

Of interest is the large speedup seen with the 
quantize and mad_16x16 benchmarks.  The quantize 
benchmark was originally written as an inner loop over 
sub-blocks of an array, and an outer loop over the 
elements of each sub-block, resulting in an inner loop 
stride greater than one.  This caused an increase in 
cache miss overhead in the sequential version due to 
lower spatial locality.  PARRET, however, was able to 
recognize the loop nest as a sequence of operations on 
stride-1 data and generate the appropriate optimized 
code.  The high performance gains seen in the 
mad_16x16 benchmark were a result of the loop 
structure that PARRET produced: it generated four 
copies each of 4-way parallel versions of the 
instructions needed to complete the calculations, 
effectively unrolling the loop entirely (the loop was 
written as a 16-iteration loop).  This eliminated the 
loop overhead and several expressions based on the 
loop index (now a constant) would have been 
calculated at compile-time instead of run-time.  The 
trade-off is a larger code size. 

 
Fig. 8.  Performance increase from retargeting. 

Of the nine benchmarks that PARRET 
parallelized, there were only two that ICL was able to 
vectorize: threshold and mad_16x16.  PARRET 
produced the same performance gain for threshold as 
the ICL vectorized version.  However, the vectorized 
version of mad_16x16 produced by ICL had a 6.5 
times greater performance gain than PARRET’s 
parallelized version. An examination of the generated 
assembly code revealed that ICL was able to recognize 
a sum of absolute differences operation in the original 
C loop and replace that code with the special-purpose 
instruction PSADBW (“packed sum of absolute 
differences”), saving several instructions that PARRET 
had to generate explicitly.  In the future, such 
recognition could be incorporated into PARRET by 
expanding its recognition pattern library.  In addition, 
the intrinsic functions PARRET uses for optimized C 
code generation can result in as many as seven 
assembly instructions for a single operation instead of 
one or two that might result if code generation were 
performed at the assembly level.  We used these 
intrinsic functions for convenience only; future 
versions of PARRET could generate assembly code 
directly, producing a smaller, faster executable. 

3.4. Code Size Evaluation 

The code-generation method presented here was 
expected to increase code size due to the overhead of 
using pseudo-instructions, vector data type promotion 
and demotion, multiple instances of the same operation 
(to operate on separate parts of a vector), and the use of 
intrinsic functions.  Table IV reports the increase in 
code size of each retargeted loop (not the overall 
application) caused by PARRET.  The average 
increase of 4.3 times could be reduced by generating 
code at the assembly level and not by using the 
intrinsic functions. 

As an illustration of code increase on a full 
application, we replaced the DCT in the cjpeg 
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implementation of JPEG encoding (available from 
http://www.ijg.org/) with the fdct_8x8 kernel from the 
IMGLIB library.  Using the original fdct_8x8 code, it 
compiled to 135,168 bytes.  Using the PARRET-
retargeted code, it compiled to 139,264 bytes, an 
increase of 3.03%. 

4. Conclusions and Discussion 

PARRET is able to optimize loop-based code for 
multimedia ISAs beyond the capabilities of traditional 
vectorization, particularly in cases where mixed-
precision vector data types must be aligned for vector 
operations in the loop.    Those properties which make 
PARRET effective are: 
• an abstract multidimensional dataflow 

representation of recognized algorithms,  
• the ability to recognize more complex iteration 

spaces (e.g., the quantize benchmark) and 
normalize them into vectorizable form, and 

• an explicit representation of how mixed data types 
compose. 
Future work in retargeting data-parallel programs 

to multimedia ISAs includes improving code-
generation.  Greater performance of the parallelized 
code can be gained by avoiding the use of intrinsic 
functions that create extraneous instructions.  In 
addition, some multimedia ISA extensions contain 
instructions for optimizing cache accesses, such as 
prefetch instructions; with its base of memory layout 
and access patterns, PARRET can leverage these 
instructions in the retargeted code.  Finally, it would be 
interesting to apply PARRET to additional two-
dimensional multimedia ISA targets, such as MOM [6] 
and CSI [14].  These would be good retargeting 
candidates for PARRET given its ability to recognize 
data parallelism in multiple dimensions. 

Table IV.  Code Increase for PARRET-
retargeted programs. 

Benchmark PARRET 
size (bytes) 

ICL size 
(bytes) Ratio 

conv_3x3 6291 1136 5.54 

corr_3x3 6194 1379 4.49 

perimeter 4352   995 4.37 

pix_sat 4695 1230 3.82 

quantize 4731 1202 3.94 

sobel 5595 1376 4.07 

threshold 4518 1701 2.66 

fdct_8x8 6915 1414 4.89 

mad_16x16 5668 1155 4.91 

Average 4.30 

ICL options: -c -Drestrict= -QxW -O3 

This work was supported in part by NSF Grant CCR-
0092552. 
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