
Towards a Source Level Compiler: Source Level Modulo
Scheduling

Yosi Ben-Asher Danny Meisler
Computer Sci. dep. Haifa University, Haifa.���������
	 ������ ��������� �� ��������������� ����� ����� ���

Abstract
Modulo scheduling is a major optimization of high performance
compilers wherein the body of a loop is replaced by an overlap-
ping of instructions from different iterations. Hence the compiler
can schedule more instructions in parallel than in the original op-
tion. Modulo scheduling, being a scheduling optimization, is a typ-
ical backend optimization relying on detailed description of the un-
derlying CPU and its instructions to produce a good scheduling.
This work considers the problem of applying modulo scheduling
at source level as a loop transformation, using only general infor-
mation of the underlying CPU architecture. By doing so it is possi-
ble: a) Create a more retargeble compiler as modulo scheduling is
now applied in source level, b) Study possible interactions between
modulo scheduling and common loop transformations. c) Obtain
a source level optimizer whose output is readable to the program-
mer, yet its final output can be efficiently compiled by a relatively
“simple” compiler.

Experimental results show that source level modulo scheduling
can improve performance also when low level modulo scheduling
is applied by the final compiler, indicating that high level modulo
scheduling and low level modulo scheduling can co-exist to im-
prove performance. An algorithm for source level modulo schedul-
ing modifying the abstract syntax tree of a program is presented.
This algorithm has been implemented in an automatic parallelizer
(Tiny). Preliminary experiments yield runtime and power improve-
ments also for the ARM CPU for embedded systems.

1. Introduction
This work considers the problem of implementing Modulo Schedul-
ing (MS) [11] in software level rather than implementing it in
machine level, as is usually done in modern compilers [9]. The
main motivation in doing so is to allow users to view the effect of
modulo scheduling at source level, allowing possible interaction
with other loop transformations and manual improvements. During
experiments, it turned out that in many cases, Source Level Mod-
ulo Scheduling (SLMS) improved the execution times even when
the underlying compiler used “exact” machine level MS. Conse-
quently, SLMS and machine level MS should co-exist even in a
high performance compiler. Thus SLMS is used for two different
tasks: optimizing programs at source level along with other loop

[copyright notice will appear here]

transformations and as a stand alone optimization complementary
to machine level MS.

Basically, MS is one type of solution to the problem of extract-
ing parallelism from loops by “pipelining” its iterations as follows:

 "!#�$&%('*)�+,%.-0/1+2%�343657
8:9�;�<>= '@?BA %DCFEHGIA %DCJ+8(KL;�<NM ' M 3 = +O

PRQ

8:9�S�<T= '*?BA)CFEUGIA)CJ+ "!#�$&%('*)�+,%.-0/ P 9 +V%�303657
8(KL;W<XM ' M 3 = +8:9�;DY:Z[<T= '\?BA %R3 9 CFEUGIA %�3 9 CJ+O
8(KL]�^ Z <XM ' M 3 = +

Note that after this “pipelining” the dependence between _a` ; and
_Ub ; has been eliminated and the new statements _Hb ; and _a` ;&Y�Z
can be executed in parallel (denoted by _Hb ;dc�c _a` ;&Y�Z). 1

Many techniques have been proposed to approximate the solu-
tion to the problem of optimal pipelining of loop iterations by elim-
inating the maximal number of inter iteration dependencies [2, 14].

This work considers another possibility of implementing MS,
namely to implement it as a source level loop transformation. The
goal is to develop eventually a Source Level Compiler (SLC) that
will combine SLMS and known loop transformations such as peel-
ing, fusion, and tiling as described in [3]. A program is first com-
piled by using the SLC and then the resulting optimized program
is compiled to the target architecture by using a regular compiler
(called the final compiler). We believe that the SLC can improve
final performances of programs (by using advanced array analysis
and source level transformations) as follows:
e Based on the interaction with the SLC, the user can modify

parts of his code producing new opportunities for the SLC
(e.g, replacing while-loops by fixed range for-loops or using
arrays instead of pointers/records). The user can acknowledge
speculative operations of the SLC such as allowing the SLMS
to use an Initiation Interval (II) [11] that violates some data
dependencies. The proposed SLMS algorithm is designed to
minimize the changes to the original program thus, preserving
the readability of the optimized code.

e SLMS is a powerful optimization that can potentially improve
the execution times even if the underlying final compiler in-
cludes a machine level MS. Thus, the SLC can potentially im-
prove execution times of modern compilers or cover the lack
of a given optimization (e.g., MS) in the backend of the final
compiler.

e The combination of SLMS and loop transformations can be, in
some cases, more effective when it is implemented in source
level (as shown later on several possible combinations).

1 This parallel execution
8(K�;gf
f 8�9�;&Y�Z

is valid under the assumption that in
a parallel execution the load of

=
in
81K�;

is not affected by the update of
=

in8�9�;&Y�Z
. Such a claim is true for most VLIW machines and other models.

Figure 1 depicts how SLMS is applied. After SLMS the fi-
nal compiler applies code-generation, register allocation and list
scheduling of basic blocks to create VLIW instructions. The out-
come in this case is as efficient as the one that can be obtained by
using a machine level MS. Remark: some MS algorithms such as
Iterative MS [12] use modified versions of list scheduling to sched-
ule the kernel after the II has been computed. In this respect, it
may be possible to view SLMS as moving the first part of MS to
the front-end (computing the II and generating the prologue, kernel
and epilogue) leaving the actual scheduling of the kernel to the List
scheduling of the backend.

Figure 1. Using SLMS followed by List scheduling.

2. Basic operations used by the SLMS algorithm
In the following subsections we present the elementary operations
used by the proposed SLMS algorithm. Some of these operations
are known and were used in other MS algorithms. Initially, the
loops are represented by their abstract syntax tree (AST). In addi-
tion, the dependencies (including the iteration-distances) between
array references and scalar variables in the AST are given as di-
rected labeled edges between the AST nodes. For example, the
body of the loop ���������
	���������������������� ������	 ��� �"! `#�$
is depicted in figure 2. The input AST is logically partitioned to
“multi-instructions”(MI), corresponding to assignments, function-
calls or to elementary if-statements. For example the AST in figure
2 contains a single MI.

assign

store_array

load_array load_array

A dec

add

A

A i

i

1i

p=0

p=1

Figure 2. Input structure for the SLMS algorithm.

Next, we describe the concept of the minimum initiation interval
(MII) [11] and how it is computed. The minimum initiation interval
is the one for which a valid schedule exists. Smaller values of II
correspond to higher throughput. Calculation of the II accounts for
two constrains:

1. Resource constraint (RMII). Let �����%� be the number of available
resources (e.g. add units) and �����&� the number of times the
resource � is used in the code. '�(*)+),	.-0/�1 ;325476

;98] 6 ;:8#; .
2. Recurrence constraint (PMII) is computed over the data depen-

dency graph < of the loop’s body [3]. For a given cycle of de-
pendencies = ; in < let >?- ; be the ratio of the sum of delays
along = ; and the sum of “iteration-distances” in = ; . The delay
(for machine level) between two instructions is basically the
number of pipeline stalls that occur if the two instructions are
executed one after the other. For SLMS a different notion of de-
lays will be defined as pipeline stalls has no meaning in source
level.

The “iteration-distance” indicates the number of iterations that
separate the “define” and “use” of a value (e.g., the iteration-
distance between �,� �$�@	.1 and A�	B�,� �C!EDF�9� is three).

3. The value of MII is set to (*)+),	G(B/�1IHFJK(B)+)?L%'�(*)+)NM .
The MS algorithm first attempts to obtain a valid schedule with
)+),	G(*)+) MIs. In case that such a schedule is not possible the MS
algorithm tries larger values of II until such a schedule is obtained.

Next, If-statements of the AST are eliminated by predicating
them with Boolean variables, similar to the if-conversion operation
performed in assembly mode, e.g., �&�C��1O�PA���H71,�Q��CA,!P!�RM is
converted to two predicated MIs ST	U��10�PA��VWS3X31Y�Z���[S3X3A"!0!�
so that SLMS can be applied. Remark: apart from the use of if-
conversion in MS there are other proposals for MS of loops with
conditional statements. For example, Lam [7] uses a sequence of
hierarchical reductions of strongly connected components to MS a
loop with conditional statements.

2.1 Decomposition of MIs

This operation divides a complex “large” MI to a set of “smaller”
MIs, e.g., ��� ���W	./��]_^_S� may be divided to `a	._^_S_I��� ���W	./?�b`V .
As explained before, in SLMS the resulting code must be as similar
as possible to the original code. Hence, we are seeking to minimize
the number of decompositions of MIs needed to obtain a valid
SLMS. Finding a minimal decomposition of MIs is a key problem
in SLMS and the implemented algorithm uses the following two
types of operations:

1. Break a self data dependence edge inside the AST of the MI,
e.g. the one between ��� �����G	*��� �c! `#�$.

2. Reduces the number of resources (arithmetic operations and
load/store operations) in the MI. For example the MI 1�	
��� ���?�.d�� ���W�*=
� ���W�*eO� ���f contains four load operations and
three additions. Assumption that the underlying CPU is a VLIW
machine allowing up to two additions and two load/store oper-
ations in a multi-instruction (VLS), it is better to decompose
1g	h�,� ���i�Ud�� �����j=
� �����keO� ���$ to `l	m��� �����kdn� �$�$ and
1�	o`c�P=
� �$���PeO� ��� .

Decomposition is needed for two reasons:

1. In case that the original loop contains only one MI, at least two
are needed to perform MS.

2. In case a loop-carried self dependence prevents finding the MI
(section 4).

Consider the loop:

����������	*��p�q�Qrs��?�Q����H
��� ���W	*��� �c! `#���P�,� �I! b7���t��� �@� `#���P�,� �?� b7�$#M

This loop does not have a valid schedule for)+)�	 ` , because there
is only one MI and because of the loop-carried self dependence
between ��� ���$LR��� �"! `V� . First, we select one load array reference
��� �?� `V� with no flow dependence with the store operation ��� ���W	 .
By using this selected array reference we create two MIs using a
temporary variable as follows:

����������	 b+p�q�Qrs��?�Q����H
�5u3v�T̀	*�,� �@� b7�f
��� ���W	*��� �c! `#���t�,� �C! b7���t��� �@� `#���t��u3v�5̀
M

The data dependency of �5u3v�Ò	xwywzw and �,� �a! b7�I�B��u3v�F̀� will
be eliminated by applying Modulo Variable Expansion (MVE),
described in section 2.2. At this stage SLMS can be applied with

)+),	 ` as follows:

�5u3v�` 	*�,� � �$
����������	 b+��a�G�$r !ED5�Vp�@�P����H
��� ���W	*��� �C! `#���P�,� �I! b7���t��� �@� `#�+�t��u3v�5̀ c�c
�5u3v�` 	*��� �?�PDF�f
M
��� ���W	*��� �C! `V���P�,� �c!*bF���t��� �@� `#�+�t��u3v�5̀

The symbol
c�c

is used between multi intructions that can be totaly
parallelized by the final compiler/hardware in terms of not violating
any data dependencies.

Remark: SLMS assumes that the backend compiler shall use a
register for the new local variable “reg1”.

2.2 Modulo variable expansion

The SLMS operation, as explained so far can introduce new
data dependencies between MIs, such as the dependency between
wywyw?/W� �q! bF�I�*�5u3v�` �*/W� �i�Wb7�$wzwyw and wywzw ��u3v�` 	 /W� ��� bF�$ in the
last code example of subsection 2.1. Such dependencies may pre-
vent the underlying scheduler (the scheduler of the final compiler)
or the hardware (in case of a Super scalar CPU) to extract paral-
lelism. Modulo variable expansion (MVE) [7] is used to eliminate
such dependencies. Basically, MVE of a variable (say �5u3v�`) is per-
formed by unrolling 2 the kernel, and renaming the variable such
that the data dependence inside each unrolled copy of the kernel is
removed.

��u7v�T̀	*/W� bF�$
���_�N���i	B����a�G�$r ! � �V��&�B	 b���H
/W� ���@	*/W� �C! `#���t/W� �c!*bF��� /W� �@� `#���E��u7v��̀ c�c
�5u3v b]	./W� �@�tD_�$
/W� �@� `V�W	./W� �$���t/W� �c! `#��� /W� �@� bF���E��u7v b+ c�c
�5u3v�` 	./W� �@� � �$

M
/W� �$�@	./I� �C! `V���t/W� �c!*bF���t/W� �@� `#���E��u3v�5̀

Note that after MVE the MIs of each copy (in the unroll operation)
can be executed in parallel forming a source level “parallel set of
MIs” (indicated by the

c�c
symbol in each row).

The following example (Figure 3) presents an application of
SLMS and MVE. In this example the original loop contained a
loop variant named scal. The first MI of the loop was decomposed
by SLMS generating a second loop variant named reg. MVE was
applied separately for each loop variant, generating two registers
for each variant.

Figure 3. SLMS decomposition and original loop scalar.

2 The number of times we need to unroll the loop depends on the lifetime of
each variable in the loop as described in [7].

2.3 Scalar expansion

Another possibility to remove data dependencies caused by scalar
variables is to use scalar expansion [3] and replace the scalar
variable by a sequence of array references. For example, instead
of applying MVE on the loop of section 2.1 scalar expansion can
be applied by replacing �5u3v�` by ��u3v�� �_�N� ��� so that the SLMS will
be:
��u3v�� �_�N� b7�?	./W� bF�$
���_������	*��p�a�G�$r !*b5�V��W�t����H
/W� ���W	./W� �I! `V���E/W� �c! b7��� /I� �W� `V���t��u3v�� �_�N� ��� bF�$c�c ��u7v�� ����� �?� DF�I	./I� �?�PDF�f
M
/W� ���W	./W� �c! `#���E/W� �C! b7��� /W� �@� `V��� �5u3v�� �_��� ��� bF�$

This operation removed the anti-dependence caused by ��u3v�` and
enables the parallel execution of the two expressions indicated byc c

.

2.4 Delay Calculations

For SLMS the delay between two MIs must be defined in general
terms related to the source code rather than the hardware. The delay
of a data dependence edge (Figure 2) has been defined so, that the
sum of delays along every cycle of dependencies will be greater
or equal the number of edges in that cycle. If this condition is not
met, some dependence will be violated in the resulting kernel. Let
(B) ; LR(*)�� be two MIs connected by a dependence edge u ;�� � then
the ��u��:/�AW�f(*) ; LR(*) � � is defined as follows:

1. ��u	�9/�AW�f(B) ; L�(B)��_� 	 ` if ��	�
 (self dependence).

2. ��u	�9/�AW�f(B) ; L�(B) ;&Y:Z � 	 ` .

3. ��u	�9/�AW�f(B) ; L�(B) � � 	� if u ;�� � is a forward edge and � is the
maximal delay along any path from (*) ; to (B)�� . Note: j is
sequentially ordered after i.

4. ��u	�9/�AW�f(B) ; L�(B)��_� 	 ` if u ;�� � is a back edge.

Figure 4 depicts a data dependence graph whose edges are labeled
by pairs of �j�$`%� �+���#`�/��WS3u L���u	�9/�A�� yielding two cycles: = `n	
S������ u�� ��� S and = b,	�S������ ��� S . The MII due
to = ` is � ` � ` �W` �WF̀�����,b]� b5�]	@` while the MII due to = b
is � ` � bb� `7����b�	 b . Indeed (as depicted in figure 4), a feasible
schedule is obtained for (B)+)s	 b and not for (B)+)s	 ` which
violates the backedge from � to S .

d

e

f

g

b

c
<0,1>

<0,1>

<0,1><0,2>

<2,1>

<0,1>

<2,1>

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

d
e
f
g

b
cd

e
f
g

b
c

d
e
f
g

b
c

II=2 II=1

Figure 4. delays between MIs.

2.5 Computing the MII

In SLMS the MII accounts only for recurrence constraint (PMII
[11]). The computation of the MII is a complex task since the
MII is computed over all cycles of dependencies. The Iterative
Shortest Path algorithm presented in [2, 14] has been selected for
two reasons.

1. First, its simplicity and its ability to naturally handle the
case where each dependence edge has several pairs of �
��`pu7�_/�`%�$���G!��+���#`�/��WS3u L���u	�9/�A�� . This case is frequent in
SLMS as each MI may contain more than one array reference,

e.g., the edge connecting (*) ;�� ��� ���n	 dn� � !TV̀����A@ to
(*) � � dn� �$�@	*��� �C! bF���t��� �I!EDF� has two iteration distances
one for �,� �c!*b7�C! �x�,� ��� and one for ��� �c!lD_�c! �o��� ��� .

2. Second, it does not use the resource MII which is an advantage
for SLMS.

3. Filtering Bad-Cases
Filtering “bad cases” where SLMS reduces performance is the first
phase of the SLMS algorithm. This phase has to includes various
types of heuristics that are specific for both the final compiler and
target machine. An example of such a filter is given.

In order to “skip” bad cases, where SLMS reduces perfor-
mances we compared the ratio between the number of load/store
operations (

� _) and the arithmetic operations (���) in the loop’s
body ������

Y	�	
 . This ratio is termed as the memory-ref ratio. High
values of memory-ref implies that overlapping of iterations may
lead to too many parallel load store operations in one “row”. In that
case, SLMS might cause stalls due to memory reference pressure.
It turned out that many such “bad cases” can be eliminated if we
require that the above ratio will be less than ��w �� . For example, the
following loop has

� _ 	�� and ���k	N` and ratio ��w ���� and thus
SLMS will not be applied here.

���_�N���
	*�� ���P�� ���P����H
=��.	��E� �WL����$
�l� �@L����W	��E� �@L�
��N6̂b�
�l� �@L�
��I	B=��K
M

Remark: Although not tested on other machines, we assume that the
memory-ref ratio is machine-specific, and that this ratio depends on
the machine’s capacity to perform parallel memory operations.

4. The SLMS algorithm
The Overall structure of the SLMS algorithm is as follows.

1. A test to filter bad cases where SLMS will probably degrade
performances is applied (explained in section 3).

2. Apply software if-conversion.

3. Generate all the MIs in the loop’s body, following the order
of execution in the source code. Re-name multi defined-used
scalars.

4. Find the MII.

(a) Dependency edges are “raised” to the root of each MI (sec-
tion 2.5).

(b) Obtain the delays of the data dependencies edges (section
2.4).

(c) Compute the MII (section 2.5).

5. If there is no valid MII, then repeat the following until a valid
II is obtained or a failure occurs:

(a) Select 3 a MI and decompose it (section 2.1) based on
data dependenc analysis. If there are no MIs that can be
decomposed then a failure occurs.

(b) Re-compute delays and MII.

6. If the MII was found, then:

(a) Update registers lifetime (used for MVE 2.2), save the max-
imum lifetime.

(b) Build the prologue kernel and epilogue.

3 Selection of a MI can be done by sequential order or by data dependence
analysis.

(c) For each decomposed MI, MVE (section 2.2) or Scalar
Expansion (section 2.3) is applied to eliminate dependen-
cies caused by the decomposition. MVE or Scalar Expan-
sion may also be activated to eliminate false dependencies
caused by the use of scalars in the loop. The choice between
MVE and Scalar Expansion is given to the user as MVE
implies loop unrolling and code expansion while Scalar Ex-
pansion uses temporary arrays.

Computing MII is performed as follows.

1. initialize the difMin Matrix [2], and obtain delay and flow or
anti data dependencies between MIs. Edges connecting mem-
ory reference nodes are propagated up to the parent MI.

2. activate the Iterative Shortest Path algorithm [14] with increas-
ing values of II until a valid II is found and returned, or II is
equal to the number of MI in the loop, in this case return error.

Note, SLMS defines a valid II as one that yields a better schedule
than the sequential one, e.g.)+) �P���?-0\#uF� �5� �7u����?uF�@`%�f/ ��(B) � .

Consider the following loop for finding the maximum of an
array:

-0/�1n	./������ �_�$
����������	*����a�P����@�P���
�%�C��-Z/�1O�Q/��_�N� ���9�%-0/�1n	./������ ���f

Using source level if-conversion and MVE, the following SLMS
was obtained:

-0/�1@�]	*/��_�N� �F�f
-0/�1.T̀	*-Z/�1@��
>?��u ���]	U��-0/�1@�,�P/��_�N�
#̀�9�V
���_�N���i	>�̀p�q�P��! b+��%�B	 b5��H
�&�C� >?�5u ���5�%-0/�1@�]	./��_�N� ���$ c c
>?�5u � ` 	k��-Z/�1 `b�P/������ �@� `#�9�V
�&�C� >?�5u � `7�%-0/�1.T̀	./��_�N� �@� `#�$ c�c
>?�5u ����	k��-Z/�1?�,�P/������ �@� bF�9�V

M
�&�C� >?��u	���5�I-Z/�1?��	./��_��� ���$
�&�C��-0/�1@� �P-Z/�1 `F�I-Z/�1n	.-0/�1@��Cu	���7u"-0/�1�	.-0/�1.�̀

Note: The last line was added manually.

5. SLMS and other loop transformations
SLMS can be combined with other loop reordering and restructur-
ing transformations [3]. In source level, MS can be applied both
before or after other loop transformations. The first form of com-
bining is to apply SLMS after loop transformations to extract the
parallelism exposed by these transformations. For example, SLMS
can not be directly applied to the following inner loop due to the
dependence of /W� ��L�
]� `V�c	G`# and ` 	B/W� �pL�
]� `#�$ as depicted by
the following erroneous kernel obtained by using)+),	>` :
���_�N���i	B��p�q�P��p�W�t���
�������
,	B���
 �P��
 �Q����H
`a	./I� ���f�
��f
/I� ���f�
]� `#�W	 `V
M

`�	*/W� ���f�
��$
/W� ���f�
 � `V�W	 `# c c `q	./W� �$�f�
]� `#�$

/W� ���f�
b� bF�@	.`V
Using loop interchange [3] to replace the innermost loop from �
��
to � � � yields a legal kernel with)+)Z	 ` . Note that the dependence
on the temporary variable ` is resolved by using MVE. This allows
the parallel execution of MI separeted by

c�c
.

�������
,	B���
 �P���
 �Q����H
����������	*������P����@�P����H
` 	 /W� �pL
��$
/W� �pL�
 � `#�@	 `#
M

is transformed to

�������
,	B���
 �P��
 �Q����H
`` 	./W� ��L
��$
����������	*������P�0! b���&�B	 b5��H
/W� �pL�
 � `#�@	 `5̀ c�c ` b]	./W� �?� `�L�
��$
/W� �W� `5L�
 � `#�W	.g̀b+ c�c `T̀	*/W� �W� b�L
��$
M
/I� �pL�
 � `V�W	 `�̀
M

Performing MS at source level enables its application also be-
fore other loop transformations. Another example where loop trans-
formations allow us to apply SLMS is loop fusion [3]. Each of the
following two loops can not be SLMSed due to the dependence be-
tween the first statement of the next iterations and the last statement
of the current iteration. After loop fusion we get a single loop, now
SLMS can be applied obtaining a valid scheduling with)+) 	GD as
follows:

���������C	>�̀��q�P��p�@�P����H
`a	*��� �c! `#�$
d�� ���W	*dn� �����l`V
��� ���@	.`I�td�� ���$
M� � �Fu7SV��� ���9�_�R>
���������C	>�̀��q�P��p�@�P����H
��	B=
� �C! `V�$
d�� ���W	*dn� ����� ��
=
� ���@	 �T^ dn� ���f
M
� '

���_�N���i	 `5����Q����?�Q����H
`a	*��� �C! `#�$
dn� ���@	Bdn� ����� `V
��� ���W	 `c�td�� ���$
�K	B=
� �C! `#�$
dn� ���@	Bdn� ����� ��
=
� ���I	�� ^"d�� ���$
M

yielding

`a	*��� �I! `V�f
dn� ���@	Bdn� ����� `V
��� ���W	 `I�tdn� ���$
��	B=
� �C! `#�$ c�c `�	B�,� �$�$
dn� ���@	Bdn� ����� �� c�c d�� �W� `#�@	*d�� �@� `#��� `V
=
� ���W	�� ^Yd�� ���$ c�c ��� �W� `#�@	.`c�tdn� �?� `V�$

��	G=
� ���$
dn� �W� `#�W	*dn� �@� `#��� ��
=
� �W� `#�@	�� ^Yd�� �@� `#�$

Consider two loops, applying SLMS to each loop followed by
Fusion of the two loops will generate a different schedule than first
applying Fusion and then SLMS to the fused loop. The example
depicted in figure 5 demonstrates this case.

SLMS can also be used to enable the application of loop trans-
formations. For example, the following two loops (Figure 6) can
not be joined by loop fusion. Usually, this example is solved using
a complex combination of loop peeling + loop reversal, however
one application of SLMS (as depicted in figure 6) will allow loop
fusion.

Loop unrolling is used to resolve cases where the II is to high
(close to the number of MI). Also, in some cases, unrolling the
kernel of an SLMSed loop can improve resource utilization. In
conclusion, clearly there are cases where the combination of loop
transformations and SLMS is useful.

6. Working with the source level compiler
In this section we shortly demonstrate how the user can use the
source level compiler (SLC) to on-line improve its source code
such that SLMS can be applied. First it is important to understand
the difference between optimizing in source level mode and in ma-
chine level mode. In machine level the optimization can use exact

Figure 5. The order of transformations changes the final schedul-
ing.

Figure 6. SLMS allows loop fusion.

knowledge of the CPU resources and obtained optimized schedul-
ing. The opposite is true for source level optimization which is actu-
ally performed ignoring hardware resource constraints, optimizing
for maximal parallelism at source level. This “disadvantage” can
work to the benefit of a SLC. In particular, it can happen that due to
hardware resource constraints the underlying MS will not optimize
a given loop while after SLMS an optimized scheduling will be ob-
tain. Typically, even an elementary list scheduling of basic blocks
applied after SLMS can in some cases find better scheduling than
the more constrained machine level MS.

As an example consider the loop /W� ��� 	�/W� �q! bF�@�B/W� ��� b7�f
of figure 7 where the code generation used rotating registers [6] to
create the loop’s code. The underlying MS parallelizes the loop
((B)+) 	 ']u7S#)+) 	 `) due to the dependence cycle between
the ”load” and the ”add”. Note, that the ”add” was assigned a
delay of 2 cycles. The Data Dependecy (DD) edges between the
”load” and the ”add” and not between the ”load” and the ”store”
are due to the use of rotating registers. In addition, redundant
”load” optimization was applied (no need to ”load” /W� ��!XbF�).
Next, SLMS was applied before code generation obtaining the loop
/I� ���i	U/W� �i! b7�N�Q�5u3v@ ��u3v�	k/I� �I� DF�$. Due to simplicity MVE
was not applied. After SLMS, the DD graph for the SLMSed loop
(we present only ”flow” DD arcs) changes. The MII calculated by
the underlying MS remains ` . But since the DD graph changed,
the underlying scheduler can generate a different schedule for that
loop. Since the scheduler has now more options,the new schedule
can be better than the original one. However, note that any form of
parallelization obtained by a machine level MS is clearly obtainable
using SLMS, as SLMS is less restricted than machine level MS
(limited from resource constraints).

Figure 7. SLMS changes the DD graph thus enabling other
scheduling options.

Apart from this ability of SLMS to find optimized scheduling by
first ignoring resource constraints, there are some technical factors
working in favor of SLMS. It is common that compilers restrict MS
to small loops such as loops with less than ��� instructions. SLMS
is significantly faster than machine level MS, as it does not have
to schedule under detailed resource constraints. In addition SLMS
works in source level thus can naturally determine the exact depen-
dencies between each two array references. Though a compiler can
also obtain these dependencies in the front-end/AST level it may
fail to transfer them to the machine level representation (RTL) of
the back-end. Thus, MS operations such as replacing ��� bK^ ��� by
��� ba^Y����� `7�&� are more complicated to implement in RTL/machine
level than in source level.

7. Experimental results
SLMS was implemented in Wolfe’s Tiny system [13] enhanced by
the Omega test [10]. Tiny, was chosen, due to its support in source-
to-source transformations and its support of array analysis. Tiny
is a loop restructuring and research tool which interacts with the
user. Tiny’s GUI allows the user to select which transformation to
apply, it includes among others, Distribution, Interchange, Fusion,
Unroll and SLMS. The following benchmarks were used to test
SLMS: The NAS [4] benchmark, Livermore [8] loops, Linpack [5]
loops, and the STONE benchmark. The benchmarks were compiled
and tested using several commercial compilers and machines: In-
tel’s ICC-ia64(V 9.1) and GCC-ia64 over Itanium II (IA64), IBM’s
XLC over Power 4 Regata, and GCC over ARM simulator. We
have also tested SLMS with GCC over superscalar processor Pen-
tium(R). The Experimental results are divided into three subsec-
tions: the first describes the results with GCC and the second de-
scribes the results obtained using ICC and XLC, and the third de-
scribes results for embedded systems. The GCC has a weak Swing
MS and thus modeling the use of a general source level compiler
optimizing the program (with SLMS) before it is compiled by the
relatively weak compiler. ICC and XLC are high performance com-
pilers with advanced machine level MS, their results support the
claim that SLMS is a separate optimization that can be used before
low level MS is applied. Remarks: (1) in all the following graphs,
the Y axes represents the speedup obtained by SLMSed loop vs.
non SLMSed loops. In all tests both SLMSed and non SLMSed
loops are compiled with the same compilation flags. (2) SLMS was
tested with and without source level MVE, the presented results
show the best time obtained. (3) In ia-64 architecture, improve-

ment can be measured by counting the number of bundles in the
loop body, a bundle can be viewed as a VLS regarding for explicit
intruction level parallelism.

7.1 Experimental results over a relatively weak compiler

As explained in the introduction, SLMS is considered as part of a
potential SLC. Thus, showing that SLMS improves execution times
over GCC supports the claim that a SLC can be used to improve ex-
ecution times over relatively weak final compilers. The following
graphs 8, 9 and 10, present speedups obtained using GCC (IA64)
over ItaniumII with and without ! ��D . Analyzing GCC’s assem-
bly for ! ��D revealed that scheduling optimizations such as MVE
and Unrolling where not performed. In some successful cases such
as ddot2 the application of those transformations in source level
compensated for the lack of them in the final compiler. Another
successful loop is kernel 8, this loop has a big loop body without
loop-carried dependence edges and contains only array references.
For this kind of loop, SLMS doesn’t need to decompose and in
this case (*)+) 	 ` . The application of SLMS released the intra-
iteration sequential dependence between MI and revealed the perel-
lelism between them, thus enabling the generation of less bundles.
Indeed beffore SLMS GCC’s assembly contained 23 bundles and
after SLMS 16 bundles.

Regarding bad cases, most of them are within the Linpack loops.
Most of those loops contain one long MI and use intensive float-
ing point calculations. The negative results can be explained by the
level of parallelism of floating point operations in the Itanium pro-
cessor. To prove this, we replaced all the floating point variables
with integer ones and re-run the test. The results where reversed
in favour of SLMS. Another prove is by the fact that those same
loops have better speedups on Pentium(R) and Power4-Regata. Fil-
tering bad cases is an important issue in SLMS. Bad cases can
be identified in source level by general high level characteristics,
experimental results prove that they are specific for the pair com-
piler/hardware.

Figure 8. Livermore & Linpack over GCC

Figure 9. Stone over GCC

Figure 10. NAS over GCC

Another interesting experiment is to see how SLMS as a SLC
can be used to close the gap between using and not using -O3
for example in the ICC compiler. If SLMS can cover a significant
part of this gap, it can cover up cases where the underlying final
compiler fails to optimize for new architectures. Thus increasing
the retargibility of the underlying final compiler. In order to see
this, we have compared how SLMS without -O3 can bridge the gap
between using -O3 and the relative weak compiler obtained when
-O3 is not used. Figure 11 depicts the results over ICC+Itanium,
showing that using SLMS without -O3 as a SLC can “close” the
gap between a good highly optimizing compiler and a relative weak
compiler.

Figure 11. SLMS can be used to close the gap between using and
not using -O3.

We also tested SLMS on a superscalar processor (Pentium(R)
) where all the parallelism is obtained by the HW pipeline. Figure
12 depicts the results, the loops where compiled using GCC with
and without ! ��D . The results show that SLMS was successful in
exposing the parallelism in most of the loops. One example for
which SLMS had a negative impact is kernel 10. Kernel 10 contains
several loop-variants and a big loop body causing SLMS’s MVE to
use 35 register, apparently causing spilling since Pentium(R) has
much less registers.

7.2 Experimental results over highly optimizing compilers

The following graphs 13, 14 15, 16 and 17, present speedups
obtained using ICC (IA64) over Itanium II and XLC over Power
4 Regata. Showing that SLMS improves performance over highly
optimizing compilers and powerful machines, proving that SLMS
should co-exist with low level MS. Another indication to the fact
that SLMS can co-exist with low level MS is that out of 31 loops
that were tested, ICC performed MS both before and after SLMS
for 26 of those loops. For three loops (kernels 2,7 and 24), ICC
did not apply MS but SLMS did resulting in positive speedups. For
two loops (idamax2 and kernel 8), ICC performed MS only before
SLMS. SLMS prevented MS of those loops, kernel 8 achieved
speedup of almost 15 percent while idamax2 had a negative of the
same amount. Showing that SLMS should be selectively applied.

Figure 12. SLMS can improve performance over superscalar pro-
cessor.

Figure 13. Livermore & Linpack over ICC

Figure 14. Stone over ICC

Figure 15. NAS over ICC

In the following example we analyze a loop that has an intensive
floating point computation.

� �:��/+` �I� �@�$
���_����� 	 `5 ���P�� ���P���
H
�E� �+�I	��E� �
! `#�N^ �E� �
! `#�N^ �E� �
! `#��^ �l� �,! `V�N^ �E� �
! `V�9�

�E� �K� `#�N^ �E� �K� `#��^ �l� �K� `#��^ �E� �K� `V�N^ �E� �K� `#�$
M

Figure 16. Livermore & Linpack over XLC

Figure 17. NAS over XLC

7.3 Experimental results for embedded systems

In order to test the effectiveness of SLMS for embedded systems,
one should test the power consumption gain/loss involved with
SLMS. Moreover, the comparison should be made over a classic
embedded core such as the ARM or over a VLIW machine. 4 The
effectiveness of SLMS for VLIW machines has been demonstrated
by the experiments over the IA-64. The Panalyzer system [1] with
the simple-scalar tool chain for ARM is used to measure the effect
of SLMS on the power dissipation of the ARM 7TDMI processor.
Figure 18 depict the improvements obtained in the overall power
dissipation including caches and memories. The results show that
SLMS can indeed improve the power dissipation, but not in all
cases, hence SLMS must be applied selectively. There is a clear
correlation between the bad cases of the power consumption and
the cycle count. in addition the results over the ARM are worse than
those obtained over other architectures. The main reason is that the
ARM does not use Instruction Level Parallelism using basically
one ALU operation per cycle. Consequently, the parallelism that
SLMS created could only be used for hiding memory latencies and
pipeline stalls (compare to the IA64 where it was used to fill empty
slots). Thus, the results of figure 18 should be regarded as a success,
provided that SLMS will be used selectively.

8. Conclusions
In this work a method for source level modulo scheduling (SLMS)
has been developed and implemented in the Tiny parallelizer. In
spite of its relative simplicity it obtained good speedups over the
GCC (with and without the Swing MS), ICC and XLC as-well
improvements of power-dissipation on ARM. Experimental results
show that SLMS can have a different effect depending on the com-
piler and architecture hence SLMS must be applied selectively. To
the best of our knowledge this is the first time SLMS has been
demonstrated and implemented. We have used a simple version of

4 SLMS has a very minor effect on the code size, and thus this aspect of
embedded systems has not been considered.

Figure 18. Power dissipation for the ARM

if-conversions for loops with if-statements. However, a more ag-
gressive type of solution is possible (not included here) allowing
the SLMS to use the full power of source level transformations.
Also, partial solutions to while-loops are also possible using the
simplicity of source level mode of work. Register pressure (a criti-
cal issue with machine level MS) basically did not occurred in our
experiments (except for kernel 10), in spite of the extensive paral-
lelism obtained by the SLMS. This also may be attributed to the
fact that register allocation and code generation are executed after
SLMS. The relation between SLMS and known loop transforma-
tions has been considered and demonstrated. SLMS is useful for
two tasks: an addition to the arsenal of loop transformations for
a source level compiler and as a preliminary optimization differs
from machine MS. We have proved, via examples and experiments
that SLMS can lead to different scheduling results than machine
level MS. Thus, SLMS can be also used as a regular optimization.

References
[1] Sim-panalyzer: http://www.eecs.umich.edu/panalyzer/.

[2] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software
pipelining. ACM Computing Surveys, 27(3):367–432, 1995.

[3] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations
for high-performance computing. ACM Computing Surveys,
26(4):345–420, 1994.

[4] David Bailey. Nas kernel benchmark program: http://www.netlib.org/benchmark/nas.

[5] J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark:
Past, present, and future: http://www.netlib.org/utk/jackdongarra.

[6] Sverre Jarp. Optimizing IA-64 performance. Journal of Software
tools, 26(7):21–22, 24, 26, July 2001.

[7] M. Lam. Software pipelining : an effective scheduling technique for
vliw machines. In PLDI, pages 318–328, 1988.

[8] F. H. McMahon. Lawrence livermore national laboratory fortrn
kernel:mflops.

[9] V. R. North. Ia-64 code generation: http://citeseer.ist.psu.edu/385244.html.

[10] W. Pugh. The omega test: a fast and practical integer programming
algorithm for dependence analysis. In Supercomputing, pages 4–13,
1991.

[11] B. R. Rau and C. D. Glaese. Some scheduling techniques and
an easily schedulable horizontal architecture for high performance
scientific computing. In Proceeding of the 14th Annual Workshop on
Microprogramming, pages 183–198, October 1981.

[12] B. Ramakrishna Rau. Iterative modulo scheduling: An algorithm for
software pipelining loops. In MICRO, pages 63–74, 1994.

[13] M. Wolfe. The tiny loop restructuring research tool. In Proceedings
of the International Conference on Parallel Processing, 1991.

[14] A. M. Zaky. Efficient Static Scheduling of Loops on Synchronous
Multiprocessors. PhD thesis, Ohio State University, OH, 1989.

