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Abstract 
In a practical computational grid system, task 

scheduling in local resource management normally is 
affected by the arrival rate of tasks and the sizes of 
tasks, that is, the scheduler must deal with the dynamic 
task flow. On the long-term viewpoint it is necessary 
and possible to improve the performance of the 
scheduler serving the dynamic task flow.  In this 
paper we developed a scheduling strategy which 
adapts to the dynamic task flow and a genetic 
algorithm which balances the loads of the nodes 
furthest. We simulated task flows with several arrival 
rates and average sizes of tasks, the scheduler with our 
strategy and algorithm, and the schedulers with other 
strategies and algorithms. The simulation results show 
that our scheduler can adapt to the change of arrival 
rates better than other schedulers. 

1. Introduction 

The computational grid is a hardware and software 
infrastructure that provides dependable, consistent, 
pervasive, and inexpensive access to high-end 
computational capabilities [1]. The key to achieving 
this purpose is highly efficient resource management. 
The main job of resource management is to allocate 
tasks received from upper level to resources within its 
precinct. Normally this is a problem of task scheduling.  
 Task scheduling for the computational grid is 
continuous and dynamic. However, most task 
scheduling strategies and algorithms are affected by the 
tidal task flow. It is really necessary and possible to 
perform a long-term optimization on schedulers. We 
propose a methodology for task scheduling which can 
achieve the highest possible throughput and utilization 

in view of the arrival rate of tasks and task sizes.  
 The organization of this paper is as follows. In 
Section 2 the abstract model of task scheduling in 
computational grid and the problem of scheduling task 
flow are introduced. The scheduling strategy is 
described in Section 3. In Section 4 a genetic algorithm 
is presented. We made a simulation and performed 
some experiments, which are documented in Section 5 
along with the results. Section 6 reviews some related 
work. Section 7 concludes this article. 

2. Model and problem 

In a computational grid, resources are shared by 
many users, who submit their applications concurrently. 
Since tasks come from many unrelated users, it is 
feasible to assume tasks to be independent. The 
resource management usually receives tasks with 
different computation sizes at variant arrival rates. One 
of the objectives of resource management is to allocate 
the tasks to the set of computational nodes. We present 
an abstract model of this kind of task scheduling in 
Figure. 1. 

 
Figure 1.  Model of task scheduling in the 

resource management of computational grid. 
The black lines on the left denote tasks. The 

intervals between the lines indicate the 
intervals of task arrival. The length of each line 

denotes the task size. 

When the arrival rate of tasks is high enough, the 



scheduler can always collect enough tasks and the 
computational nodes are always busy. The throughput 
and the utilization reach the maximum, which are 
decided by the total processing ability of the system. 
We defined this phase of system status as saturation. 
Most researches on task scheduling focused on the 
saturation phase to optimize scheduling algorithms to 
shorten the maxspan. The maxspan is basically the 
largest task completion time among all the nodes in the 
system [2]. 

When the arrival rate of tasks is low, the 
scheduler might be idle and the computational nodes 
could be left unused. The throughput and the utilization 
are affected mainly by the arrival rate of tasks and the 
task sizes. We defined this phase of system status as 
starvation. The optimization on task scheduling can be 
of little help in the deep starvation phase. 

For any definite system, when the supply of 
computation, i.e. the total processing capacity, can just 
satisfy the requirement of computation from users, the 
system status is on the boundary between the saturation 
phase and the starvation phase. We called this 
boundary as balance line. Around the balance line 
there is a region where the coming low arrival rate and 
the coming small average task size do not move the 
system status into the starvation phase at once or vice 
versa. This is due to the historical light load or heavy 
load on the nodes. The system status in this region is 
easy to slide into the deep saturation phase or the deep 
starvation phase. We named this region as slide region. 
Figure 2 illustrates the relationship of the arrival rate, 
task size, and the system status. 

 
Figure 2. Two phases of system status. The 

darker the color is, the busier system is. The 
slide region is marked with two dot lines. 

A scheduler normally consists of the scheduling 
algorithm and the scheduling strategy. The scheduling 
algorithm tries to map one task or a batch of tasks onto 
the computational nodes, where the workloads are 
balanced as possible. In theory the more balanced the 
workloads are, the shorter the maxspan is and the more 

efficient the system is. There are two main classes of 
scheduling algorithm: the immediate mode scheduling 
and the batch mode scheduling. It is commonly 
believed that the batch mode can lead to a shorter 
maxspan than the immediate mode under the 
precondition that the scheduler can collect enough 
tasks, but there is no guarantee for collecting enough 
tasks for the scheduler serving a dynamic task flow. On 
the other side the immediate mode can approach the 
same result of the batch mode or better when the 
number of tasks is quite small [3].  The scheduling 
strategy is used to control the scheduling algorithm to 
create schedules. The scheduling strategy with simple 
timer or counter can not adapt the scheduler to the 
dynamic task flow. We are going to present a task 
scheduling method which can perform well and adapt 
to the variety of task flows. 

3. Scheduling strategy 

Generally the task flow scheduler fulfills a 
scheduling process after every time interval, called the 
scheduling cycle. In every scheduling cycle one or a 
batch of tasks are allocated to computational nodes. We 
named our scheduling strategy as dynamic scheduling 
cycle. Some notations to appear in this paper are listed 
in Table 1. 

Table 1: Notation list 
Notation Definition 

N Task set; tasks in the task queue 
M Set of Computational node  
|·| Cardinality of set 
Li Total size of tasks at node i 
λ Average arrival rate of tasks 
λΗ A high arrival rate of tasks 
λL A low arrival rate of tasks 
Ci Processing capacity of node i 
si Computation size of task i 
SE Average size of tasks 
cij The communication cost of task i to be 

send to node j 
ri The remaining execution time of the task 

currently being processed by the ith node 
tl The shortest execution time of the tasks 

ready to be processed by nodes, 
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ts time needed to create a task schedule 

In our strategy a new scheduling cycle starts only 
if there are almost no tasks ready to be executed on the 
computational nodes, so that the length of the 
scheduling cycle is changed dynamically as the system 
status moves between the saturation phase and the 



starvation phase. Because the arrival rate has a direct 
impact on the number of tasks in task queue, and the 
shortest execution time of the tasks on all the nodes tl 
can imply the system status, |N| and tl are used as the 
main parameters in the dynamic scheduling cycle 
strategy. 

If there are enough tasks in task queue at the 
beginning of scheduling cycle, we chose the batch 
mode task scheduling algorithm in order to obtain high 
throughput and utilization. Considering higher and 
higher bandwidth, the execution time of a grid task is 
generally longer than the transmission time over 
networks. Moreover, in the saturation phase the task 
execution happens in parallel with the transmission of 
other subsequent tasks. Therefore we ignore the 
communication cost in batch mode scheduling. We 
developed a genetic algorithm, which is presented in 
Section 4.  After the task scheduling the system status 
has been in the deep saturation phase or will come into. 

If there are a few tasks in task queue at the 
beginning of scheduling cycle, the scheduler 
immediately sends one task to the computational node 
where the task can be finished earliest. In this way the 
scheduler allocates a few of tasks to computational 
nodes as soon as possible and waits for next high tide 
of task flow. In this moment we take the 
communication cost into account in order to finish 
tasks in the shortest time. After the task scheduling the 
system status has been in the deep starvation phase or 
will come into.  

 
Figure 3. Scheduling Strategy. 

The strategy is shown in Figure 3. In our strategy 
when a node finishes all tasks and is ready to receive 
new tasks, we call this node as the ready node and the 
corresponding time as the ready time. The time ts that 
the scheduler takes to create a schedule should be 
decided in the real environment.  

4. Genetic algorithm 

A GA [4, 5] is a biologically inspired search 
method, which partially searches for a large solution 
space, known as population, and uses historical 
information to exploit the best solution from previous 
searches, known as generations, along with random 
mutations to explore new regions of the solution space. 
A GA basically repeats three steps: selection, crossover, 
and mutation. The process combined with initiation 
and evaluation is shown in Figure 4. According to the 
nature of computational grid and our scheduling 
strategy, we developed a genetic algorithm for our task 
scheduling.  

  
Figure 4. Procedure of a basic GA. 

The encoding represents a chromosome of 
individual, which is a schedule. A number in the 
chromosome is a gene, which represents the 
corresponding task to be allocated in the node denoted 
by this number. The length of chromosome n is equal 
to |N|, and the largest number of genes m is equal to 
|M|.  We use ch to denote a chromosome. A 
chromosome is illustrated in Figure 5. 

 
Figure 5. Representation of chromosome. 

The fitness function creates a fitness value for 
each individual, which indicates the quality of the 
scheduling. For a task scheduling problem, the ideal 
result is the absolute balanced workloads. Any 
scheduling result can only be close to the ideal result 
but never to reach it. We use relative error as the fitness 

//Procedure of Genetic Algorithm 
1. Initiate population; 
2. Evaluation 
3. While(stop criteria not met){ 
4.  Selection operation; 
5.  Crossover operation; 
6.  Mutation operation; 
7.  Evaluation; 

} 
8. Output the best solution //Scheduling strategy; 

1.while(1){ 
2. update tl , ts; 
3. if(tl  > ts){ 
4.  wait 1 second; 
5. }elseif(|N|>2|M|){//enough tasks; 
6.    GA_Scheduling(); 
7. }elseif(|N| = = 0){//empty task queue; 
8.  wait 1 second; 
9. }else{//a few tasks; 
10.  for (i=1; i < |M|; i++){ 
11.  find the node j with  
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12.  map task i to node j; 
} 

} 
} 



value. The smaller fitness value implies the more 
balanced workloads. The ideal scheduling result is  
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The initiation of population has a straightforward 
effect on the convergence time of the GA and the 
quality of the result. Our initiation was designed to 
guide GA to search more effective solution space by 
avoiding impossible allocation of task. The details of 
initiation are shown in Figure 6. 

 
Figure 6. Initiation Operation. 

We use a tournament selection in our GA. Firstly a 
subset of individuals are selected from the population. 

Secondly the individual with the smallest fitness value 
is selected as one parent. Two tournaments are 
performed and two individuals are chosen as the 
parents. After the selection operation we use a 
two-point crossover operation [6] to reproduce the 
child individual. 

Usually a mutation operation exchanges two 
randomly selected genes. But here the random 
selection has a pitfall: if the values of the two selected 
genes are identical, then the mutation operation is in 
vain. We describe this problem with a numeric matrix 
shown in Figure 7. Hence we compel the mutation 
operation to select two genes with different values. 

 
Figure 7. Matrix of task allocation. “1” 

indicates that the task is allocated on the 
corresponding node. Only the “1” in different 

rows allow to be exchanged. 

It is possible to decrease the fitness value when a 
task is moved from the node with the longest ready 
time to another node. We developed a refinery 
algorithm to refine the individual produced by the 
mutation operation. The execution time of the refinery 
algorithm is less than O(mn). 

 
Figure 8. Refinery Algorithm. 

Refinery()// The refinery algorithm 
Input: an individual with chromosome ch; 
Output: refined individual with chromosome ch’; 
{ 
1. find node j with 
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2. for(all i with ch[i] = j ){ 
3.  for( all k with ch[k] != j){ 
4.   copy ch to ch’; 
5.   exchange ch’[i] with ch’[k];  
6.   if(ch’.fit < ch.fit) return ch’; 

} 
} 

} 

Initiation() //Initiation Algortihm; 
Input: task set N, population set P; //  
Output: chromosome ch1, ch2, ch3, … chp    
{ 
1. for (i=1; i<= |P|; i++){ 
2.  Initiate_chromosome (N, chi); 

} 
} 
Initiate_chromosome ()//Sub-function; 
Input: task set Ω; 
Output: chromosome ch; 
{ 
3. while(Ω is not empty){ 
4.  select a subset ω from Ω randomly; 
5.  find the taski in ω with 
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6.  ch[i] = k; 
7.  remove taski from Ω; 

} 
} 



After the refinery algorithm, the solution with the 
largest fitness value is replaced. Note that the child 
solution, whose structure is identical to any of the 
solution structures in the population, is not allowed to 
enter the population. This constraint is helpful for 
avoiding a homogeneous population. 

The GA will evolve the population until the stop 
criterion is met. Our stop criterion is to define a 
boundary generation number. After that number of 
generations, for example 1000, if the best fitness value 
of every generation is invariable or oscillates in a small 
range, the GA stops and outputs the best solution. 

5. Simulation 

A simulation was built for testing and evaluation. 
We implemented the scheduling strategies and 
algorithms in this simulation. We compared our 
strategy and algorithm with some well known 
scheduling algorithms which were Max-min, Min-min, 
Sufferage, and the genetic algorithm described in [8], 
and the most familiar scheduling strategy - the regular 
time interval. Each algorithm was assembled with a 
strategy to form a scheduler. All schedulers are listed in 
Table 2. We denote the scheduler with our scheduling 
strategy and algorithm as PTFS (Practical Task Flow 
Scheduling). 

Table 2. Scheduler List. 
Scheduler Strategy Algorithm 
PTFS Dynamic scheduling cycle Our GA 
GA_1 Regular time interval Our GA 
GA_2 Regular time interval GA[8] 
Max-min Regular time interval MaxMin 
Min-min Regular time interval MinMin 
Sufferage Regular time interval Safferage 

 The task sizes in a task flow were randomly 
generated and two task flows，each of which has 4000 
tasks, were simulated. Ten computational nodes with 
different processing abilities were also simulated. The 
scheduler and all computational nodes are connected 
by a network. We scaled the processing abilities of 
computational nodes and task sizes simply in integers. 
The SE of one task flow was 5000 and the other one is 
50000. In all experiments the population size is 80. The 
regular time interval is 20s. For any NPC problem, GA 
requires no more than exponential time to produce the 
result, if the MCL (Minimum Chromosome Length) 
growth rate is no more than linear [9]. The execution 
time ts of creating a schedule by PTFS is estimated by 
the following conservative estimate equation. The error 
of this estimation equation is less than 10% in the 
worst case. 

40)
1580
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 When the arrival rate of tasks is high enough and 
swings within a sensitive scope λΗ∼λL, the maxspan of 
the task flow with SE = 50000 is shown in Figure 9. 
Here the high arrival rate can keep system status 
always in the moderate saturation phase, and the 
variant arrival rate can keep system status moving 
between the deep saturation phase and around the 
balance line.  

In fact most modern scheduling algorithms can be 
quite close to the ideal result tideal. The extent of the 
real result being close to tideal depends on the real 
problem such as the task heterogeneity and the 
processing capacity heterogeneity. Roughly the 
optimization on algorithm is limited. Our task 
scheduling methodology is not merely to develop an 
optimized genetic algorithm; furthermore the dynamic 
scheduling cycle strategy can make a good contribution 
to the scheduler as a whole. Therefore the advantage of 
our scheduler at the variant arrival rate is more obvious 
than at high arrival rate. 

 
Figure 9: Maxspan (SE = 50000). 

Under the same λΗ and λL, the maxspan of the 
task flow with SE = 5000 is shown in Figure 10. 

 
Figure 10: Maxspan (SE = 5000). 

The system status is not only related to the arrival 
rate of tasks but also the task size. Under the same 



λΗ and λL the system status for SE = 5000 is in the deep 
saturation phase and moving between the deep 
saturation phase and the starvation phase. If the system 
status is always in the starvation phase, the differences 
of maxspan between our scheduler and the others are 
small, and the maxspan in the starvation phase is 
mainly decided by the time that all tasks arrive at the 
scheduler. So we did not plot the maxspan under a 
quite low arrival rate.  

In the saturation phase the well balanced 
workload implies the high resource utilization. In the 
starvation phase the response time of scheduler can 
affect the resource utilization, despite the utilization is 
low in the starvation phase. The regular time interval 
strategy can not achieve the higher utilization at the 
high arrival rate and the faster response time at low 
arrival rate than our scheduling strategy.  

We define the utilization of a node simply as 

Maxspani
 i node of  timeidle the1 ∑−=µ , 

and the average utilization as 

M
i

average
 ∑=

µµ . 

Our definition of average utilization is similar with the 
definition in [2], but our definition is more suitable for 
low arrival rate and variant arrival rate because we do 
not simply calculate the task completion time.  
 The following experiments illustrate the maxspan 
and the resource utilization differences between the 
results of PTFS and the best results of other schedulers. 
In these experiments the arrival rate swings around the 
corresponding average arrival rate with the amplitude 
not more than the neighboring average arrival rate. The 
results are shown in Figure 11 and 12. In order to plot 
all the data together, the maxspans are normalized and 
the average arrival rates of tasks are on the logarithmic 
scale. 

The differences between PTFS and other 
schedulers are going to become smaller as the arrival 
rate of tasks becomes very small or very large. The 
largest differences appear in the moderate saturation 
phase and around the balance line. When the arrival 
rate of tasks reaches a high enough value, the 
differences between PTFS and the other schedulers 
will not change, and meanwhile the system status is in 
the utmost of the saturation phase, which is the 
maximum processing ability of this system. When the 
arrival rate is going to be quit low, the differences 
between PTFS and the other schedulers are going to 
gradually disappear, and meanwhile the maxspan and 

utilization are decided by the arrival of tasks. 

 
Figure 11: Utilizations and normalized 
maxspan at different λ (SE = 50000). 

 
Figure 12: Utilizations and normalized 

maxspan at different λ (SE = 5000). 

6. Related work 

Usually there is a scheduling system in a grid 
environment including meta-scheduler or global 
scheduler, global task queue, local scheduler, local task 
queue and so on [10, 11, 12]. Our scheduling strategy 
and algorithm focus on the resource level in a 
computational grid. The model presented in this paper 
aims at the local scheduling problem. The scheduling 
problem in grid computing environment needs the 
practical and realistic solutions rather than the theoretic 
ones. Thus it is an inevitable trend to induct the arrival 
of tasks and the system status into the research on task 
scheduling [11, 12].  

The independent task mapping techniques have 
been well summarized and compared in [3, 7, 8]. It is 
shown that a genetic algorithm is an effective method 
for task scheduling. GA was successfully used for task 
scheduling in [2, 13, 14, 15, 16]. There are two main 
class task scheduling: the immediate mode scheduling 
and the batch mode scheduling. The immediate mode 
scheduling uses the FCFS strategy to deal with the task 
one bye one. For the batch mode scheduling the two 
basic elements which should be considered by 



scheduling strategy are the time and the count of tasks. 
The regular interval time strategy and fixed count 
strategy are the simplest ones [3]. In order to improve 
the resource utilization, a dynamic batch size strategy 
was used to adjust the batch size to avoid long 
scheduling time and idle resources [13]. A technique 
similar with the dynamic batch size strategy, called 
slide window, was used to update the number of tasks 
in creating the next schedule [2]. No matter whether 
the fixed count or the dynamic batch size, it is difficult 
to adapt to the dynamic task flow when the arrival rate 
of tasks increases or decreases, even if the dynamic 
batch size strategy can change the batch size according 
to the resource load and the execution time of 
scheduler. 

7. Conclusion and future work 

In this paper after defining the system status in 
terms of utilization, throughput, arrival rate of tasks 
and task sizes, we present a scheduling strategy to 
adapt to the dynamic task flow, and a genetic algorithm 
which is used in the scheduling strategy. According to 
the result of simulation our methodology works well, 
especially in the situations where the arrival rate of 
tasks swings within a scope and the mean of task sizes 
is large. In each scheduling cycle our methodology can 
achieve more or less advantage over the other 
schedulers, but the long-term advantage is obvious. We 
believe our methodology is a good solution for 
practical resource management in a computational grid. 
 In this paper the estimate equation for GA is a 
conservative method to calculate the execution time of 
our genetic algorithm. Therefore it is possible to 
develop a more accurate method. An alterable 
population size of GA is more suitable for the variant 
number of tasks. Thus the genetic algorithm can be 
improved further to shorten the convergence time. In 
our strategy it is possible to take the place of the 
genetic algorithm with another batch mode scheduling 
algorithm, only if the latter one can achieve better 
result and is easier to estimate the accurate execution 
time.  
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