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Abstract

In this paper, we present a runtime method for schedul-
ing parallel applications on dynamic and heterogeneous
platforms. It can be used to schedule parallel applications
whose total workload is unknown a priori. It can also han-
dle the heterogeneous and dynamic conditions of execution
that are typical of grids. The method delivers the workload
through multiple rounds in order to improve communica-
tion/computation overlap on an existing on-line algorithm.

1 Introduction

Scientific computing is no longer limited to supercom-
puters, multiprocessors or clusters of computers. Grids [13]
are on the way, and potentially provide very interesting plat-
forms to execute parallel applications. Although scheduling
parallel applications on the nodes of a parallel machine has
been widely studied, the use of grids requires an adaptation
of scheduling techniques. Indeed, the characteristics of the
resources in a grid (available computing power or network
bandwidth) may change unpredictably, as these resources
are not dedicated to one application.

Therefore scheduling methods have to be reconsidered
before grids can be commonly used to run parallel applica-
tions efficiently [15]. Moreover, scheduling algorithms gen-
erally assume all necessary information about the applica-
tion is available, which is not always the case: for instance,
the total workload or the execution cost of the different tasks
may be unknown a priori.

A runtime method for scheduling parallel applications on
dynamic and heterogeneous platforms is presented in this
paper. It that can be used in the dynamic context of grids or
when some of the information traditionally used by schedul-
ing algorithms is lacking. It is based on an on-line algo-
rithm from Drozdowski [12]. Actually, we do not consider

grid scheduling in all its acceptions as it encompasses re-
source discovery, reservation management and many other
aspects [22]. We assume that a set of resources has been
identified and tackle the problem of distributing optimally
the tasks of a parallel application on this set of resources, so
that the application terminates as soon as possible.

We consider applications that process a finite –but a pri-
ori unknown– amount of data independently. The work-
load of the application is supposed arbitrarily divisible in
chunks, where each chunk consists of some amount of data.
The same computation is performed on each data chunk,
producing its own result without any communication. This
scheme corresponds to a lot of applications exhibiting data
parallelism, from many different domains [1, 11].

Typically, such an application could result from the par-
allelization of the slowest stage of a software pipeline in
order to get rid of the corresponding bottleneck. Such appli-
cations are suitable for the supervisor-worker programming
model, with the supervisor distributing workload chunks to
the workers, then collecting the corresponding results from
them. Clearly, such a parallelization should only be con-
sidered when the processing cost for a chunk by a worker
dominates the corresponding communication costs between
supervisor and worker in a certain sense. We will be clar-
ified this point later on, when appropriate notations have
been introduced (see inequality (2) in section 3).

It has to be noted that although we consider so called
divisible load, the DLT (Divisible Load Theory [8, 21, 20,
24]) cannot be straightforwardly applied, due to the fact that
we suppose that the total workload of the application is not
known a priori. For this reason, we have to use on-line al-
gorithms to tackle our scheduling problem.

As for the execution platform, we consider a single-level
tree network, with the root node executing the supervisor
process and the leaf nodes executing the worker processes.
We adopt a one-port communication model [2] without con-
tention, which means that for a fixed node neither two emis-
sions nor two receptions can overlap each other, whereas



one emission can overlap one reception, and computation
can overlap communication. We assume that communica-
tion costs are affine in the size of chunks.

This paper is organized as follows. Section 2 defines
precisely the scheduling problem we consider. Section 3 de-
scribes Drozdowski’s scheduling algorithm and introduces
some notations. Section 4 presents our runtime method. It
first gives an overview of the approach then successively
states the conditions for the method to succeed, details its
various computations and finally compares it with Droz-
dowski’s method. Section 5 presents related work. Section
6 concludes the paper and outlines future work.

2 The scheduling problem

We consider a supervisor-worker model for which the
data to be processed are continuously received by the su-
pervisor in an input buffer until the final item is obtained. It
is only when this last item is acquired by the supervisor that
the total workload of the application happens to be known.
We want to minimize the makespan of the application on a
set of heterogeneous (and dynamic) resources. As this prob-
lem is known to be NP-complete [14] due to affine cost, it
can only be dealt with by means of heuristics.

Execution parameters of the target platform, such as
available computing power or network bandwidth, vary
both in space (heterogeneity) and in time (dynamicity). We
assume that we know all past values of these parameters and
are unaware of the future ones.

Considering the choice of the one-port communication
model, the workers cannot start their work simultaneously:
the supervisor has to finish the emission of some chunk to
one worker before being able to begin to send a chunk to an-
other one. Thereafter we assume that we know the optimal
order the supervisor should apply for the first round when
sending their respective first chunk to the workers in order
to minimize the makespan [4]. To terminate the execution
of the application as soon as possible under this assump-
tion, the computation should start as soon as possible on
all the worker nodes, which should then be sent small initial
amounts of work in order to quickly start their computation.

When each worker has received a chunk, the execution
enters the so-called steady-state phase (as considered in
[16]). The main characteristic of this phase is that the to-
tal workload is still unknown. It is therefore difficult to
work out a schedule for an early termination of the appli-
cation. On the other hand, it is conceivable to distribute the
load in order to keep the computing nodes as busy as possi-
ble. If the choice of the computing resources is optimal (i.e.
optimal nodes are chosen in optimal proportion), then keep-
ing the selected nodes active minimizes the makespan. The
steady-state phase ends when the supervisor gets the final
data item to be processed, and the clean-up phase begins.

From this time instant, the problem of scheduling the
remaining load is suitable for DLT, as the total workload
is now known: namely the amount of data still present in
the supervisor input buffer. So, according to the optimal-
ity principle, we can try and minimize the makespan by
synchronizing the termination of the computation of all the
workers. In order to be able to succeed, the supervisor
should not have overloaded any worker too much during
the steady-state phase, which would prevent a synchonous
termination of all workers. Of course, the larger the supervi-
sor input buffer, the earlier the supervisor knows the amount
of load that finally remains to be distributed, thus the more
likely a synchronous termination of the execution.

Let us sum up the previous discussion. In order to design
an optimal schedule for the whole application execution, we
need to meet the following objectives:

• during the start-up phase
distribute small amounts of data as quickly as possible
to the workers

• during the steady-state phase
make full use of the computing resources and keep the
load imbalance between the workers under control

• during the clean-up phase
have all workers terminate at the same time.

We focus on scheduling during the steady-state phase.

3 Drozdowski’s scheduling algorithm

In order to address our problem, we considered the On-
Line method presented in [12], denoted "OL method" there-
after. Here we give an idea of this adaptive method, initially
worked out to reduce the contention at the supervisor due to
the one-port communication model. Such contention hap-
pens when two worker nodes simultaneously need to send
their results to the supervisor. As long as there are still some
tasks left, the OL scheduler allocates new chunks to idle
workers (the supervisor knows that a worker is idle when it
has received the results corresponding to the chunk it had
previously sent to the worker). Therefore, the OL method
proceeds incrementally, computing the size of the chunk to
be sent to a worker for each new round, in order to try and
maintain a constant duration τ for the different rounds and
thus avoid contention at the supervisor.
The following notations are used throughout the paper:

• N number of workers,

• αi,k size of chunk sent to worker Ni for the kth round,

• wi,k computation cost for a chunk of size 1 of the kth

round by worker Ni,



• Si start-up time for a communication from the super-
visor to Ni,

• ci,k transfer cost for a chunk of size 1 of the kth round
to worker Ni,

• S′
i start-up time for a communication from Ni to the

supervisor,

• c′i,k transfer cost for the result corresponding to a
chunk of size 1 of the kth round from Ni to the su-
pervisor.

So we consider communication start-up times Si and S′
i to

be independent from time and from message size.
In the following, parameters wi,k, Si, ci,k, S′

i and c′i,k
will be called "execution parameters". As mentionned in
section 2, the values of wi,k, ci,k and c′i,k are only known for
each worker Ni and each round k for which the supervisor
has received the corresponding results.

The OL method determines αi,k so as to make the distri-
bution asymptotically periodic with period τ , an arbitrarily
fixed value, for all the workers. For worker Ni, let σi,j−1

be the elapsed time between the begining of the emission of
the chunk of its (j−1)th round and the end of the reception
of the result corresponding to this chunk. The OL method
determines the value of αi,j as follows:

αi,j = αi,j−1 · τ

σi,j−1
. (1)

That is it allocates bigger (resp. smaller) chunks to the
workers with higher (resp. lower) performance. Hence,
this method can take the heterogeneous nature of comput-
ing and communication resources into account, without ex-
plicit knowledge of execution parameters such as available
computing power or available bandwidth (as equality (1)
shows); as Drozdowski states, "the application itself is a
good benchmark" [12] (actually the best one).

Lemma 6.1 in [12] shows that, in a static context, with
affine cost models for communication, assignment (1) en-
sures the convergence of σi,j to τ when j increases indef-
initely. Moreover, the OL method guarantees that the de-
lay incurred by a worker compared to the others is upper-
bounded by τ .

Being an estimation of the asymptotic period used for
task distribution, τ is also an upper-bound on the delay be-
tween workers. Being able to control this bound makes
it possible to minimize the makespan during the clean-up
phase.

Due to its incremental nature, the OL scheduling can
take the dynamic nature of computing and communication
resources into account, as it optimizes the size of chunks
for each round according to parameters estimated during
the execution. The time scale used for scheduling should

then be adapted to the dynamicity of the execution parame-
ters. For instance the distribution of all the data currently in
the supervisor input buffer, if there is a lot, could lend to a
schedule which might go too far in the future to be accurate,
since it could not take possible evolutions of the execution
parameters into account. So, we define τ̊ as the time period
during which the execution parameters do not change "sig-
nificantly", which we assume to know. It suffices that the
frequency 1/τ with which the scheduler checks the value of
the execution parameters be greater than 1/τ̊ ; or

τ ≤ τ̊ .

As we assume that communication (resp. computation)
costs are affine (resp. linear) in the size of chunks we de-
fine precisely, for a chunk of strictly positive size α (i.e.
α ∈ IR+∗) of the jth round, the cost of:

• sending the chunk to Ni α · ci,j + Si,

• processing the chunk on Ni α · wi,j ,

• receiving the result from Ni α · c′i,j + S′
i.

We suggested in section 1 that the processing cost for a
chunk should dominate its communication costs in a certain
sense. We choose to formulate this assumption as:

∀α ∈ IR+∗,
α · min

k∈IN∗ wi,k ≥
(

α · max
k∈IN∗ ci,k + Si

)
+

(
α · max

k∈IN∗ c′i,k + S′
i

)
(2)

for i = 1, N.

Equation (2) ensures that the cost of sending chunks of
any size α to a worker Ni and receiving the corresponding
results is less than the processing time of these chunks.

The problem with the OL method is that computation
never overlaps communication in any computing node, as
the emission of the chunk of the next round is at best trig-
gered by the return of the result of the previous one. There-
fore, we adapted the OL method in order to be able to min-
imize these idle periods of the worker nodes. Moreover, we
will state sufficient conditions to avoid these idle periods. If
the nodes being used have been selected optimally during
this phase, then the total duration of the execution of the
application (makespan) is minimal.

4 The OLMR method

4.1 Overview of the method

The new method we present is based on the OL method.
The purpose of our adaptation of the OL method is for
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Figure 1. Worker node idle period between
successive rounds with the OL method
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Figure 2. Overlapping between communica-
tion and computation with the OLMR method

worker nodes to avoid idle time with respect to comput-
ing. As can be seen in figure FIG.1, these inter-round starva-
tions occur between the time instants when a worker begins
to send the result for a round back to the supervisor and
when it finishes the reception of the next round chunk. It
has been well established by now that, when the total load
is important compared to the available bandwidth between
supervisor and workers, the workload should be delivered
in multiple rounds [7, 25, 5]. Therefore we will have each
worker receive its share of the load through multiple rounds.
Our adaptation of the OL method draws its inspiration from
the principle of the multi-installment strategy presented in
[6]. So the new method we present is therefore denoted
"OLMR method" (for On-Line Multi-Round method [9])
thereafter. The OLMR method divides the chunk sent to Ni

for each round j into two subchunks "I" and "II" of re-
spective sizes αi,j and αi,j − αi,j . Dividing the chunks in
two parts is enough in order to apply the principle, and the
division allows the computation to overlap the communica-
tions between a worker and the supervisor as can be seen in
figure FIG.2. In order to proceed, we compute αi,j using the
measurement of the elapsed time (including both commu-
nications and computation) for subchunk I of the previous
round: σi,j−1. We will show that, thanks to this anticipa-
tion (compared to the OL method) in the computation of
αi,j , we can avoid the inter-round starvation.

Figure FIG.3 gives the scheduling algorithm of the
OLMR method. The OLMR scheduler computes αi,j in
the same way as the OL scheduler does, and the values of
σi,j−1 and αi,j as detailed later in the next subsections.

Paradoxically, while attempting to deal with the inter-
round starvations inherent to the OL method, there is a risk
of creating some intra-round starvation between subchunks
I and II . We give below conditions to prevent both risks.

As we assume that (2) holds, intra-round starvation can
be avoided if αi,j is large enough for the processing of sub-

while (the last data item has not been acquired) do
if (Reception from Ni of the result of subchunk I of
its (j − 1)th round) then
• Get σi,j−1, ωi,j−1 and c′i,j−1

• Compute σi,j−1 . . . . . . . . . . . . . . . . . . . . (cf. (8))
• Compute αi,j . . . . . . . . . . . . . . . . . . . . . . . (cf. (1))
• Compute αi,j . . . . . . . . . . . . . . . . . . . . . . . (cf. (7))
• Send a subchunk I of size αi,j to Ni

• Send a subchunk II of size (αi,j − αi,j) to Ni

end if
end while

Figure 3. OLMR scheduler (On-Line Multi-
Round)
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Figure 4. Example of intra-round starvation
with the OLMR method

chunk I to overlap the sending of subchunk II (see an ex-
ample of intra-round starvation on figure FIG.4).

Let ∆ be the duration of the idle period of Ni between
the two subchunks of its jth round, hence

∆ = (Si + (αi,j − αi,j) · ci,j) − (αi,j · wi,j) .

There is no intra-round starvation if and only if ∆ ≤ 0,
that is

αi,j ≥ Si + αi,j · ci,j

wi,j + ci,j
. (3)

Let us now go back to the risk of an inter-round starvation
between the jth and (j + 1)th rounds of Ni, which could
occur if subchunk I happens to be too large compared to
subchunk II (see figure FIG.5). Let νi,j be some real num-
ber dominating αi,j+1:

νi,j ≥ αi,j+1.

Suppose that Ni is given a subchunk of size νi,j for its

Data Comm
Computing
Result Comm

∆ν

time

j/I
j/II

j+1/I
j/I

j/I j/II
j+1/I

j/II

Figure 5. Example of inter-round starvation
with the OLMR method



(j + 1)th round, and let ∆νi,j be the duration of the cor-

responding idle period of Ni between its jth and (j + 1)th

rounds. We have

∆νi,j =
(
S′

i + αi,j · c′i,j
)

+ (Si + νi,j · ci,j+1)
− ((αi,j − αi,j) · wi,j) .

There is no inter-round starvation if and only if ∆νi,j ≤ 0,
that is

αi,j ≤ αi,j · wi,j − νi,j · ci,j+1 − (S′
i + Si)

c′i,j + wi,j
. (4)

It can easily be verified that if inequality (4) holds, then the
necessary constraint

αi,j < αi,j

holds too.
Relying on inequations (3) and (4), we can choose αi,j

so as to avoid idle periods of Ni. We can derive different
algorithms according to the way the value of νi,j is deter-
mined. Finally, nothing remains but to describe how σi,j−1

and αi,j are computed.

4.2 Determining αi,j

The value of αi,j must be fixed according to constraint
(4), which means that we need a value for νi,j . We can
decide such a value by extrapolating an upper bound for
αi,j+1 from the values of αi,k for the previous rounds,
{αi,k}k=1,j−1. So long as inequalities (3) and (4) hold, an
inaccuracy in the value of νi,j does not have any dramatic
consequence on the course of the method. That is, if in-
equalities (3) and (4) are compatible, then starvation risks
can be avoided.

As the amount of data processed during the steady-state
phase is finite, there necessarily exists a real number λi

(λi ≥ 1) each Ni such that for:

αi,j+1 ≤ λi · αi,j ∀j ∈ IN∗.

λi characterizes the amplitude of the fluctuations of αi,k

between two successive rounds.
If λi can be estimated (see Remarks 2 and 3 for hints),

then we have an upper-bound νi,j for αi,j+1:

νi,j = λi · αi,j . (5)

The following Theorem proposes a way to set the value of
αi,j so that constraints (3) and (4) are both satisfied.

Theorem 1 Given αi,j , if wi,j , ci,j , Si, c′i,j and S′
i satisfy

(2) and

(αi,j − (λi + 1)) · wi,j ≥ (λi · αi,j + (λi + 1)) · ci,j

+(λi + 1) · Si (6)

for i=1,N.
Then, taking

αi,j =
αi,j

λi + 1
, (7)

constraints (3) and (4) are satisfied. Therefore, the workers
will compute without any idle period during the steady-state
phase.

Proof: Thanks to (6), we have

(αi,j − (λi + 1)) · (wi,j + ci,j) ≥
(λiαi,j + (λi + 1)) ci,j + (λi + 1)Si +

(αi,j − (λi + 1)) ci,j ,

αi,j

λi + 1
− 1 ≥ Si + αi,j · ci,j

wi,j + ci,j
.

Then using the definition (7) of αi,j , we have

αi,j ≥ Si + αi,j · ci,j

wi,j + ci,j
.

So constraint (3) is satisfied.
By definition (7), we have

αi,j ≤ αi,j

λi + 1
,

λi · αi,j · wi,j ≤ (αi,j − αi,j) · wi,j .

By hypothesis (2), this last inequality can be rewritten as:
(
λi · αi,j · c′i,j + S′

i

)
+ (λi · αi,j · ci,j+1 + Si) ≤

(αi,j − αi,j) · wi,j ,(
αi,j · c′i,j + S′

i

)
+ (λi · αi,j · ci,j+1 + Si) ≤

(αi,j − αi,j) · wi,j .

Using (5), we then obtain:
(
αi,jc

′
i,j + S′

i

)
+ (νi,jci,j+1 + Si) ≤ (αi,j − αi,j)wi,j .

Hence

αi,j ·
(
wi,j + c′i,j

) ≤ αi,j · wi,j − νi,j · ci,j+1 − (Si + S′
i) .

That is, inequality (4) is satisfied.

Remark 1 Parameters τ and λi are both characteristic of
the evolution of the execution parameters. On the one hand,
τ characterizes their speed of evolution. Practically, it is the
period that should be used for reconsidering their value. On
the other hand, λi measures the amplitude of their varia-
tions on such a period. The obvious dependence between τ
and λi can take on the most varied forms. For instance, we
can have rapid variations (small τ ) of the execution param-
eters with little consequence on the scheduling of the appli-
cation (λi close to 1), or on the contrary slow variations
(large τ ) with important consequences on the scheduling of
the application (λi far from 1).



Remark 2 The knowledge of νi,j is implicitly the result
of some extrapolation of the values (αi,k)k=1,j to get an
upper-bound of αi,j+1. If the variations are slight, one can
use the quasi-stationary approximation of αi,j+1 by αi,j . In
this case, we have

αi,j+1 = αi,j .

Then we only have to apply Theorem 1 with

λi = 1.

More generally, considering a polynomial interpolation of
degree (p - 1) for the value of αi,j+1, we have

αi,j+1 = p · αi,j −
p−1∑
k=1

αi,k.

In this case, it suffices to apply Theorem 1 with

λi = p.

Remark 3 Satisfying the hypotheses of Theorem 1 guaran-
tees the absence of idle time for the workers but requires the
knowledge of (λi)i=1,N . Nevertheless, the OLMR method
may still be used when these values (which characterize the
dynamicity of execution parameters) are not known. Start-
ing with arbitrary values (e.g. λi = 1 corresponding to
a stability assumption) the scheduler could, if necessary,
adjust λi values according to information provided by the
workers at any round. Actually an inappropriate value of
λi used for some round will lead to an intra- or inter-round
starvation observable by the corresponding worker. The
scheduler could then adjust this value for the next round,
according to the type of starvation observed by the worker.

Remark 4 Although different, hypotheses (2) and (6) both
make the assumption that processing should dominate com-
munications. Recall that hypothesis (2) ensures an efficient
usage of the supervisor-worker paradigm.

4.3 Determining σi,j−1

In order to determine the size of the chunk to be sent for
the next round without waiting for the result of the currently
processed chunk, replacing the measured value σi,j−1 in ex-
pression (1) by some computed value derived from σi,j−1

suffices. But we only know the values of the execution pa-
rameters for the data whose result have been received by
the master. We choose to get these parameters just after
the master has reveived the result for subchunck I of round
j − 1 (see tag “Snapshot” on FIG.6). It is another extrap-
olation problem. In order to solve it, we assume that the
time taken by Ni to process some amount of data during its
(j − 1)th round is the same for both subchunks I and II .

Data Comm
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σi,j−1

σi,j−1

timesnapshot

A

BC
j-2/I j-2/II

j-2/I j-2/II
j-2/I j-2/II j-1/I j-1/II

j-1/I
j-1/I

j-1/II
j-1/II

Figure 6. From the measurement of σi,j−1 to
the computation of σi,j−1

Using the notations introduced in figure FIG.6, and omitting
the cost of the scheduling algorithm itself, we have:

σi,j−1 = σi,j−1 + A + B − C,

σi,j−1 = σi,j−1 + (αi,j−1 − αi,j−1) · ωi,j−1+
(αi,j−1 − 2 · αi,j−1) · c′i,j−1. (8)

Remark 5 The values of ωi,j−1 and c′i,j−1 can be esti-
mated easily by the master with the help of Ni. There is no
need to know the value of either the communication start-up
times βi and β′

i or that of ci,j−1 in order to compute σi,j−1

by means of equation (8).

4.4 Comparing OL and OLMR methods

In this section, we compare OL and OLMR methods and
quantify the benefit of using OLMR compared to OL. We
study their behaviour in identical settings: a static context.

Using the OLMR method requires that the hypotheses of
Theorem 1 be satisfied. Lemma 6.1 in [12] sets the context
of the OL method as static. In particular, due to the static
nature of the execution environment, parameters wi,j , ci,j

and c′i,j do not depend on the round. Under these condi-
tions, both methods send a chunk of the same size αi,j to
Ni for any round j; for the same value of τ . So processing
a workload of size M by both methods requires the same
number of rounds δM . Let us denote ci, wi and c′i the value
of ci,j , wi,j and c′i,j for any round j. Here we estimate the
gain γM of method OLMR over method OL when process-
ing the same workload. Let TOL(M) and TOLMR(M) be
the respective times for methods OL and OLMR to process
a workload of size M .

TOL(M) = δM · (Si + S′
i) + M · (ci + wi + c′i) ,

TOLMR(M) = (Si + S′
i) + αi,1 · ci + M · wi

+ (αi,δM − αi,δM ) · c′i,
γM = TOL(M) − TOLMR(M),

= (δM − 1) · (Si + S′
i) + (M − αi,1) · ci

+ (M − (αi,δM − αi,δM )) · c′i.
The gain γM is the direct consequence of overlapping com-
putation and communications (see figure FIG.7).
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5 Related work

The divisible load model (DLT) has been largely stud-
ied; it is the first model that enables optimality proofs for
scheduling methods in the context we have chosen [23, 8,
20, 19]. This model is well suited to the problem of schedul-
ing the clean-up phase. On the contrary, it is not suited to
scheduling the steady-state phase, as the total workload is
not known during this phase.

Several multi-round methods have been proposed in the
literature [7, 25, 5]. On the one hand the iterated distri-
butions of multi-round methods have the advantage (when
using a one-port model without contention) of making the
nodes active earlier, and on the other hand they have the
drawback of increasing the time wasted by latencies (cf the
affine cost). Several strategies for distributing the load to
slaves have already been studied. First of all, some strate-
gies fix the number of rounds arbitrarily (multi-installment
methods [7]). They are well suited to a model with linear
costs for homogeneous platforms. For heterogeneous plat-
forms, other strategies have been proposed, which are able
to take account of the affinity of costs when determining the
load of the nodes for each round. For instance, the workload
which is delivered at each round by the UMR method [25]
follows a geometric progression whose common ratio is ad-
justed so that all the nodes work for the same duration in
each round and so that computation overlaps communica-
tion exactly. It is proved [25] that this method minimizes
the total execution time; provided that we know how to se-
lect the best set of nodes to be used. The PMR method [5]
introduces periodicity for the rounds (without imposing any
particular value for the period) and requires that all nodes
work during the whole period and that computation overlaps
communication exactly. It is proved [5] that this method
maximizes the amount of load processed by time unit.

Unfortunately none of these methods can be used when
the total workload is not known a priori. The OLMR
method we have presented in this paper has the advantages
inherent to multi-round methods: it takes account of both
the heterogeneity of the platform and the affinity of costs.

Moreover, it allows for the dynamicity of the execution pa-
rameters.

Parameter τ can be adjusted according to the finest time
scale characterizing the evolution of the execution parame-
ters. So doing, this evolution is taken account of (in aver-
age) over the duration of a round.

Under appropriate hypotheses (cf Lemma 6.1 in [12]),
which are met when execution parameters are stable, rounds
are asymptotically periodic (as for the PMR method). Be
the hypotheses of Theorem 1 satisfied, the method definitely
minimizes the idle time of the computing resources.

In the same way as the for PMR method [5], the use of
the OLMR method we have presented must be coupled with
some mechanism able to optimally select the resources to be
used. Such resource selection can rely on heuristics, e.g. a
greedy algorithm over the set of nodes ordered according to
decreasing bandwidth (bandwidth-centric allocation [3]). It
can be done at each round or according to the dynamicity of
the execution parameters.

Under the hypotheses of Theorem 1 and if the choice
of resources is optimal then the evaluation of this method
by competitive analysis [18] with an off-line method is not
necessary; due to the full use of the computing resources.

6 Conclusion

In this paper, we have defined a scheduling problem that
we think is realistic when considering scheduling applica-
tions relying on data parallelism on shared resources. To
the best of our knowledge, the scheduling problem we con-
sider in this paper has not received much attention up to
now. We have presented a new runtime scheduling method
to optimize the distribution of tasks which can deal with the
heterogeneity and dynamicity of the grid if our modelisa-
tion hypotheses are realistic; it can also be used when the
information that scheduling algorithms traditionally need is
lacking. Sufficient conditions have been stated for full us-
age of the resources by means of avoiding idle time.

In order to design the OLMR method, we had to con-
sider the characterization of the dynamicity of the execu-
tion conditions. This led us to define N + 1 parameters: τ
and (λi)i=1,N (see Remark 1). But the improvement made
by OLMR to the on-line method presented in [12] has been
quantified in a static execution context only.

This novel approach of scheduling problems is suscepti-
ble to numerous improvements and developments.

These developments are twofold: those tending to con-
firm the results obtained in this paper and those aiming
at enlarging the potentialities of the On-Line Multi-Round
method. First of all, it is useful to check experimentally
that, under the hypotheses of our model, the method gives
the expected results. For that, we are currently develop-
ping simulation programs, using the SimGrid toolkit [10] in



order to study the behavior of the OLMR method in vari-
ous conditions and make comparisons with other methods.
When this step has been passed successfully, we can then
test the efficiency of the method in the framework of the
AIPE (Automatic Integration for Parallel Execution) [17]
project. AIPE is a software production chain which en-
ables end-users to get parallel execution of an application
on grids without writing anything more than its sequential
code. It produces automatically a parallel code relying on
the supervisor-worker paradigm for which scheduling plays
an important role. The experimentation with AIPE would
allow a validation of the hypotheses of the model.

The new method could be adapted in different ways that
we are going to discuss now. In this paper, τ and λi have
implicitly been considered as constant throughout all the
rounds. This hypothesis restricts the degree of approxima-
tion (order one) of the dynamicity that the scheduler takes
into account. From one round to the next, the value of τ
could be adapted in order to take account of the evolution
of heterogeneity and dynamicity that would be noticed.
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