
An Adaptive Heterogeneous Software DSM∗

John Paul Walters
Institute for Scientific Computing

Wayne State University
jwalters@wayne.edu

Hai Jiang
Department of Computer Science

Arkansas State University
hjiang@astate.edu

Vipin Chaudhary
Institute for Scientific Computing

Wayne State University
vipin@wayne.edu

Abstract

This paper presents a mechanism to run parallel ap-
plications in heterogeneous, dynamic environments while
maintaining thread synchrony. A heterogeneous software
DSM is used to provide synchronization constructs similar
to Pthreads, while providing for individual thread mobility.
An asymmetric data conversion scheme is adopted to restore
thread states among different computers during thread mi-
gration. Within this framework we create a mechanism ca-
pable of maintaining the distributed state between migrated
(and possibly heterogeneous) threads. We show that thread
synchrony can be maintained with minimal overhead and
minimal burden to the programmer.

1. Introduction

Grid Computing has demonstrated that current compu-
tation technologies focus more on collaboration, data shar-
ing, cycle stealing, and other modes of interaction among
dynamic and geographically distributed organizations [7].
Studies have indicated that a large fraction of workstations
may be unused for a large fraction of time [1]. Collecting
and orchestrating these otherwise idle machines will utilize
these computing resources effectively and provide common
users a virtual supercomputing platform to solve more com-
plex problems. Such dynamically generated virtual super-
computers benefit both users and systems by speeding up
application execution and by improving throughput. How-
ever, in grids and other open and heterogeneous distributed

∗This research was supported in part by NSF IGERT grant 9987598,
NSF MRI grant 9977815, and NSF ITR grant 0081696 as well as the
Wayne State Institute for Scientific Computing.

systems, utilizing computational power adaptively and ef-
fectively is still an unsolved problem.

Increasingly, parallel processing is being seen as the only
cost-effective method for the fast solution of computation-
ally large and data-intensive problems [8]. How to execute
parallel programs within heterogeneous distributed systems
is unclear. Multithreading is popular but the mobility of the
finer-grained thread becomes the concern. Further, many
thread migration packages only work in homogeneous envi-
ronments with restrictions on thread stacks and memory ad-
dresses [5, 9]. Although virtual machine (VM) techniques
have been used to hide platform heterogeneity, most VMs
work at the system level and have difficulties in distinguish-
ing individual applications. Even if some modified VMs
can support heterogeneous thread migration [20], the re-
quirement of pre-installed VMs prohibits them from being
the solution to open systems in Grid Computing.

Another major issue of parallel computing in distributed
systems is to share global data among threads spread across
different machines. Since they have their own disjoint ad-
dress spaces, common global data sharing is not as straight-
forward as it otherwise would be. Distributed shared mem-
ory (DSM) systems have been deployed for global data
sharing. However, flexible heterogeneous DSMs are not
popular. And most DSMs require a programmer’s assis-
tance, i.e., new primitives have to be inserted manually.

This paper extends a thread migration package, MigTh-
read, to overcome common difficulties in supporting adap-
tive parallel computing on clusters, including fine granular-
ity, globally sharing, adaptivity, transparency, heterogene-
ity, shareability, and openness. Parallel computing jobs can
be dispatched to newly added machines by migrating run-
ning threads dynamically. Thus an idle machines’ comput-
ing power is utilized for better throughput and parallel ap-
plications can be sped up by load balancing/redistribution.

To support global data in parallel applications, a dis-
tributed shared data (DSD) scheme is proposed to share
common variables among threads no matter where they
move. No restriction is placed on platform homogeneity as
in most DSM systems. Data copies will be synchronized
without explicit primitives in programs. The granularity
size of data management is flexible, i.e., the inconsistency
detection is handled at the page level whereas data updat-
ing is manipulated at the object level. Such a hierarchical
strategy can reduce false sharing in page-based DSMs and
achieve concurrent updating. Since the DSD is totally trans-
parent to programmers, parallel computing can be ported
from self-contained multiprocessors to heterogeneous adap-
tive distributed systems smoothly.

Our contributions in this paper are as follows:

• Parallel to distributed applications: Applications
created using traditional threading systems, such as
Pthreads, can be easily and automatically converted to
our distributed threads systems for running on remote
heterogeneous (or homogeneous) machines.

• Consistency: We provide a mechanism for threads
(both homogeneous and heterogeneous) to maintain a
consistent global state.

• Transparency: Unlike traditional DSMs, our hetero-
geneous strategy is completely transparent to the end
user.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an overview of the related work. Section 3 in-
troduces the thread migration package, MigThread, and our
asymmetric data conversion technique. In Section 4 we de-
scribe our heterogeneous distributed state mechanism. Per-
formance analysis and some experimental results are shown
in Section 5. Finally, our conclusions and continuing work
are presented in Section 6.

2. Related Work

There have been a number of notable attempts at de-
signing process/thread migration and DSM systems. Most
thread migration systems impose many restrictions and only
work in homogeneous environments. Arachne [5] sup-
ports thread migration by adding three keywords to the C++
language and using a preprocessor to generate pure C++
code. Neither pointers nor the heap are supported here.
Ariadne[14] achieves thread context-switching by calling
C-library setjmp() and longjmp(). On destination nodes,
stacks are scanned for pointer detection which can fail and
lead to incorrect results. Many thread migration systems,
such as Millipede[9], adopt an “iso-address” strategy. Such
a strategy imposes strict restrictions on resources which af-
fect their scalability and make them inappropriate for Grid

Computing. JESSICA [20] inserted an embedded global
object space layer and implemented a cluster-aware Java
just-in-time compiler to support transparent Java thread mi-
gration. Since the installation of the modified JVM is re-
quired, open systems will face difficulties. Charm++ [13]
and Emerald [12] are a new language and compiler designed
to support fine-grained object mobility. Compiler-produced
templates are used to describe data structures and translate
pointers.

Process migration brings mobility to sequential compu-
tations. The Tui system [16] is an application-level pro-
cess migration package which utilizes a compiler support
and a debugger interface to examine and restore process
states. It applies an intermediate data format, just as in XDR
[17]. Process introspection (PI) [6] is a general approach
for checkpointing and applies the “receiver makes right”
(RMR) strategy [18]. Data types are maintained in tables
and conversion routines are deployed for all supported plat-
forms. Programmers must flatten down aggregate data types
manually. SNOW [3] is another heterogeneous process mi-
gration system which tries to migrate live data instead of the
stack and heap data. PVM installation is a requirement and
because of this, communication states are supported.

Global Data sharing can be achieved by distributed
shared memory/state systems. TreadMarks [2] is a DSM
system with several advanced features, such as multiple
writers, mirrored pages, and a relaxed memory consistency
model, to produce an illusion of shared memory among
computers. This page-based approach implies a false shar-
ing problem because of the relatively coarse granularity of
pages. Strings [15] is a thread-safe DSM supporting mul-
tithreaded applications. Most DSM systems work on ho-
mogeneous clusters. Mermaid [19] supports data sharing
across heterogeneous platforms, but only for restricted data
types. InterWeave [4] supports data sharing on the top of
page-based DSM on heterogeneous clusters. Its data con-
version scheme is similar to CGT-RMR where data is bro-
ken down to fields. However, pointers are not handled. Pro-
grammers need to code using new primitives.

3. Background

3.1. MigThread: Approach & Overview

MigThread is designed and deployed to dis-
tribute/redistribute jobs dynamically so that multithreaded
parallel applications can move their threads around ac-
cording to requests from schedulers for load balancing and
load sharing [10]. When new machines join the system,
the same applications need to be started remotely after
static code/program migration. All reachable threads are
activated and blocked for possible coming threads. MigTh-
read adopts an “iso-computing” strategy, i.e., threads can

Process
Home Node

Remote Node 1 Remote Node 2

Process Process

Thread Thread

Threads

Threads Threads

Master Thread

Thread Creation

Global Data

Global DataGlobal Data

MigrationMigration

Figure 1. Thread migration with MigThread.

only be migrated to the corresponding threads on remote
machines as shown in Figure 1. For example, the second
thread at one node can only be migrated to other second
threads on other nodes. In fact, it is the application level
thread state, not the thread itself that is transferred over.
Once the receiver threads load the incoming states, they can
continue the computation and complete the work. Threads
can migrate again if the hosting node is overloaded.

MigThread supports home-based parallel computing.
Parallel applications are initially started at one node, called
the home node. Then the default thread, the master thread,
spawns some slave threads, called local threads. When the
same applications are restarted at newly joined machines
(remote nodes), their default thread and slave threads act
as skeleton threads, holding computing slots for migrating
states. Once the state of a local thread at the home node is
transferred, it becomes a stub thread for future resource ac-
cess. The corresponding skeleton thread at a remote node is
renamed to a remote thread to finish the rest of work. If the
master thread moves to a default thread at a remote node,
the latter will become the new home node. Previous local
threads become remote threads, and some slave threads at
the new home node are activated to work as stub threads
for new and old remote threads. Whether a thread or node
is remote or local is determined by its relationship with the
initial master thread.

Since many user-level threads are invisible to operating
system kernels, an application-level migration scheme is
appropriate for both portability and heterogeneity. Thread
states typically consist of the global data segment, stack,
heap, and register contents. They should be extracted from
their original locations (libraries or kernels) and abstracted
up to the application level. Therefore, the physical state
is transformed into a logical form to achieve platform-
independence and reduce migration restrictions, enabling
the proposed scheme to be independent of any thread li-
brary or operating system. User-level management of both
the stack and heap are provided as well.

 Compilation Preprocessing

Source
Code

Transformed
Source
Code

Preprocessor Compiler

Executable
File

Run-time
Support
Library

Human Assistance
(Only for unsafe third-party

library calls)

Figure 2. The Infrastructure of MigThread.

 char MThV_heter[60]="(4,-1)(0,0)(4,1)(0,0)(4,1)(0,0)(8,0)(0,0)”;
 char MThP_heter[41]=”(4,-1)(0,0)(4,-1)(0,0)”;

Figure 3. Tag calculation at run-time.

3.2. Data Conversion Scheme CGT-RMR

Since thread states have been abstracted at the language
level and transformed into pure data, data conversion is
necessary when parallel computing spans across different
platforms. A data conversion scheme, called Coarse-Grain
Tagged “receiver makes right” (CGT-RMR) is adopted to
tackle data alignment and padding physically, convert data
structures as a whole, and eventually generating a lighter
workload compared to existing standards [11]. It accepts
ASCII character sets, handles byte ordering, and adopts
IEEE 754 floating-point standard because of its marketplace
dominance.

In MigThread, tags are used to describe data types and
padding so that data conversion routines can handle aggre-
gate types as well as common scalar types.

The preprocessor defines rules to calculate structure
members’ sizes and variant padding patterns, and inserts
sprintf() calls to glue partial results together. The actual
tag generation takes place at run-time when the sprintf()
statement is executed. On a Linux machine, the simple ex-
ample’s tags can be two character strings as shown in Figure
3.

A tag is a sequence of (m,n) tuples, and can be expressed
as one of the following cases (where m and n are positive
numbers):

• (m,n) : scalar types. The item “m” and “n” indicates
the size and number of this scalar type, respectively.

• ((m′, n′)...(m′′, n′′), n) : aggregate types. The “m”
in the tuple (m,n) can be substituted with another tag
(or tuple sequence) repeatedly. Thus, a tag can be
expanded recursively until all fields are converted to
scalar types. The last “n” indicates the number of the
top-level aggregate types.

• (m,−n) : pointers. The “m” is the size of pointer
type on the current platform. The “-n” sign indicates
the number of pointers.

• (m, 0) : padding slots. The “m” specifies the number
of bytes this padding slot can occupy. The (0, 0) is a
frequently occurring case and indicates no padding.

These tags, along with the preprocessor, allow MigTh-
read to gather thread states into a portable format such that
they can be restarted on remote, heterogeneous machines in
the same manner as homogeneous machines.

4. Distributed Shared Data

Once a thread has been migrated we require a mecha-
nism in order to ensure that an application’s global state is
properly maintained. Rather than act as a traditional DSM,
we note that multithreaded applications that rely on a dy-
namic global space also require synchronization points to
serialize access to the critical sections. To this end we im-
plemented a release consistency model by extending the
pthread mutex lock()/pthread mutex unlock() to a dis-
tributed lock/unlock mechanism.

A traditional DSM relies on the mprotect() system call
in order to trap writes and propagate those changes through
the DSM system. In a basic DSM a signal handler is in-
stalled to trap SEGV signals. When a SEGV is raised, the
handler makes a copy of the page that triggered the SEGV
then allows the write to continue by unprotecting the page
in question. Eventually (depending on DSM optimizations,
consistency models, etc.) the copied original pages (twins)
are compared to their current page. A diff is taken between
the twin and the current page. These differences can be
propagated through the DSM system and applied directly
to nodes owing to the fact that nodes are homogeneous to
one another.

One major problem with this strategy is in heterogene-
ity. Since the typical DSM relies on a twin/diff strategy, it
is unable to handle changes in page size, endianness, etc. In
this case of a grid-type scenario, where many different ma-
chines are in use with little control over their architecture,
this can be a major limitation.

Our solution addresses the problem of heterogeneity by
abstracting all data to the application level. Like a tradi-
tional DSM, our strategy relies on detecting writes through
the mprotect() system call. Since a machine is always
homogeneous to itself, a twin/diff strategy will suffice for
detecting writes. However, because our solution is de-
signed specifically for heterogeneity, we cannot rely on the
twin/diff strategy alone for detecting writes. Instead, we
employ a twin/diff followed by a mapping stage where we
abstract each page difference to an application-level index.

The application-level index is not, however, the complete
tag as discussed in Section 3.2. Instead, a table is built upon

struct GThV_t{

void * GThP;
int A[237*237];
int B[237*237];
int C[237*237];
int n;

} *GThV;

Figure 4. Example of source structure used to
generate index table.

Datatype
Address Size Number
0x40058000 4 -1
0x40058004 0 0
0x40058004 4 56169
0x4008eda8 0 0
0x4008eda8 4 56169
0x400c5b4c 0 0
0x400c5b4c 4 56169
0x400fc8f0 0 0
0x400fc8f0 4 1
0x400fc8f4 0 0

Table 1. Index table generated from Figure 4.

application start-up that contains the tag information. Since
the MigThread preprocessor collects all global data into a
single structure, GThV, we need only maintain a table for
GThV. Each row in the table represents an element from the
GThV structure.

A sample GThV structure, along with its corresponding
index table, is shown in Figure 4 and Table 1 respectively.
In Table 1, we keep track of the base address for each ele-
ment in the GThV structure. Where GThV contains an array,
the address in the table is the address of the first element of
the array, and the number of array elements are noted in the
Number column. A negative value is used for the Number
field if the element in the corresponding row is a pointer.
The Size column of the table contains the size of its corre-
sponding element. The size used is that of the machine on
which the table resides.

It is important to note that the table is architecture inde-
pendent. Thus, while the data-type sizes may differ within
the tables (depending on the architecture), the indexes of
each element will remain the same. With each index then,
it is straightforward to map the index to a memory address
and vice-versa.

Once a twin/diff has been abstracted to an index, it can
be formed into a tag along with the raw data and propa-

gated throughout the DSM system. The index mapping can
be done very rapidly and adds very little overhead to the
standard twin/diff method (see Section 5). Data conver-
sion is done on an as-needed basis with homogeneous ma-
chines performing a simple memcpy() and heterogeneous
machines performing byte-swapping, etc.

Typical DSMs can optimize the standard twin/diff
method through optimizations at the page level. When dif-
ferences exceed a certain threshold, for example, it is com-
mon to send the entire page rather than to continue with the
diff. Since we seek a completely heterogeneous solution,
we cannot perform optimizations at the level of the page.
Instead, we take advantage of additional information con-
tained in the table used for mapping diffs to indexes. Ar-
rays can be easily identified, and we can transfer and con-
vert/memcpy() large arrays quickly by dealing with them
as a whole. In fact, this saves time and resources both in
converting the data and in forming the tags used to identify
heterogeneous data.

Our basic solution consists of four major functions:

• MTh lock(index, rank): Thread rank requests mutex
index. Upon acquiring the lock, any outstanding up-
dates are transferred to thread rank before MTh lock()
completes.

• MTh unlock(index, rank): Thread rank informs the
base thread that mutex index should be released. Up-
dates made by the remote thread (rank) are propagated
back to the base thread at this time.

• MTh barrier(index, rank): Thread rank enters into
barrier index. We provide barrier constructs to ease
the programming burden as well as to speed up barrier
processing. In so doing, programmers need not use the
distributed mutex directly for barrier synchronization.

• MTh join(): Each remote thread calls MTh join()
immediately prior to thread termination. This in-
forms the base thread that it too should terminate, al-
lowing the program to end gracefully via a call to
pthread join().

We now discuss both the lock and unlock mechanisms in
greater detail.

4.1. MTh lock()

In order to ensure that a thread has an accurate view of
the global space, an effective strategy must be employed
that will propagate any outstanding updates to the thread
acquiring the distributed lock. We note, however that there
may be multiple threads operating in the global space at
once, resulting in differing views of the GThV structure. In
this case, we rely on the programmer to ensure that there
are no race conditions. This is true for any multithreaded
program.

MTh_lock() MTh_unlock()

Request Mutex

Acquire Lock

Compute update

Receive ACK

Receive updates/
parse tags

tags/send updates

Send ACK

Updates

Transform data

Mprotect globals

Memcopy data

No

Heterogeneous
Yes

Remote Thread Remote Thread

Unprotect Globals

Compute page diffs

Abstract diffs to
application level

pages?dirty
More

Request Release Release lock

Receive ACK

Compute update
tags/send updates

Send ACK

Updates Receive updates/
parse tags

Transform data

Memcopy data

Heterogeneous

No

Yes

Yes

No

Thread Stub Thread Stub

Figure 5. Overview of the lock/unlock mecha-
nism.

The remote thread receives updates in the form of a se-
ries of tags and raw data. The tags indicate to the remote
thread what the raw data represents and is also used in de-
termining whether the remote thread and the home thread
are homogeneous to one another. If both the home and
remote threads are homogeneous to one another, a simple
memcpy() can be used to copy the raw data into the appro-
priate memory locations. However, even in the case of two
homogeneous threads, the remote thread must still parse
through each tag to determine the correct memory location
into which the raw data should be memcpy()’d.

In the event that the remote thread and the home thread
are heterogeneous to one another the raw data must be con-
verted to the native format using the CGT-RMR technique
described in Section 3.2. The tags sent by the home thread
will indicate the endianness of the host system as well as the
size of each data type in the raw data. The remote thread can
then compare the data sizes, endianness, etc. and convert the
data appropriately.

The basis for our distributed locking mechanism lies in
our ability to accurately detect writes to the global vari-
ables contained with the GThV structure. In order to detect
writes, we use the mprotect() system call and a signal han-
dler to trap writes to the GThV structure. Upon writing to a
page in the GThV structure, a copy of the unmodified page
is made and the write is allowed to proceed. This minimizes
the time spent in the signal handler as subsequent writes to

the same page will not trigger a segmentation fault, but will
instead go through directly.

4.2. MTh unlock()

MTh unlock() functions similarly to MTh lock() (but
opposite) with respect to the propagation of updates to
and from the base node. MTh unlock() however, is also
responsible for mapping the detected writes to their ac-
tual memory locations/tags before requesting that the home
thread release the lock.

After making a call to MTh unlock() the remote thread
must go about detecting the individual writes to each dirty
page, mapping them to their base memory location, and
then finally mapping the base memory location to the
application-level tag that will be used in the actual data con-
version upon updating the home thread. As we will discuss
in Section 5, this process can become quite time-consuming
for large updates as each byte on the dirty page must be
compared to its corresponding byte on the original page.

After detecting the writes, the remote thread must re-
lease the distributed lock and propagate any outstanding
changes back to the home thread. The process for propa-
gating such changes is exactly the same as the MTh lock()
case, with the remote thread and the home thread switching
places. See Figure 5 for a diagrammatic overview of the
MTh lock() and MTh unlock() processes.

5. Performance Evaluation

We tested our system on a combination of Sun and In-
tel/Linux machines. Our Sun machine is a 4 CPU Sun Fire
V440 (1.28 GHz) with 16 GB RAM. Our Linux system is a
2.4 GHz Pentium 4 with 512 MB RAM.

Our test programs consisted of a simple matrix multi-
plication and LU-decomposition code with square matri-
ces of size 99x99,138x138, 177x177, and 255x255. Each
test consisted of three threads, two of which were migrated
while the third was not. Our system was tested for both
homogeneous and heterogeneous cases. We characterize
the homogeneous aspects of our system through the ma-
trix multiplication example. The greatest amount of time
is spent in the data conversion portion of our system, so we
give a performance analysis for data conversion in both LU-
decomposition and matrix multiplication.

When components of parallel applications are spread
among multiple machines, a penalty is paid for data shar-
ing. The penalty can be classified as follows:

Cshare = tindex + ttag + tpack + tunpack + tconv (1)

where tindex is the time required to map writes to the pro-
tected global space into indexes that will ultimately be con-
verted into application-level tags, ttag indicates the time

0

50

100

150

200

250

300

350

400

450

T
im

es
 in

 M
ill

is
ec

o
n

d
s

Matrix Size / Platform Pair

Data Conversion
Data Unpacking
Data Packing
Tag Generation
Index Discovery

LL SS SL LL SS SL LL SS SL LL SS SL LL SS SL

99 x 99 138 x 138 177 x 177 216 x 216 255 x 255

Figure 6. Data sharing overhead breakdown.

to generate tags from the indexes, tindex, while tpack and
tunpack show the data packing/unpacking costs. tconv is the
data conversion time to update the copy at home node.

The extra data sharing costs of running the matrix mul-
tiplication application on clusters are shown in Figure 6.
Platform pairs “LL”, “SS”, and “SL” represent Linux/Linux,
Solaris/Solaris, and Solaris/Linux, respectively. When the
sizes of matrices are increased, the overall cost and each in-
dividual cost also grow proportionally. Similar to all other
distributed computing applications, our system faces com-
munication and synchronization overheads. Among them,
the costs of packing/unpacking, tpack and tunpack, are com-
paratively small. Therefore we primarily focus our discus-
sion on tconv, ttag, and tindex.

Figure 7 summarizes our results for the matrix multipli-
cation example. In this case, we show each component of
our system as a percent of the total execution time. Notice
that in the heterogeneous case, the data conversion portion
quickly overtakes all other components as the matrix size
increases, as is to be expected. In the homogeneous cases,
the data conversion phase remains relatively low.

0%

20%

40%

60%

80%

100%

P
er

ce
n

ta
g

e

Platform Pair / Matrix Size

Index Discovery Tag Generation Data Packing
Data Unpacking Data Conversion

138
 x
138

99
 x
99

138
 x
138

177
 x
177

216
 x
216

255
 x
255

99
 x
99

177
 x
177

216
 x
216

255
 x
255

99
 x
99

138
 x
138

177
 x
177

216
 x
216

255
 x
255

Linux - Linux Solaris - Solaris Linux - Solaris

Figure 7. Costs as a percentage of total time.

In Figure 8 we examine the time required to map writes

to the protected global space into indexes that will ulti-
mately be converted into application-level tags (tindex).
This metric is a measure of the performance of the sys-
tem on which the unlock takes place. It is possible that a
series of updates can build up at the home node, resulting
in a rather large batch update being transferred to a remote
thread. In Figure 9 we see a spike for matrix size 216 result-
ing from just such a case. In the future, we hope to improve
this worst-case performance.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 80 100 120 140 160 180 200 220 240 260

T
im

e
in

 S
ec

on
ds

Matrix Size

Index Discovery Matrix Multiplication

Solaris
Linux

Figure 8. Mapping writes to their application-level
indexes for the matrix multiplication sample code.

In Figure 9 we measure the time taken to convert the
indexes measured in Figure 8 into the proper application-
level tags (ttag). In order to avoid the creation of tags for
every array element that may have been modified between
the lock/unlock, our system attempts to group consecutive
array elements into a single tag. Thus, in many cases we
can distill many (hundreds, perhaps thousands) indexes into
a single tag. This allows for greater efficiency in the actual
data conversion phase of the update. It also considerably
reduces the time necessary to create tags as fewer calls to
sprintf() are required. This, in turn, allows us to send fairly
large batch updates to and from the home node with a min-
imal number of socket writes.

In Figure 10 we show the performance of the actual data
conversion (tconv). As we noted earlier, this is the most ex-
pensive portion of the distributed state process. In this case,
we must take into account whether the system is actually
homogeneous or heterogeneous. In the case of the homo-
geneous systems (Solaris/Solaris and Linux/Linux) we can
clearly see that the data conversion time is quite minimal,
even in the case of large updates. This is due to the fact
that we can simply perform a memcpy() on the new data.
Comparing Figure 10 with Figure 11 we notice that in the
homogeneous case the timings are roughly similar, despite
the fact that the LU-decomposition example transfers more

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 80 100 120 140 160 180 200 220 240 260

T
im

e
in

 S
ec

on
ds

Matrix Size

Tag Generation Matrix Multiplication

Solaris
Linux

Figure 9. Forming application-level tags from the
indexes, matrix multiplication example.

data per update than the matrix multiplication example. In
the heterogeneous case, however, the size of the updates
quickly becomes apparent as we note the cost of hetero-
geneity.

The primary reason for this great performance difference
between the homogeneous and heterogeneous cases is that
we are unable to perform a simple memcpy() in the hetero-
geneous case. Instead, we must (potentially) convert each
byte of data in order to ensure program correctness. This
requires not only byte swapping, and sign extension, but
also greater interaction with the tags (a string comparison
to ensure identical tags, as in the homogeneous case, is no
longer sufficient). We are optimistic that the overhead due
to heterogeneity can be improved, particularly by lessening
our reliance on string operations with the tags.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 80 100 120 140 160 180 200 220 240 260

T
im

e
in

 S
ec

on
ds

Matrix Size

Data Conversion Matrix Multiplication

Solaris/Linux
Solaris/Solaris

Linux/Linux

Figure 10. Data conversion for matrix multiplica-
tion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 80 100 120 140 160 180 200 220 240 260

T
im

e
in

 S
ec

on
ds

Matrix Size

Data Conversion LU Decomposition

Solaris/Linux
Solaris/Solaris

Linux/Linux

Figure 11. Data conversion for LU decomposi-
tion.

6. Conclusions and Future Work

In this paper we described our heterogeneous distributed
shared memory system built on top of MigThread. We
demonstrated that heterogeneity can be achieved by uti-
lizing traditional DSM techniques and abstracting system-
level data to the application-level for portability.

We have further shown that parallel threaded applica-
tions can be converted directly to a distributed system
through the use of our pre-processor, allowing for the use
of compute resources beyond the bounds of an individual
workstation. Our distributed state primitives map easily
to their Pthreads counterparts, providing a straightforward
mechanism for porting parallel applications to distributed
applications.

Work continues on improving and optimizing the het-
erogeneous portion of our distributed state mechanism. We
hope to further reduce the time necessary to convert the data
for even the largest of updates. Additional work, such as
supporting file I/O migration and socket migration also con-
tinues as both will be necessary for a truly portable hetero-
geneous system.

References

[1] A. Acharya, G. Edjlali, and J. Saltz. The Utility of Exploit-
ing Idle Workstations for parallel Computation. In Proc. of
the Conference on Measurement and Modeling of Computer
Systems, 1997.

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. Shared Memory
Computing on Networks of Workstations. IEEE Computer,
29(2), 1996.

[3] K. Chanchio and X. H. Sun. Data Collction and Restoration
for Heterogeneous Process Migration. In Proc. of 21st In-
ternational Conference on Distributed Computing Systems,
2001.

[4] D.-Q. Chen, C. Tang, X. Chen, S. Dwarkadas, and M. Scott.
Multi-level Shared State for Distributed Systems. In Proc.
of International Conference on parallel Processing, 2002.

[5] B. Dimitrov and V. Rego. Arachne: A Portable Threads
System Supporting Migrant Threads on Heterogeneous Net-
work Farms. IEEE Transactions on Parallel and Distributed
Systems, 9(5):459–469, 1998.

[6] A. Ferrari, S. Chapin, and A. Grimshaw. Process introspec-
tion: A checkpoint mechanism for high performance hetero-
genesous distributed systems. Technical Report CS-96-15,
University of Virginia, 1996.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid Ser-
vices for Distributed System Integration. In IEEE Computer,
2002.

[8] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Intro-
duction to parallel Computing. Addison Wesley, 2 edition,
2003.

[9] A. Itzkovitz, A. Schuster, and L. Wolfovich. Thread Mi-
gration and its Applications in Distributed Shared Memory
Systems. Journal of Systems and Software, 42(1):71–87,
1998.

[10] H. Jiang and V. Chaudhary. Process/Thread Migration and
Checkpointing in Heterogeneous Distributed Systems. In
Proc. of the 37th Hawaii International Conference on Sys-
tem Sciences, 2004.

[11] H. Jiang, V. Chaudhary, and J. Walters. Data Conversion for
Process/Thread Migration and Checkpointing. In Proc. of
the International Conference on Parallel Processing, 2003.

[12] E. Jul, H. Levy, N. Hutchinson, and A. Blad. Fine-Grained
Mobility in the Emerald System. ACM Transactions on
Computer Systems, 6(1):109–133, 1998.

[13] L. V. Kale and S. Krishnan. Charm++: Parallel Program-
ming with Message-Driven Objects. In G. V. Wilson and
P. Lu, editors, Parallel Programming using C++, pages
175–213. MIT Press, 1996.

[14] E. Mascarenhas and V. Rego. Ariadne: Architecture of
a Portable Threads system supporting Mobile Processes.
Technical Report CSD-TR 95-017, Purdue Univ., 1995.

[15] S. Roy and V. Chaudhary. Design Issues for a High-
Performance DSM on SMP Clusters. Journal of Cluster
Computing, 2(3):177–186, 1999.

[16] P. Smith and N. C. Hutchinson. Heterogeneous Process Mi-
gration: The Tui System. Software Practice and Experience,
28(6), 1998.

[17] R. Srinivasan. XDR: External Data Representation Stndard.
RFC, 1995.

[18] H. Zhou and A. Geist. “Receiver Makes Right” Data Con-
version in PVM. In Proc. of the 14th Int’l Conf. on Comput-
ers and Communications, 1995.

[19] S. Zhou, M. Stumm, M. Li, and D. Wortman. Heterogeneous
Distributed Shared Memory. IEEE Trans. on Parallel and
Distributed Systems, 3(5), 1992.

[20] W. Zhu, C.-L. Wang, and F. C. Lau. JESSICA2: A Dis-
tributed java Virtual Machine With Transparent Thread Mi-
gration Support. In In Proc. of the CLUSTER, 2002.

