
MPI Pre-Processor: Generating MPI Derived
Datatypes from C Datatypes Automatically

Éric Renault and Christian Parrot
GET / INT

Département Informatique
9, rue Charles Fourier
91011 Évry, France

Tel: +33 1 60 76 45 56 — Fax: +33 1 60 76 47 80
{ eric.renault, christian.parrot } @int-evry.fr

Abstract

The grid usage is facing the problem that consists in run-
ning existing sequential code for parallel execution trans-
parently (ie. using source code without modification). AIPE
is a middleware that deals with this problem. MPIPP is the
software component we have developed to allow the gener-
ation of MPI derived datatypes from C datatype definitions
automatically. The goal of this new tool is to make the build-
ing of complex messages easier for the end-user. Moreover,
this paper shows that MPIPP goes farther in the complexity
level of C datatypes that can be taken into account than any
other similar tools have ever gone to.

1 Introduction

Radical changes in the way of taking up parallel com-
puting have operated during the past years. For example,
cluster computing [1] allows organizations to use a high
computing power for a small investment (regarding super-
computers). Grid computing [4, 5] goes one step further
providing a theoretically unlimited computing power while
just connecting to the Internet. If more and more friendly
tools are available to manage and develop on clusters, a less
important effort have been done to help grid computing.
However, in order to increase the number of grid users, it
is necessary to make the usage of the grid easier. The AIPE
project aims at providing users a middleware infrastructure
to develop and process divisible load applications in a very
simple way. This paper presents MPIPP, a tool making the
generation of MPI derived datatypes from C datatypes au-
tomatic.

The document is organized as follows. The next sec-
tion presents the AIPE project that motivated this work.

Section 3 describes how the automatic translation of
C datatypes to MPI derived datatypes have been made pos-
sible and how the piece of software we have developed have
been introduced inside the usual compilation chain. The
next section is a discussion around two tricky cases regard-
ing the automatic translation: pointers and unions. Before
the conclusion, the last section compares our solution to re-
lated works.

2 Motivation

This work has been required to overcome a difficulty en-
countered in the scope of the AIPE project (Automatic In-
tegration for Parallel Execution) [10]. Thus, this section
shortly reminds the goals of the AIPE project.

Let’s consider a data stream supposed to be sequentially
processed by a program that generates a result stream. This
processing is assumed to be a bottleneck of a pipeline. This
processing can be characterized by means of function Work

(TypeIn data, TypeOut result) in which enter data of
type TypeIn and from which exit results of type TypeOut.
Each piece of data arriving by the ingoing stream is pro-
cessed by this function, the one after the other one. The
result of each sequential execution is then put into the out-
going stream. From now on, it is supposed that the process-
ing of a piece of data is independent from the processing of
another.

The ultimate target of the AIPE project is to make the
use of grids easier for the end-user. In particular, AIPE al-
lows the user to benefit from parallel execution on a grid
without any notworthy modification of the source code of
the Work() function. To achieve this, AIPE builds executa-
bles which are able to run the sequential code of function
Work() on several nodes of a grid for different data simul-
taneously. Thus the user must only provide: the compiled

code of the Work() function; both TypeIn and TypeOut defi-
nitions. Note that the use of AIPE does not require to insert
anything in the code of function Work(), like some other
tools do [2]. Providing these pieces of information is suffi-
cient to produce the executable codes. To run the executable
code, it remains to choose the grid nodes. The grain size for
AIPE parallel processing is the one of the Work() function.

AIPE is based on the Master-Slave paradigm. According
to scheduling considerations, the Master sends to Slaves the
data taken from the ingoing data stream, to be processed
by function Work(). Results produced by Slaves are re-
ceived by the Master before being inserted into the outgoing
results stream. Preference has been given to the Master-
Slave paradigm for sake of both simplicity and robustness
on several sides of the problem: security, communications,
scheduling... The intrinsic data parallelism of the appli-
cation prevents from communications between Slaves and
thus provides a very sample exchange schema between the
Master and each Slave.

To desynchronize, as much as possible, the reading of
data from the ingoing stream from the repartition of the
work by the Master, AIPE manages two processes: the one
slices the ingoing stream into pieces of data of TypeIn type
before storing each of them in a buffer (slots of shared mem-
ory); the second one read this buffer content slot by slot...
The set up of this bufferization mechanism for the outgo-
ing stream as well as the ingoing one relaxes synchroniza-
tion constraints between both acquisition and treatment and
weakens the flow fluctuations of the streams. In the same
way, bufferization of data and results can be introduced in
Slave programs running for receiving from and sending to
the Master respectivily.

AIPE only requires grid management standard functions.
The Globus ToolKit [4] is used to provide authentication
and staging executables when submitting a job. To pre-
vent from making expensive input/output transfers, pro-
cesses (the Master and the Slaves) communicate data and
results straightly from memory to memory (ie. without us-
ing extra-files for storing or transferring data from one pro-
cess to another one). Hence a Globus compatible MPI [3]
implementation (MPICH-G2 [8]) has been used to ensure
the message passing communication requirements.

Due to the absolute necessity for the processings to be
independent, AIPE is well suited for applications involving
data parallelism. So, as one would expect, by exploitat-
ing this data parallelism AIPE allows to obtain good perfor-
mance measurements (near linear speed-up).

To make AIPE as generic as possible types of messages
sent from the Master to the Slaves (data) and from the
Slaves to the Master (results) must be taken into account
without restrictions and without extra effort from the end-
user. Therefore, according to both TypeIn and TypeOut

(parameters of funtion Work()) declarations, messages type

definitions should be automatically generated. MPICH-G2
API offers functions enabling dynamic message type dec-
laration in the process of execution. Taking into account
TypeIn and TypeOut type definitions by these primitives re-
mains to be done.

3 Description

Fig. 1 presents a generic abstraction for C datatypes.
There are three ways to define a new type using the C pro-
gramming language. The first one consists in creating a
kind of alias to an already existing type (either a basic type
or a user-defined type) using keyword typedef; the second
one consists in aggregating pieces of information inside a
single structure or union using keywords struct and union

respectively; the last one is a combination of both previ-
ous ways in which a structure or a union is defined together
with a synonym. In case of a structure or union is defined,
a list of fields is provided, each one being associated a type
(basic or user-defined) and a list of variables. A variable is
associated a name, the level of indirections (the number of
pointers to cross to reach the information of the given type)
and a list of array sizes, one for each dimension.

As one can see, keyword enum is not taken into account
directly as it just aims at defining an integer for which the
set of values is specifyed at compilation.

MPI provides six functions to define the structure of new
derived datatypes, five functions to get information about
datatypes (basic or derived) and two functions for the creat-
ing and the destruction of new derived datatypes. However,
only four are required to generate MPI derived datatypes
from C datatypes automatically. Others are useful to create
specific datatypes to transfert parts of a matrix or noncon-
tiguous data from a given structure.

For MPIPP, the definition of MPI derived datatypes have
been divided in two cases. The first case is the creation of a
new MPI derived datatypes that consists in an array. In this
case, the type is translated using the MPI_TYPE_CONTIGUOUS

function for which only the number of elements and the size
of each element in the array must be specified. If an array is
composed of more than one dimension, the number of ele-
ments for the MPI derived datatype is the product of the size
of each dimension. If the new MPI derived datatype is based
on a basic or an already derived datatype, the new one is de-
fined as an array composed of one dimension with a single
element. The second case is the creation of a new MPI de-
rived datatype that consists in a structure. In this case, the
type is translated using the MPI_TYPE_STRUCT function for
which only the offset, the size and the type of each element
must be specified. For more complex datatypes, ie. those
involving at the same time arrays and structures in any or-
der and at any depth, a recursive definition have been im-
plemented using the two cases described above. Note that

Type

is_struct

string
structure

Structure

is_union
name
field

Field

type
variable
next

type
with_typedef

Definition

var
next

Array

size
next

Variable

pointer
name
array
next

0 −> 1

1

1

1

0 −> n

0 −> n

1 −> n

Figure 1. Data structures to store the definition of C datatypes.

the other functions provided by MPI to define complex de-
rived datatypes are not useful here as the C programming
language does not allow to request a specific extent and/or
stride.

The list of C datatypes from the original file, to be trans-
formed to MPI derived datatypes, is provided on the com-
mand line when invoking mpipp. This list can be hard coded
to match the requirements of a specific software suite (this
is what have been done for AIPE) or it can be the result of
any script.

In order to create a new MPI derived datatype, one must
use MPI functions. It is not possible to define this new
type using a set of specific directives. Thus, the definition
of the new MPI derived datatype is provided as a function
which prototype is as follows (where XXX is the name of
the C datatype to transform):

int MPI_Typedef_XXX (MPI_Datatype *)

Then, it is the responsability of the developer to call this
function in order to make this new MPI derived datatype
available to its application.

The automatic generation by MPIPP of MPI derived
datatypes from C datatypes have been made possible by
introducing extra steps in the usual compilation chain as
shown in Fig. 2. Typically, in order to make sure the defi-
nition of a given type is complete, the first step in the com-
pilation chain (cpp for the C preprocessor) is executed. As
the generated file is to be compiled by the effective C com-
piler (cc), it must contain all the information required by
any type in the file (if not, as any type must be defined be-
fore being used, this file could not be compiled properly

by cc). Thus, instead of feeding cc with the intermediate
file generated by cpp, this intermediate file is transformed
by mpipp (the MPI preprocessor we have developed). Both
lex and yacc tools [9] have been used to parse the inter-
mediate file generated by cpp and create the data structures
presented in Fig. 1. Then, mpipp uses these data structures
to produce a new C file in which the definition (according
to the three cases above) of the new MPI derived datatypes
have been appended to the original file automatically. This
new source file is then provided to cpp. The intermediate
file which results is then processed by the usual compila-
tion chain.

4 Example

In order to illustrate the functionalities of MPIPP, the
simplest way consists in providing an example and have a
look at the code automatically generated by the software.

The command we have developed (mpipp) to perform
the automatic translation of C datatypes to MPI derived
datatypes requires the source code to be provided on the
standard input and the result of the processing is then pro-
vided by the command to its standard output. Parameters
provided on the command line is the list of C datatypes that
must be processed by the command.

If src is a file that contains the definition of C datatypes
and dest is the file in which the user wants to store the result
of the processing from mpipp, the user can provide a com-
mand line close to the following one in order to generate the
MPI derived datatype associated to C datatype rectangle

automatically:

.c cpp .i cc .s as .o ld

.aar

.c cpp

.i

.h

a.out

stage
mpipp Extra

.h
Usual compilation

chain

Figure 2. Introduction of MPIPP in the compilation chain.

cat src | mpipp rectangle > dest

Fig. 3 presents a part of the content of a file (file src

on the command line above) including typical examples of
structured datatype declarations written using the C pro-
gramming language. In this example, two C datatypes are
defined. The first one is a simple declaration for a string of
characters; and the second one is a composed declaration
using both predefined and user-defined C datatypes.

typedef char string [256] ;

typedef struct {
int id ;
string name ;
struct {

int length ;
int width ;

} size ;
} rectangle [100] ;

Figure 3. Input to mpipp.

Listings #1 to #5 present the code added by mpipp to the
content of file src automatically, ie. the content of file dest

when using the command line above.
Function MPI_Typedef_rectangle is composed of two

parts: the first one (lines 5 to 25) declares both datatypes
and variables used in the function and the second one
(lines 27 to 66) provides the set of MPI calls for the def-
inition of the new MPI derived datatype. Both parts are
following the same scheme.

When the source code is parsed by mpipp, the piece of
software creates a list of definitions which structure is pre-
sented in Fig. 1. Then, in order to define the new MPI de-
rived datatype, a depth-first analysis is performed.

For the new definition of a flat datatype (ie. a datatype
which is not a structure and which do not use a structure for

its definition), the process is recursively iterated on the type
on which the new datatype is based if the type is not a base
type. Then, wether the original type is a flat datatype or not,
the type is created using the pair of MPI_Type_contiguous
and MPI_Type_commit functions (lines 27 and 28 for type
string).

2

3

4

1

int string

char int int

struct

struct [100]

rectangle

Figure 4. Depth-first analysis of the rectangle
C datatype.

This example also highlights that whatever the way the
structures are defined in the source code, the definitions of
structures in the MPI_Typedef_XXX function is always
limited to one level, exploding the definition in several parts
to match this model (lines 7 to 10) in Listing #2. This way,
it becomes possible to name each new datatype and there-
fore it is easier to get all its characteristics (especially size
and offset). Moreover, this has no impact on the memory
representation of data structures.

For the new definition of a non-flat datatype (ie. a type
including structures either defined inline in the structure

or which type is defined outside the structure), the process
is recursively iterated on the type associated to each field
in the new datatype until the associated type is a base
type. In our example, and using the depth-first analysis on
type rectangle as shown in Fig. 4, it has been divided as
follows: first, string is defined

5 typedef char string[256];
6 MPI_Datatype string_datatype;
.
.
.
// Array definition

27 MPI_Type_contiguous(256,MPI_CHAR,&string_
datatype);

28 MPI_Type_commit(&string_datatype);

Listing #1

then, the inner most internal structure is defined

7 struct name_2{
8 int length;
9 int width;

10 } struct_2_var[1];
11 MPI_Datatypestruct_2_datatype ;
12 MPI_Aintstruct_2_disp[3];
13 MPI_Datatype struct_2_datalist[3];
14 int struct_2_len[3],struct_2_base;

.

.

.
// Begin of structure

29 MPI_Address(struct_2_var,&struct_2_base);

// Field ‘‘length’’
30 struct_2_datalist[0]=MPI_INT;
31 struct_2_len[0]=1;
32 MPI_Address(&(struct_2_var[0].length),str

uct_2_disp+0);
33 struct_2_disp[0]-=struct_2_base;

// Field ‘‘width’’
34 struct_2_datalist[1]=MPI_INT;
35 struct_2_len[1]=1;
36 MPI_Address(&(struct_2_var[0].width),str

uct_2_disp+1);
37 struct_2_disp[1]-=struct_2_base;

// End of structure
38 struct_2_datalist[2]=MPI_UB;
39 struct_2_len[2]=1;
40 MPI_Address(struct_2_var+1,struct_2_disp+

2);
41 struct_2_disp[2]-=struct_2_base;

// Structure definition
42 MPI_Type_struct(3,struct_2_len,struct_2_d

isp,struct_2_datalist,&struct_2_datatype);
43 MPI_Type_commit(&struct_2_datatype);

Listing #2

this is followed by the definition of the external structure

15 struct name{
16 int id;
17 string name;
18 struct name_2 size;
19 } struct_var[1];
20 MPI_Datatype struct_datatype;
21 MPI_Aint struct_disp[4];
22 MPI_Datatype struct_datalist[4];
23 int struct_len[4],struct_base;

.

.

.
// Begin of structure

44 MPI_Address(struct_var,&struct_base);

// Field ‘‘id’’
45 struct_datalist[0]=MPI_INT;
46 struct_len[0]=1;
47 MPI_Address(&(struct_var[0].id),struct_di

sp+0);
48 struct_disp[0]-=struct_base;

// Field ‘‘name’’
49 struct_datalist[1]=string_datatype;
50 struct_len[1]=1;
51 MPI_Address(&(struct_var[0].name),struct_

disp+1);
52 struct_disp[1]-=struct_base;

// Field ‘‘size’’
53 struct_datalist[2]=struct_2_datatype;
54 struct_len[2]=1;
55 MPI_Address(&(struct_var[0].size),struct_

disp+2);
56 struct_disp[2]-=struct_base;

// End of structure
57 struct_datalist[3]=MPI_UB;
58 struct_len[3]=1;
59 MPI_Address(struct_var+1,struct_disp+3);
60 struct_disp[3]-=struct_base;

// Structure definition
61 MPI_Type_struct(4,struct_len,struct_disp,

struct_datalist,&struct_datatype);
62 MPI_Type_commit(&struct_datatype);

Listing #3

the array finishes the definition.

24 typedef struct name rectangle[100];
25 MPI_Datatype rectangle_datatype;

.

.

.
// Array definition

63 MPI_Type_contiguous(100,struct_datatype,&
rectangle_datatype);

64 MPI_Type_commit(&rectangle_datatype);

Listing #4

Note that lines 65 and 66 have been added to
ease the development and involves no performance
penalty at execution when using the new MPI derived
datatype. Listing #5 presents the definition of function
MPI_Typedef_rectangle.

1 #include<mpi.h>
2
3 void MPI_Typedef_rectangle(MPI_Datatype *t
ype)

4 {
.
.
.

65 MPI_Type_contiguous(1,rectangle_dataty
pe,type);

66 MPI_Type_commit(type);
67 }

Listing #5

Finally, note that even if new C datatypes are already
defined in the source code, they are all redefined inside
the body of the function created to define the MPI derived
datatype. This is performed in order to make sure there
is no conflict between variable names used in the body
of the function and other global variables or user defined
datatypes. However, this has no impact on performance,
except (may be) at compilation time.

5 Tricky cases

At present, only two cases have not been solved. How-
ever, it seems that solutions are very application dependent
and generating MPI derived datatypes including these cases
cannot be performed without extra information.

The first case is the use of pointers. What does it mean
to send a pointer from one process to another one? In the
MPI programming model, each process is associated a spe-
cific virtual address space; thus, the address of an object
inside this virtual address space should have no meaning in
the virtual address space of the other processes. One could
argue this address should be sent as an MPI_INT or a set
of MPI_BYTE; another one could argue that the user may
expect the value pointed to to be sent: this seems to be ap-
plication dependent and no formal choice have been done
already.

The second case is the use of unions. Regardless struc-
tures, MPI provides no specific function to deal with unions.
A solution is provided in [3] but an extra integer is required
to select in an array the good MPI derived datatype. There-
fore, as this integer must be managed by the user, it is
not possible to generate an MPI derived datatype from a

C datatype automatically.
Thus, as shown in this section, these tricky cases are not

due to the implementation of MPIPP but are involved by the
intrinsic nature of both pointers and unions.

6 Related Works

Similar tools have been designed in order to provide the
same kind of translation. However, none was able to match
the requirements of AIPE. This section presents both Au-
toMap and C++2MPI and discusses advantages and draw-
backs of each both in general and regarding AIPE require-
ments.

AutoMap [6] is a high level tool that facilitate the use
of data-structures in MPI. This piece of software generates
new MPI derived datatypes from a user-defined file pro-
vided by the user. This file is obtained by modifying an-
other file containing the definition of the C data-structure.
Modifications consist in inserting for each instance a pair
of begin/end comments to embrace the C data structure the
user wants to translate to the corresponding MPI derived
datatype. These C comments are used by the dedicated
parser to automatically generate the C code that enables the
dynamic declaration of the MPI derived datatype. The in-
sertion of these C comments is handmade and needs the
end-user to add extra lines in the source code. Therefore,
this solution is not suitable for AIPE. Moreover, considered
structures are built from basic C datatypes, not from com-
plex C datatypes like arrays, structures... In other words,
this software tool does not work for any C datatype defini-
tion.

C++2MPI [7] is a software tool developed as part of
PGMT (for Processing Graph Method Tool) to provide the
MPI derived datatype associated to a C++ class. The end-
user specifies classes to deal with by means of pragma di-
rectives inserted before the definition of the corresponding
classes. These directives are used by the dedicated parser
to automatically generate the MPI code that enables the dy-
namic declaration of the MPI derived datatypes. Following
the example of AutoMap, the insertion of these directives
is handmade, ie. extra lines must be added to the source
code by the end-user. Thus, this solution does not match
AIPE requirements either. It is interesting to note that re-
gardless AutoMap, C++2MPI is able to handle arrays of
classes; however, it is not able to handle nested classes.

Table 1 draws a comparison between AutoMap,
C++2MPI and MPIPP. Finally, the mpipp software tool we
have developed provides two main advantages regarding the
other works. First, it does not require the original source
code to be modified by the end-user. Second, it allows to
take into account any kind of C datatype (including nests of
arrays and structures) except the tricky cases discussed in
Section 5.

Table 1. Comparison of functionalities.

| | AutoMap | C++2MPI | MPIPP |

� Language	C	C, C++	C
� Datatypes			
� basic	�	�	�
� array			
♦ one dim.	�	�	�
♦ multi-dim.			�
� structure	�	�	�
� depth of nested			
♦ structures	1	1	any
♦ arrays	1	1	any
� Translation			
� number	1	any	any
� source modified	yes	yes	no
� notification	comments	# pragma	N/A

7 Conclusion

This article presents MPIPP, a new tool to automatically
generate MPI derived datatypes from C datatypes. Existing
works about this subject highlights that users and applica-
tions are requesting such a tool. Inside the AIPE frame-
work, the MPIPP tool has proven its efficiency rapidly. As
shown in section 6, the main improvement of MPIPP stands
in its ability to translate any kind of C datatype to MPI de-
rived datatype with no restriction but the use of unions and
pointers (as discussed in section 5).

An MPI binding is available for other languages like For-
tran, C++, Java... Each of them is potentially concerned
with MPIPP advantages. Therefore, the implementation
of MPIPP for these languages is worth to do. Moreover,
this shall be easy regarding the fact that the current work
deals with most of the datatypes available in all these lan-
guages. However, implementations for object-oriented lan-
guages may require extra developments regarding procedu-
ral languages.

References

[1] R. Buyya. High Performance Cluster Computing: Architec-
tures and Systems, volume 1. Prentice Hall, 1999.

[2] G. Cooperman, H. Casanova, J. Hayes, and T. Witzel. Us-
ing TOP-C and AMPIC to Port Large Parallel Applications
to the Computational Grid. Future Generation Computer
Systems, 19(4):587–596, May 2003.

[3] M. P. I. Forum. MPI: A Message Passing Interface Standard,
June 1995.

[4] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. International Journal of Supercom-
puter Applications, 11(2):115–128, 1997.

[5] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Architecture. Morgan Kaufmann Publishers Inc.,
1999.

[6] D. S. Goujon, M. Michel, J. Peeters, and J. E. Devaney. Au-
toMap and AutoLink: Tools for Communicating Complex
and Dynamic Data-Structures Using MPI. In D. K. Panda
and C. B. Stunkel, editors, Second International Workshop
on Network-Based Parallel Computing: Communication,
Architecture, and Applications, volume 1362 of Lecture
Notes in Computer Sciences, pages 98–109, Las Vegas, NV,
January 1998. Springer-Verlag.

[7] R. Hillson and M. Iglewski. C++2MPI: A Software Tool
for Automatically Generating MPI Datatypes from C++
Classes. In International Conference on Parallel Comput-
ing in Electrical Engineering, pages 13–17, Trois-Rivières,
QC, August 2000. IEEE Computer Society.

[8] N. T. Karonis, B. R. Toonen, and I. T. Foster. MPICH-G2:
A Grid-Enabled Implementation of the Message Passing In-
terface. Journal of Parallel and Distributed Computing,
63(5):551–563, May 2003.

[9] J. R. Levine, T. Mason, and D. Brown. lex & yacc. Unix
Programming Tools. O’Reilly, 2nd edition, October 1992.

[10] D. Millot, C. Parrot, and Éric Renault. Transparent Usage
of Grids for Data Parallelism. In M. Oudshoorn and S. Ra-
jasekaran, editors, Proceedings of the ISCA 18th Interna-
tional Conference on Parallel and Distributed Computing
Systems, pages 241–246, Las Vegas, NV, September 2005.
ISCA, The International Society for Computers and Their
Applications.

