
Using Overdecomposition to Overlap Communication Latencies with
Computation and Take Advantage of SMT Processors

Lars Ailo Bongo1, Brian Vinter2, Otto J. Anshus1,
Tore Larsen1 and John Markus Bjørndalen1

1) Department of Computer Science, University of Tromsø, Norway
{larsab, otto, tore, johnm}@cs.uit.no

2) DIKU, University of Copenhagen, Denmark
vinter@diku.dk

Abstract

Parallel programs running on clusters are typically de-
composed and mapped to run with one thread per processor
each working on its disjoint subset of the data. We evalu-
ate performance improvements and limitations for a micro-
benchmark and the NAS benchmarks, by using overdecom-
position to map multiple threads to each processor to over-
lap computation with communication. The experiment plat-
form is a cluster with Pentium 4 symmetric multithread-
ing (SMT) processor nodes interconnected through Gigabit
Ethernet. Micro-benchmark results demonstrate execution
time improvements up to 1.8. However, for the NAS bench-
marks overdecomposition and SMT provides only slight
performance gains, and sometimes significant performance
loss. We evaluated improvement and limitation sensitivity
to problem size, communication structure and whether SMT
is enabled or not. We found that performance improve-
ments are limited by: applications having communication
dependencies that limit thread-level parallelism, increase
in cache misses, or increased systems activity. Our study
contributes a better understanding of these limitations.

1 Introduction

In this paper we investigate when and how overdecompo-
sition may be applied to improve performance without any
changes to source-code for MPI-based [17] parallel scien-
tific applications running on clusters of simultaneous multi-
threading (SMT) enabled single-processor Pentium 4 nodes
interconnected through low-cost Gigabit Ethernet.

As shown in figure 1, scientific parallel applications are
typically decomposed such that one processor in the cluster
runs one thread for a disjoint subset of the data.

Increasing the decomposition of the data will increase

the number of threads and may allow for overlapping com-
putation with communication to improve single-application
performance. However, increasing the decomposition will
typically also increase the number of messages exchanged
and the latencies and other costs associated with those mes-
sage transfers. Our goal is to identify when and how we
may increase the decomposition to achieve the performance
benefits of overlapping computation and communication
while not incurring communication costs that alleviate the
increased performance.

The paper makes three contributions:

• We provide an experimental evaluation of the perfor-
mance benefits of overdecomposition for parallel ap-
plication with a wide range of communication charac-
teristics.

• We also provide an experimental evaluation of the ben-
efit of SMT for parallel applications implemented us-
ing MPI.

• We provide insight into system software issues that
effect overdecomposition improvements by describing
and using an analysis methodology that combines mes-
sage traces, operating system counters and hardware
performance counters.

2 Experiment setup

2.1 Hardware platform

All experiments were run on a cluster of 44 nodes in-
terconnected over Gigabit Ethernet. Each node is a single
processor system with 2 GB RAM and local disk. The pro-
cessor used is a 90 nm 3.2 GHz version of the Intel Pentium
4. This is an SMT processor applying the second iteration



Figure 1. A parallel application without (left), and with overdecomposition (right).

of Intel’s Hyperthreading (HT) Technology [1] which of-
fers several improvements over previous implementations
in terms of increased or enhanced resources and more dy-
namic resource allocation.

Each processor has a 12 KB L1 execution trace cache for
microoperations, 16 KB 8-way L1 data cache, and a 1 MB
8-way unified L2 cache. Memory access latencies measured
using Cachebench [13] are: L1 data: 1.25 ns, L2 unified:
8.78 ns, and main memory: 36.6 ns.

2.2 Software platforms

The cluster nodes run the Linux 2.4.18 uni-processor
kernel for the experiments where SMT is disabled, and
Linux 2.4.18smp or 2.6.9smp for the SMT experiments.
The 2.4 kernel was the first Linux kernel with explicit sup-
port for Intel HT Technology. The 2.6 kernel further im-
prove the handling of HT.

The Native POSIX Thread Library (NPTL) [5] was used.
NPTL synchronization variables are implemented using the
fast user-space locking system call (futex) which handles
any non-contended case without requiring a system call.

The communication runtime system used was LAM/MPI
version 7.1.1 [11]. LAM/MPI supports hierarchy aware col-
lective operation and shared memory intra-node commu-
nication. But when applying overdecomposition multiple
processes must be used. For the SOR experiments PastSet
[25] was used instead of LAM/MPI. PastSet differs from
LAM/MPI in that it supports multi-threading, buffers are
explicitly allocated, the communication system has helper
threads, and the same protocol is used for all message sizes.

2.3 Benchmarks

The successive over-relaxation (SOR) kernel was cho-
sen under the assumption that the latency of its block-
ing point-to-point communication operations can easily be
overlapped with computation. The benchmark is run for
three problem sizes: large, medium and small. For these
communication operations contribute to respectively 25%,

Benchmark Messages Coll. Asynch.
BT Many small No Yes
CG Many small, Manual Yes

few large
EP Few small Yes No
FT Few large Yes No
IS Few large Yes No
LU Many small No No
MG Many medium No Yes
SP Many medium No Yes

Table 1. NAS benchmark communication be-
havior. Small message is less than 1 KB,
large more than 1 MB. Yes for collectives if
execution time is dominated by them. Yes for
asynchronous if asynchronous operations
are used.

50% and 75% of the execution time, when run on 32 nodes
with SMT disabled. SOR is compiled with gcc 3.2.3.

The NAS benchmarks [18] are widely used to evaluate
different aspects of parallel architectures. They represent
a variety of communication behaviors as shown in table 1.
We use the NAS 2.4 MPI implementation with the class B
and C problem sizes. The benchmarks were compiled using
the Intel Fortran 8.1, and Intel C++ 8.1 compilers.

2.4 Data collection

PAPI [4] is used to access the Intel Pentium performance
counters. The Linux kernel is patched with perfctr 2.6.9 to
provide virtual performance counters. These are per-thread
counters that increase only when the thread runs user level
code. Since this release of perfctr lacks SMT support, we
have no hardware counter data for the SMT experiments.

Linux maintains process statistics including user level
time and system level time per thread, and idle and inter-
rupt handling time per processor context.

For runtime monitoring we use runtime statistical pro-



filing (as described in the next section). For the SOR ex-
periments we use EventSpace [2] to collect message traces
for post-mortem analysis. EventSpace allows us to record
timestamps inside the communication system, such as be-
fore and after writing a message to a buffer.

2.4.1 Overhead

For SOR, the overhead for reading the OS resource counters
was less than the variation in execution time.

Message tracing overhead depends on the communica-
tion characteristics of the application. For our experiments,
the overhead is typically in the 0–4% range. The PAPI over-
head due to the in-kernel collection of data is in the 0–2%
range. The perturbation introduced by the data collection
may influence which mappings shows best performance, fa-
voring mappings with fewer threads per processor. Simi-
larly, execution time improvements due to overdecomposi-
tion may also be negatively affected. Still, we believe the
data collected demonstrates important trends such as reduc-
tion in idle time and increased overhead.

3 Analysis methodology

We characterize each benchmark by: (i) thread-level par-
allelism (TLP): number of threads ready to run (or running)
application computation code, (ii) memory-wait: time the
processor is stalled due to cache misses, (iii) system over-
head: number of cycles used for running operating sys-
tem code, (iv) communication overhead: number of cycles
for communication activity, (v) network-wait: time waiting
due to network latency, and (vi) synchronization-wait: time
waiting for data arrival or thread synchronization.

TLP is estimated from the thread count by subtracting the
number threads blocked on communication, assuming the
remaining threads are compute ready. To characterize the
distribution of TLP over a benchmark run we define TLPN

as the ratio of execution time where TLP is larger than or
equal to N. Thus, TLP1 is the percentage of execution time
when at least one thread was, our could have been, comput-
ing. Without operating system instrumentation we cannot
distinguish between these two states.

Memory wait is calculated based on the recorded num-
ber of cache misses and the miss penalties determined pre-
viously using Cachebench.

System overhead includes operating system activity for
inter-node communication, synchronization overhead, con-
text switches, and TLB misses. System time statistics are
maintained by Linux.

Communication overhead was typically either to small
to be significant, or accounted for elsewhere. The main
sources are thread synchronization and memory copying.

Threads:processor 2:1 4:1 8:1 16:1 32:1
Idle 1435 1565 1417 1644 976
System activity 70 130 250 500 1040
Memory wait 226 603 1492 3147 6576
TLB wait 10 20 41 81 165
Unknown 97 163 483 958 1991
in % of exec 1.0% 2.0% 5.7% 10.3% 18.9%

Table 2. Breakdown of SOR overhead in-
creases relative to the one thread per pro-
cessor mapping. The measurements are for
the medium problem size run on 32 nodes
with SMT disabled. Unknown is the differ-
ence between estimated and measured exe-
cution time reduction. All times are in ms.

Both are already accounted for respectively as system over-
head and memory wait.

Network wait, the time between sending a request and
receiving a response, excluding request processing time on
the other node, and synchronization wait, the time between
a receive operation blocked until a send is initiated, are de-
termined from message traces. Wait time at synchronization
points is calculated as described in [3].

3.1 TLP and overhead variation

During our analysis we assume that the metrics are sim-
ilar on all nodes if the benchmark is load balanced. Using
the SOR benchmark we measured the variation for the cal-
culated metrics for SOR run on 32 nodes with the medium
problem size. The benchmark was run five times.

TLP and data cache miss averages are similar for all
nodes for all runs, with standard deviations less than 5%
of mean. L1-instruction cache misses and system time have
more variation (standard deviation is about 10% of mean).

SOR has non-deterministic waiting pattern where most
nodes waits for other nodes, due to a small load imbalance
in the communication workload since two of the nodes only
have one neighbor. Therefore the variation is large for net-
work wait and synchronization wait (and hence idle time).
Which nodes have large synchronization wait change when
rerunning an experiment, while network wait is similar for
all runs. We believe we still can use the average synchro-
nization wait time for all cluster nodes in the analysis, since
the average has less variation.

3.2 Overhead accuracy

The overhead metrics combine data from several sources
and abstraction levels. Also, we make several simplifica-
tions for system behavior. Here, we evaluate the accuracy



of the estimated overheads. In addition we have verified that
TLP results correspond with idle ratio statistics collected by
the operating system.

Subtracting all overheads from the reduction in idle time
should give the reduction in execution time. The sum of
overheads is usually overestimated (table 2). There are two
sources of error. First the memory miss penalty is too large.
Probably since overlapped cache misses are not taken into
account. For SOR increasing the number of threads in-
creases the number of cache misses and hence the miss
penalty overestimation. If we assume computation time
does not increase, then we can find the overestimation by
comparing the sum of memory wait and user level time. The
second source of error is system time which is too high for
frequently communicating benchmarks.

3.3 Runtime monitor implementation

Our MPI runtime monitor intercepts all communication
operations. Statistics about operation times and TLP are up-
dated for each operation. In addition OS statistics and PAPI
counters are read at selected collective operations (usually
when calling MPI Init and MPI Finalize).

Since we do not have any tracing inside the communi-
cation system we cannot distinguish between network wait
and synchronization wait. TLP counters are in a shared
memory map, and these are updated before and after calling
a blocking communication operation.

Usually metrics results are presented as statistics over
of all nodes over all iterations. But for applications with
load balance problems per node statistics are useful. Simi-
larly for applications with several phases, per phase statis-
tics should be used.

4 Performance improvement

Results from running the benchmarks with one thread (or
process) per processor with SMT disabled provides insight
into which benchmarks have communication wait that can
be overlapped with computation. We do similar experiment
with SMT enabled, to verify that SMT does not slow down
the benchmarks.

We measure overdecomposition execution time improve-
ments with SMT disabled to get insight into the degree of
overlapping, and overhead increase we can achieve when
threads are not run in parallel on a processor. Then we en-
able SMT to measure how TLP and the overheads increase
when threads can run and compete for resources in parallel.

For all experiments we first analyze the simpler SOR
benchmark, before analyzing how the different communica-
tion behavior of the NAS benchmarks influence the results.
All experiments are repeated ten times and the mean is re-

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 32 16 8 4 2 1

Im
pr

ov
em

en
t

Threads per processor

Large
Large - SMT

Medium
Medium - SMT

Small
Small - SMT

Figure 2. SOR execution time improvements
relative to sequential code.

ported. The standard deviation for the execution times was
low if not otherwise noticed, usually less than 2% of mean.

4.1 Baseline

For problem constrained scaling with SMT disabled, ex-
ecution time is reduced for SOR for all three problem sizes
when increasing the number of nodes from 1 to 44. Sim-
ilarly, execution time is reduced for all NAS benchmarks
with both problem sizes when increasing the number of
nodes from 1 to 32 or 36 (BT and SP can only be run with
a square number of processes). For the remaining experi-
ments we use either 32, 36, or 44 nodes.

The SOR problem sizes were chosen such that 25%, 50%
and 75% of the execution time is spent blocked in commu-
nication operations. For these respectively 20%, 40% and
55% is due to network latency, the remaining is for synchro-
nization wait.

For most NAS benchmarks wait operations, collective
operations or blocking receiving operations contribute sig-
nificantly to the execution time (table 3).

In conclusion, all benchmarks scale to the cluster size
used, and most have operations that can partially or totally
be overlapped with computation by using overdecomposi-
tion.

4.2 Overdecomposition

SOR was run with 2, 4, 8, 16 and 32 threads per pro-
cessor (below we use 2:1 when referring to a mapping with
two threads per processor core). Execution time improves
compared to the one thread per processor mapping for all
problem sizes (figure 2). The large problem size has best
parallel efficiency, but the relative reduction in execution
time is largest for the small problem size (1.5). The best
mappings have few threads; 2:1 with SMT disabled. The



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 16 4 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(a) BT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(b) CG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(c) EP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(d) FT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(e) IS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(f) LU

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 8 4 2 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(g) MG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 16 4 1

Im
pr

ov
em

en
t

Processes per processor

B
B - SMT

C
C - SMT

(h) SP

Figure 3. NAS benchmark execution time improvements relative to one thread per processor map-
ping. Experiments were run on 32 or 36 (BT and SP) nodes.



Benchmark class B class C
BT wait (54%), waitall (10%) wait (32%), waitall (8%)
CG wait (53%), send (24%) send (40%), wait (32%)
EP none none
FT alltoall (62%) alltoall (53%)
IS alltoallv (54%), allreduce (29%) alltoallv (47%), allreduce (20%)
LU recv (12%), send (10%), wait (7%) recv (9%), send (8%), wait (4%)
MG wait (24%), send (16%) send (18%), wait (8%)
SP waitall (80%) waitall (60%)

Table 3. MPI operations contributing to more than 4% of the execution time.

results shows that overdecomposition can improve applica-
tion performance even on uni-processors.

Figure 3 shows that with SMT disabled overdecompo-
sition improves performance significantly only for FT for
both class B and class C. However, performance decreased
for for CG, IS and MG.

4.3 Overdecomposition with SMT

Enabling SMT does not change 1:1 mapping execution
time, but the improvements with overdecomposition are
better. For SOR the best improvement is 1.81 compared
to the 1:1 mapping. For the large problem size the parallel
efficiency is improved from 30 to 40 (figure 2). The best
performance is for mappings with more threads than pro-
cessor contexts (four threads per 2-way SMT core).

Figure 3 shows that for the NAS benchmarks, enabling
SMT gives performance improvement for EP, FT, LU and
SP (only for class B). For BT and LU performance was un-
changed, while CG and IS got a significant slowdown. For
most experiments overdecomposition had best performance
with two processes per processor.

The benchmarks for which performance improves have:
(i) few and small messages, (ii) few large collective opera-
tion messages, and (iii) many small blocking point-to-point
messages.

Performance is either not changed or decreased for
benchmarks with many asynchronous point-to-point opera-
tions with medium or small sized messages. The IS bench-
mark has two execution phases with almost all communi-
cation taking place in the second phase, as well as a global
synchronize operation between the phases preventing any
overlap.

In conclusion, applying overdecomposition demon-
strates a potential performance gain for some application
characteristics, but should not be applied indiscriminately
as it may result in unchanged or reduced performance for
other applications. The mappings with best performance
have few threads per processor, but some have multiple
threads per processor context. Also, the best performance

improvements are for problem sizes where more than 50%
of the 1:1 execution time is due to communication.

5 Performance limitations

In this section we analyze how many threads are run-
ning at the same time, and which overheads increase most
for the different benchmarks. Finally, we measure the ef-
fect of synchronization variable implementations, user-level
schedulers and operating system kernels.

5.1 Thread level parallelism

When run with SMT disabled, SOR does not have
enough TLP1 to fully utilize the single processor context
even with 32 threads per processor. The TLP limitation is
not due to system code using the processor, since with more
than four threads the idle ratio increases. Rather the lim-
itation is due to data dependencies in the application and
scheduling policies in the system software.

Enabling SMT improves TLP1 for SOR, but still TLP1

decrease when there are too many threads per processor.
Also, when the problem size gets smaller the ratio of execu-
tion time where at least two threads are runnable decreases.
Often it can be as low as 5%, even for configurations with
32 threads.

With SMT disabled, increasing the number of processes
per processor does not always increase TLP1 for the NAS
benchmarks. For EP and MG the processor is saturated,
but for the other benchmarks processor utilization is usually
less than 76% (table 4).

Enabling SMT may increase TLP1 with a few percent-
ages. Also, as shown in table 5 TLP2 is low for BT, CG,
LU and SP.

5.2 Overhead increases

For SOR, all overheads increase. The increase in data
cache misses is most significant for the medium problem



Benchmark B C
BT 44–76% 70–67%
CG 21–7% 27–9%
EP 100-99% 100-99%
FT 32–64% 33–75%
IS 19–32% 31–42%
LU 67–38% 77–56%
MG 20–53% 68–41%
SP 23–35% 47–48%

Table 4. TLP1 increase when the number of
processes per processor is increased from 1
to 8 or 16 (BT and SP). SMT is disabled.

Benchmark B, 2 C, 2 B, 4 C, 4
BT 12% 15% 9% 6%
CG 8% 3% 8% 3%
EP 99% 99% 97% 99%
FT 35% 64% 20% 39%
LU 5% 7% 4% 2%
MG 40% 39% 39% 37%
SP 8% 21% 6% 16%

Table 5. Maximum TPL2 and TLP4 for the
class B and class C problem sizes (minimum
is always zero). SMT is enabled (for some
benchmark these numbers are higher when
SMT is disabled).

size, but with the small problem size system activity be-
comes the most significant overhead. Also, network wait
which is the overhead we are trying to overlap, increase
when the processor load increase with more threads.

Enabling SMT does not increase per thread user level
time or system level time for SOR. Thus, we can assume
that cache miss penalties and system activity increase are
similar. However, the reduction in idle time is larger, giving
a larger reduction in execution time.

Table 6 shows that for most NAS benchmarks either
memory wait or system activity dominate the increase in
overheads. Usually, the dominating overhead does not de-
pend on problem size, but on the process to processor ra-
tio. With four or less processes per processor, cache miss
penalty increase most. But with more processes, system ac-
tivity increase more. Also, cache misses may not always
increase with more processes, but system activity always
increases.

Of the cache misses the largest penalty is due to L1-D
or L2 caches misses. However, with class B; L1-I and TLB
miss penalty may be significant.

For most benchmarks the increase in user and system

Benchmark Class B Class C
BT Memory, system System, memory
CG Memory, system Memory, system
EP None None
FT (System) (System)
IS None None
LU Memory, system Memory, system
MG System System
SP Memory, system Memory, system

Table 6. Significant overheads.

time is similar with and without SMT. But for CG and SP
both are lower, and for MG system time increase is lower.

Table 7 summarizes which parts of the platform limits
overdecomposition performance for the NAS benchmarks.

5.3 System software

Using oprofile [19] we find that most kernel samples for
SOR with 1:1 mapping are for the Ethernet driver, while
for 32:1 most are for synchronization and context switches.
Since synchronization may cause a context switch, we can-
not differentiate between these.

We evaluated system software effect on TLP and the sys-
tem activity overhead using two synchronization variable
implementations, two user-level schedulers, and two oper-
ating system kernels. The results are for SOR run with the
medium problem size.

We replaced NPTL [5] with LinuxThreads [12], and as
expected system overhead increased, due to more system
calls for synchronization. However, for small messages
sizes TLP improved. LinuxThreads improved TLP2 two
threads were runnable from 2% to 34%. The reduction
is caused by difference in scheduling policy. With Linux-
Threads, synchronization variable calls are likely to cause a
context switch.

We implemented two user level schedulers in the PastSet
communication system. The first attempts to reduce cache
misses by only allowing one or two threads to run compu-
tation code at the same time. The second attempts to better
overlap inter-node communication by reordering the com-
putation order of the threads in one node. However, due to
TLP limitations most of the time there is only one runnable
thread, and hence user-level scheduling will not work.

Replacing the 2.4 SMP Linux kernel with the SMT op-
timized 2.6 kernel does not significantly improve TLP for
SOR. Also, system overhead does not significantly change.

6 Discussion and related work

Overlapping I/O wait time with computation to achieve
higher CPU utilization is a well known and widely used



Benchmark BT CG EP FT IS LU MG SP
Processor idle Yes Yes Yes
Processor saturated Yes Yes
Lack of TLP Yes Yes Yes Yes Yes
Cache misses Yes Yes Yes Yes
TLB misses
System activity Yes Yes Yes Yes Yes
Comm. phases Yes

Table 7. Overdecomposition performance limitations for the NAS benchmarks.

technique. For parallel applications overdecomposition has
been described in text books [7], and has been for load bal-
ancing by running more threads on underutilized processors
[7, 6], and to mask communication latency in a Grid envi-
ronment [10]. To our knowledge this is the first study on
overdecomposition performance improvements on Ethernet
clusters with SMT processors. In [10] experiments were
conducted to measure application slowdown when the WAN
latency between clusters was increased. Our experiments
differ in that we attempt to improve the performance of an
applications run on a network with a fixed LAN latency. We
have unpublished results showing that overdecomposition
improvement becomes better for SOR in a WAN environ-
ment.

Early simulator results have shown that SMTs [15] can
improve parallel application performance [15, 22]. How-
ever, recent studies show that SMT has best performance on
the POWER5 [9] when cache performance is at its worst,
and SMT is not well suited for floating-point workloads
and memory bandwidth bound applications [8]; all typical
characteristics of parallel scientific applications. Our results
show that only four of the NAS benchmarks had significant
increase in memory wait time.

A thorough study of SMT on the HT Technology en-
abled Pentium 4 processors used in our cluster is [23]. The
average multithreaded speedup recorded is 1.20 for multi-
threaded workloads and 1.24 for parallel workloads running
on a single node. The applications that were worst affected
by running with SMT enabled were those that had the low-
est instructions per cycle ratio. Another study [16] on Intel
Xeon, shows speedups ranging from 1.05 to 1.28 for data-
parallel numerically intensive benchmarks. Intel Xeon per-
formance improvements for web servers were found to de-
pend on the server design and implementation, and could
get worse when enabling SMT due to more synchronization
in the operating system kernel [21]. Our results for SMT
improvement shows smaller improvements for our message
passing parallel applications run on a cluster, than the sin-
gle node shared memory applications in [23, 16]. We do not
experience slowdown when using a SMP kernel rather than
an uni-processor kernel.

Proposed system support for SMT includes: (i) new

synchronization mechanism that permits cheaper synchro-
nization [24], (ii) compiler optimizations including new
approaches for inter-thread data-sharing, application of
latency-hiding, and loop distribution [14] (iii) kernel mode
behavior [20], and (iv) operating system schedulers [22] at-
tempting to benefit from possible constructive inter-thread
behavior.

Our results shows that synchronization contributes sig-
nificantly to system overhead, which is the overhead that
increase mostly when the number of threads increase. In
addition to using more efficient hardware mechanisms, syn-
chronization variable improvements should also attempt to
improve TLP by minimizing the time between unblocking
and running a thread. Due to the TLP limitations kernel
mode behavior and operating system schedulers are less im-
portant, since there usually are few runnable threads. Sim-
ilarly compiler optimizations and schedulers designed for
minimizing competition for processor resources will prob-
ably not improve performance since our benchmarks have
low TLP, in addition to being memory intensive and hence
have low instructions per cycle.

Alternatives to overdecomposition are to rewrite the ap-
plication to either use both message passing and shared
memory, or to use asynchronous communication opera-
tions. Both increase the complexity of the parallel pro-
gram.

7 Conclusion and future work

We evaluated if parallel application performance can be
improved by overdecomposition the data into more pieces
than there are processors in order to overlap communication
operation latencies with computation and taking advantage
of SMT processors.

Microbenchmark results are promising with execution
time improvements up to 1.8. However, performance im-
proved for only two NAS benchmark, and decreased for
three, showing that improvements are sensitive to appli-
cations communication structure, cache miss behavior, the
problem size used, and also of the underlying system com-
ponents. The best results were for applications with few



blocking communication operations, and low cache miss
penalty to execution time ratio.

Performance improvements are better when SMT is en-
abled, and never significantly worse. Hence for Pentium 4
based cluster SMT can be enabled as default. But changes
to system software are necessary for fully utilizing SMT
enabled processors. Especially intra-node communication
must be designed to reduce system calls and cache misses,
and synchronization primitives must strive to keep the num-
ber of runnable processors high.

As future work, we will investigate if the techniques de-
scribed in this paper can be used with multiprogramming
to overlap globally synchronizing operations with compu-
tation, without decreasing single application performance.
Also, we intend to investigate system changes tailored for
the NAS benchmarks for which performance did not im-
prove.

The monitoring tool used for measuring TLP and over-
head increase is available at:

http://www.cs.uit.no/l̃arsab/minim/

Acknowledgment

Thanks to Jon Ivar Kristiansen for help configuring the
cluster.

References

[1] D. Boggs, A. Baktha, J. Hawkins, D. T. Marr, J. A. Miller,
P. Roussel, R. Singhal, B. Toll, and K. S. Venkatraman. The
microarchitecture of the intel pentium 4 processor on 90nm
technology. Intel Technology Journal, 8, February 2004.

[2] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. EventSpace -
Exposing and observing communication behavior of parallel
cluster applications. In Euro-Par, volume 2790 of Lecture
Notes in Computer Science, pages 47–56. Springer, 2003.

[3] L. A. Bongo, O. Anshus, and J. M. Bjørndalen. Collective
communication performance analysis within the communi-
cation system. In Euro-Par, volume 3149 of Lecture Notes
in Computer Science, pages 163–172. Springer, 2004.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A scalable cross-platform infrastructure for ap-
plication performance tuning using hardware counters. In
Proc. of the 2000 ACM/IEEE conference on Supercomput-
ing, 2000.

[5] U. Drepper and I. Molnar. Native POSIX thread library for
linux. http://people.redhat.com/drepper/nptl-design.pdf.

[6] R. J. O. Figueiredo and J. A. B. Fortes. Impact of hetero-
geneity on dsm performance. In Proc. of Sixth International
Symposium on High-Performance Computer Architecture,
2000.

[7] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and
D. Walker. Solving Problems on Concurrent Processors,
volume Volume I: General Techniques and Regular Prob-
lems. Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[8] IBM systems & technology group. how DB2 exploits
IBM @serverp5 and AIX 5L simultaneous multithread-
ing, October 2004. www-1.ibm.com/servers/eserver/
pseries/hardware/whitepapers/p5 db2.pdf.

[9] R. N. Kalla, B. Sinharoy, and J. M. Tendler. Ibm power5
chip: A dual-core multithreaded processor. IEEE Micro,
24(2):40–47, 2004.

[10] G. A. Koenig and L. V. Kalé. Using message-driven objects
to mask latency in grid computing applications. In In Proc.
of 19th International Parallel and Distributed Processing
Symposium. IEEE Computer Society, 2005.

[11] LAM-MPI homepage. http://www.lam-mpi.org/.
[12] X. Leroy. LinuxThreads.

http://pauillac.inria.fr/x̃leroy/linuxthreads/.
[13] LLCbench. http://icl.cs.utk.edu/projects/llcbench/.
[14] J. L. Lo, S. J. Eggers, H. M. Levy, S. S. Parekh, and D. M.

Tullsen. Tuning compiler optimizations for simultaneous
multithreading. International Journal of Parallel Program-
ming, 27(6):477–503, 1999.

[15] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen,
and S. J. Eggers. Converting thread-level parallelism to
instruction-level parallelism via simultaneous multithread-
ing. ACM Trans. Comput. Syst., 15(3):322–354, 1997.

[16] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-threading technology architecture and
microarchitecture. Intel Technology Journal, February 2002.

[17] MPI: A Message-Passing Interface Standard. Message Pass-
ing Interface Forum, Mar. 1994.

[18] NASA. NAS parallel benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[19] Oprofile system-wide profiler for linux.
http://oprofile.sourceforge.net.

[20] J. A. Redstone, S. J. Eggers, and H. M. Levy. An analysis of
operating system behavior on a simultaneous multithreaded
architecture. In ASPLOS-IX: Proceedings of the ninth inter-
national conference on Architectural support for program-
ming languages and operating systems. ACM Press, 2000.

[21] Y. Ruan, V. S. Pai, E. Nahum, and J. M. Tracey. Evaluat-
ing the impact of simultaneous multithreading on network
servers using real hardware. In SIGMETRICS ’05: Proceed-
ings of the 2005 ACM SIGMETRICS international confer-
ence on Measurement and modeling of computer systems.
ACM Press, 2005.

[22] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling
for a simultaneous multithreaded processor. In ASPLOS-IX:
Proceedings of the ninth international conference on Archi-
tectural support for programming languages and operating
systems. ACM Press, 2000.

[23] N. Tuck and D. M. Tullsen. Initial observations of the si-
multaneous multithreading pentium 4 processor. In 12th In-
ternational Conference on Parallel Architectures and Com-
pilation Techniques. IEEE Computer Society, 2003.

[24] D. M. Tullsen, J. L. Lo, S. J. Eggers, and H. M. Levy. Sup-
porting fine-grained synchronization on a simultaneous mul-
tithreading processor. In Proc. of the Fifth International
Symposium on High-Performance Computer Architecture,
1999.

[25] B. Vinter. PastSet a Structured Distributed Shared Memory
System. PhD thesis, Department of Computer Science, Uni-
versity of Tromsø, 1999.


