
A Survey of Middleware for Sensor Network and Challenges

Mohammad M. Molla and Sheikh Iqbal Ahamed
Marquette University, Milwaukee, Wisconsin

{mmolla, iq}@mscs.mu.edu

Abstract

 In recent years, Wireless Sensor Network (WSN) has
emerged as a highly important research area.
Middleware for WSN facilitates development and
deployment of a large number of applications such as
smart environments, weather forecasting, bridge
monitoring, health applications, etc. for sensor
networks. But due to resource constraints, unreliability
of wireless networks, and diversity in available sensor
hardware, middleware for WSN presents a number of
new challenges. In this paper, we try to find out and
elaborate various challenges associated with the
development of middleware for WSN. We present a
comparative study of several existing middleware and
how they address those challenges. In doing so, we
point out the limitations of present generation
middleware for sensor networks. We also illustrate
how much more work needs to be done to make
middleware for WSN suitable for general purpose
usage in real world.

Keywords: Middleware, Sensor Networks,
Challenges for Middleware, TinyOS

1. Introduction

 The growth in integrated circuits (IC) and wireless
technologies has triggered the use of sensor network
enormously in recent years. According to recent
survey [1], WSN is gaining increasing popularity and
moving out of research labs into production and real
world deployment.
 Wireless Sensor Network (WSN) [2] is a form of
ad-hoc network consisting of large number of
heterogeneous tiny sensors with communication,
processing, and storage capabilities. Applications of
WSN [3] include habitant monitoring, environmental
monitoring, military surveillance, smart houses,
intelligent traffic systems, healthcare, and many more.
Sensors for WSN differ so much in terms of hardware
platforms that writing an Operating System (OS) that

runs on all these platforms is impossible. To hide the
underlying platform differences and to decouple the
OS from hardware platform, we need middleware.
Middleware facilitates scalability, interoperability,
deployment, and development of applications. There
has been numerous works [4-13] on middleware for
handheld devices. Most of those handheld devices use
operating systems like Windows CE [14], Palm OS
[15], Symbian OS [16], Tiny Linux [17], etc. But here
we focus on middleware for sensors, which are much
smaller than those handheld devices.
 During the past few years, researchers have devoted
much effort in designing and developing suitable
algorithms and programming paradigms for
middleware for sensor networks. As a result of this, we
have quite a large number of middleware for sensor
networks. Impala [18], Mate [19,20], TinyDB [21,22],
Agilla [23], TinyCubus [24], and TinyLime [25] are
some of the middleware that we have presented in
detail in section 3. Other notable middleware for
sensor networks are EnviroTrack [26], Mires [27],
Hood [28], Cougar [29], DSWare [30], SINA [31],
Smart Messages [32], and MiLAN [33].
 The purpose of this paper is to find out the
challenges associated with sensor networks. We have
also done a comparative study of several state of the
art middleware for sensor networks to discover the
approaches they take to address various challenges
associated with sensor networks and also to know how
they have succeeded or failed in doing so.
 In section 2, we present the various challenges that
should be addressed by middleware for sensor
networks to be successfully usable in real world. In
section 3, we have presented our comparative study of
six present generation middleware with a view to
finding their usability and limitations followed by a
conclusion section with general findings of our study
with future research scope.

2. Middleware Challenges for WSN

WSN along with its benefits brings out many

new challenges [34-37]. In this section, we try to

articulate the challenges associated with middleware
for WSN.

a) Abstraction Support
 WSN consists of large number of heterogeneous
sensors. These sensors are developed by various
vendors and may have different hardware platforms.
Hiding the underlying hardware platforms to offer a
homogeneous and holistic view of the network is a
major challenge for middleware for WSN.

b) Data Fusion
 Sensor nodes are used to collect data from its
surroundings. Data collected by various sensor nodes
have to be merged or synthesized to form more high-
level and easily understandable format or report. Also,
communicating this synthesized information to the task
issuer (i.e. PDA, Laptop, Cell Phone, etc.) is another
major challenge.

c) Resource Constraints
 WSN consists of tiny sensors with very small
memory, computation power, and battery power.
Middleware for sensor networks have to be lightweight
to work under limited resource availability.

d) Dynamic Topology
 Topology of WSN may vary dynamically due to
node mobility, node failure, and communication failure
between nodes. Middleware for WSN must be capable
of handling this dynamic topology of the network.

e) Application Knowledge
 Traditional middleware are designed to support a
wide variety of applications across the network. But
due to limited resource availability, WSN middleware
can not be generalized in this way. Middleware for
WSN middleware should integrate application
knowledge into the services provided. [34-36] propose
some approaches for injecting application knowledge
in sensor nodes.

f) Programming Paradigm
 Due to resource constraints, dynamic network
topology, and difficulties involved in collecting and
processing sensor data, programming paradigms for
middleware for WSN are quite different from
traditional programming styles. [38] addresses a
number of programming paradigms for WSN
middleware.

g) Adaptability
 Middleware for sensor networks must support

algorithms that have adaptive performance. Adaptive
fidelity algorithms [36] have been developed for this
purpose.

h) Scalability
 Middleware for sensor networks must be scalable
enough in terms of number of nodes, number of users,
etc. to operate over long period of time

i) Security
 Sensor networks have to handle security issues in
data processing and data communication. Since sensor
networks are often deployed for sensitive applications
like military surveillance, patient monitoring,
forecasting systems, etc. data collected and distributed
by these sensors will have to be authentic and tamper
free. But due to limited resource availability and low
computation power, most existing algorithms and
security models are not suitable for sensor networks.
[39-42] address various security challenges and models
for sensor networks.

j) QoS Support
 WSN middleware should also address various QoS
features – response time, availability, bandwidth
allocation, etc. for ensuring reliable service.

3. Related Work

 In this section, we present a comparative study of
several state of the art middleware for sensor network.
In doing so, we have taken substantial help from [37].
 Most of the middleware we have studied are built on
top of TinyOS [44]. So, before delving into our
detailed study about each middleware, we present a
short introduction to TinyOS. As mentioned in the
official homepage [44] of TinyOS – “TinyOS is an
open-source operating system designed for wireless
embedded sensor networks.” Major features of TinyOS
are – Component-based architecture, rapid innovation
and implementation while minimizing code size, event
driven execution model, and fine-grained power
management. The programming language of TinyOS is
nesC, which is a modified version of C programming
language. TinyOS has been ported to over a dozen
platforms and numerous sensor boards. Rest of this
section focuses on our survey of various middleware.

a) Impala
 Impala [10] is a middleware system developed as
part of ZebraNet [11] project. ZebraNet project was
undertaken to perform long-term migration study of
wildlife.

 Impala middleware was designed based on an event-
based programming model with code modularity, ease
of application adaptability and update, fault-tolerance,
energy efficiency, and long deployment time in focus.
Application adaptability and application update are
two major issues implemented by this middleware. It
follows a finite state machine based approach taking
into consideration various application parameters to
handle the adaptability issue. Application updater of
Impala is capable of handling incomplete update,
inconsistent update, on-the-fly update while code
execution, etc.
 Although Impala has data communication support
for getting data back to the base station, it does not
have any support for data fusion. Its abstraction model
does not take heterogeneity of the network into
consideration and its application domain is rather
simplistic.

b) Mate
 Mate [19,20] is a virtual machine for sensor
networks which is implemented on top of TinyOS
[44]. It hides the asynchrony and race conditions of
underlying TinyOS.
 Mate has a stack-based architecture [45] with three
execution contexts – clock, send, and receive. Mate
breaks down the program into small self-replicating
capsules consisting of 24 instructions. These capsules
are self-forwarding or self-propagating.
 Although Mate has a small, concise, resilient, and
simple programming model, its energy consumption is
high for long running programs. Mate’s virtual
machine architecture increases security somewhat and
it takes care of malicious capsules. But its
programming model is not flexible enough to support
wide range of applications.

c) TinyDB
 TinyDB [21,22] is a query processing middleware
system based on TinyOS.
 TinyDB provides power-efficient in-network query
processing system for collecting data from individual
sensor nodes which reduces number of messages that
must be sent. This results in reduced energy
consumption. It has two different types of messages
for query processing – Query Messages and Query
Result Messages as described in [46]. It also has
Command Messages for sending command to sensor
nodes.

 While TinyDB provides nice abstraction support
and has good aggregation model, it does not provide
much functionality as part of middleware service. So
most of the services have to be provided in the
applications running on top of it.

d) Agilla
 Agilla [23] is the “first mobile agent middleware for
WSNs that is implemented entirely in TinyOS.”
 Agilla is a Mobile Agent based middleware with
stack-based architecture. Its stack-based architecture
reduces code size. Agilla allows agents to move from
one node to another using two instructions – clone and
move. Upto four agents can run on a single sensor
node. Since one node can run multiple agents at the
same time, multiple applications can be supported on
the network simultaneously. To save energy, Agilla
can move its agent to bring computation closer to data
rather than transmitting data over unreliable wireless
network.
 Agilla does not have any policy for authenticating or
monitoring agent activities. Also, its assembly-like and
stack-based programming model makes programs
difficult to read and maintain.

e) TinyCubus
 TinyCubus [20] is a flexible, adaptive cross-layer
framework implemented on top of TinyOS.
 Flexibility and adaptation are two major issues
behind the design philosophy of TinyCubus. To
achieve this, TinyCubus architecture is divided into
three parts –

i. Tiny Cross-Layer Framework
ii. Tiny Configuration Engine
iii. Tiny Data Management Framework

 Although TinyCubus’s flexible architecture allows it
to be used in different environments, overheard due to
cross-layer design may be prohibitive in some
environments. Also, adaptation policies are static and
scalability is still not good.

f) TinyLime:
 TinyLime [25] is implemented on top of TinyOS
exploiting Crossbow’s Mote platform. It is an
extension of Lime [47].
 TinyLime follows an abstraction model based on
shared tuple space. This tuple space contains sensed

Table 1. Comparison of middleware

Challenge Impala
[10]

Mate
 [19, 20]

TinyDB
 [21, 22]

Agilla
[23]

TinyCubu
s

[20]

TinyLime
[25]

Abstraction Y Y Y Y Y Y
Data Fusion N N Y Y N Y
Resource Constraints Y Y Y Y Y Y
Dynamic Topology Y N Y Y Y Y
Application Knowledge N N N N Y N
Programming Paradigm Y Y Y Y Y Y
Adaptability Y Y N Y Y N
Scalability Y N N Y N N
Security N Y N N N Y
QoS N N N N N N

data. It supports data aggregation to find more
information from collected data. TineLime consists of
three main components –

i. The Lime Integration Component
ii. The Mote Interface
iii. The Mote-Level Subsystem

 TinyLime however does not have any built in
security support. Its programming model is rather one
time and does not provide good support for
adaptability or scalability.
 There are many other middleware for WSN –
EnviroTrack [26], Mires [27], Hood [28], Cougar [29],
DSWare [30], SINA [31], Smart Messages [32],
MiLAN [33]. But none of them has good support of
security and QoS. They suffer from similar limitations
as the middleware we presented above.
 We have presented a comparison of middleware in
Table 1, summarizing the challenges addressed by
several middleware we studied. As we can see from
the comparison table, security and QoS are still two
most ignored features in current generation
middleware. Considering future deployment of sensor
networks for sensitive applications, we should start
thinking seriously about supporting security in sensor
network middleware. Already, there are many
theoretical models and protocols [39-42] developed for
this purpose. But in practice, those protocols and
models are still ignored by most middleware.

4. Concluding Remarks

 In this paper, we have presented several challenges
that should be addressed by middleware for sensor
networks. We then presented a comparative study of
six middleware based on their features and limitations
followed by a comparison table. From our survey, we
have found that existing middleware take quite ad-hoc

approach to address various challenges. Although
some challenges are addressed by most middleware,
their support is not totally satisfactory. For example,
all the middleware address the Resource Constraints
challenge, but their approach to solve this challenge is
not always scalable and adaptable. This limitation
hampers the adaptability and scalability of the entire
middleware in the long run. Also, some features like –
Application Knowledge, Security, and QoS are
ignored by most of the middleware. There is virtually
no security and QoS support in any middleware.
Programming paradigms followed by different
middleware are developed in ad-hoc fashion and in
many cases not quite flexible. Much research has to be
done to develop some unified approach for abstraction,
data fusion, and programming paradigm. Also, since
security and QoS play key role in sensitive
applications deployed over sensor networks,
appropriate protocols and models need to be
developed for supporting these features. We are
currently working on a middleware µ-MARKS to
address the challenges we presented in this paper so
that we can overcome the limitations of the
middleware we studied in this survey.

5. References

 [1] Survey: Wireless Sensor Networking Out of the Lab,
Into Production. URL:
http://www.millennial.net/newsandevents/pressreleases/0508
24.asp (accessed in February 2006).

[2] F.L. Lewis. “Wireless Sensor Networks,” URL:
http://arri.uta.edu/acs/networks/WirelessSensorNetChap04.p
df (accessed in February 2006).

 [3] P.J. Marron. “Middleware Approaches for Sensor
Networks,” University of Stuttgart, Summer School on WSNs

and Smart Objects Schloss Dagstuhl, Aug. 29th – Sep. 3rd,
2005. URL:
http://www.vs.inf.ethz.ch/events/dag2005/program/lectures/
marron-2.pdf (accessed in February 2006).

 [4] M. Sharmin, S. Ahmed, and S. I. Ahamed. “MARKS
(Middleware Adaptability for Resource Discovery,
Knowledge Usability and Self-healing) for Mobile Devices
of Pervasive Computing Environments, ” To appear in the
Third International Conference on Information Technology :
New Generations (ITNG 2006), April, 2006, Las Vegas,
Nevada, USA.

 [5] The Oxygen Project. URL: http://oxygen.lcs.mit.edu/
overview.html (accessed in February 2006).

 [6] Project Aura. URL : http://www-2.cs.cmu.edu/~aura/
(accessed in February 2006).

 [7] J. P. Sousa, and D. Garlan. "Aura: an Architectural
Framework for User Mobility in Ubiquitous Computing
Environments,” Software Architecture: System Design,
Development, and Maintenance (Proceedings of the 3rd
Working IEEE/IFIP Conference on Software Architecture),
August 25-31, 2002, pp. 29-43.

 [8] LIME. URL:http://www.cs.rochester.edu/u/murphy/
4.pdf (accessed in May 2005).

 [9] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich.
“XMIDDLE: A Data-Sharing Middleware for Mobile
Computing,” J. Wireless Personal Comm., vol. 21(1), Apr.
2002, pp. 77-103. URL : http://www.cs.ucl.ac.uk/staff/
s.zachariad/ papers/ mw.pdf (accessed in May 2005).

[10] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A.
Ford. “T Spaces,” IBM Systems Journal, 1998, pp. 454–474.
URL : http://www.research.ibm.com/ journal/ sj/ 373/
wyckoff.html (accessed in May 2005).

[11] TSpace. URL : http://www.cs.berkeley.edu/ ~ravenben
/research/tuplespace/tuplespace.PPT (accessed in May 2005).

[12] A. T. Campbell. “Mobiware: QOS-aware middleware
for mobile multimedia communications,” Proceedings of the
IFIP TC6 seventh international conference on High
performance networking VII, White Plains, New York,
United States, 1997, pp. 166 – 183.

[13] M. Eichberg, and M. Mezini. “Alice: Modularization of
Middleware using Aspect-Oriented Programming,” Software
Engineering and Middleware (SEM) 2004, Linz, Austria, 20-
21 September, 2004. URL: http://www.st.informatik.tu-
darmstadt.de/database/publications/data/Alice.pdf?id=103
(accessed in May 2005).

[14] WindowsCE. URL:
http://msdn.microsoft.com/embedded/windowsce/defa
ult.aspx

[15] PALM. URL: www.palm.com (accessed in February
2006).

[16] Symbian OS. URL: www.symbian.com (accessed in
February 2006).

[17] Linux PDA. URL: http://tuxmobil.org/pda_linux.html
(accessed in February 2006).

[18] T. Liu, and M. Martonosi. “Impala: A Middleware
System for Managing Autonomic, Parallel Sensor Systems,”
Proceedings of the ninth ACM SIGPLAN symposium on
Principles and practice of parallel programming, 2003, pp.
107 – 118.

[19] P. Levis, and D. E. Culler. “Maté: a Tiny Virtual
Machine For Sensor Networks,” Architectural Support for
Programming Languages and Operating Systems, 2002.
URL: http://www.cs.berkeley.edu/~pal/pubs/mate.pdf
(accessed in February 2006).

[20] B. Blum. “Mate – VM for Sensor Nets.” URL:
http://zoo.cs.yale.edu/classes/cs434/readings/papers/Mate.ppt
(accessed in February 2006).

[21] TinyDB Project. URL:
http://telegraph.cs.berkeley.edu/tinydb (accessed in February
2006).

[22] R. Muller. “A Query Processing Middleware for Sensor
Networks,” Master Thesis, September 30th, 2005. URL:
http://www.inf.ethz.ch/personal/muellren/thesis.pdf
(accessed in February 2006).

[23] Agilla – A Mobile Agent Middleware for Wireless
Sensor Networks. URL:
http://www.cs.wustl.edu/mobilab/projects/agilla (accessed in
February 2006).

[24] P. J. Marrón, D. Minder, A. Lachenmann, and K.
Rothermel. "TinyCubus: An Adaptive Cross-Layer
Framework for Sensor Networks,” it - Information
Technology, vol. 47(2), 2005, pp. 87-97.

[25] TinyLime. URL:
http://lime.sourceforge.net/info/tinyLime.html (accessed in
February 2006).

[26] T. Abdelzaher, B. Blum, D. Evans, et el. “EnviroTrack:
Towards an Environmental Computing Paradigm for
Distributed Sensor Networks,” IEEE ICDCS , March 2004.
URL: http://www.cs.virginia.edu/~evans/pubs/icdcs2004.pdf
(accessed in February 2006).

[27] E. Souto, G. Guimaraes, G. Vasconcelos, et el. “A
message-oriented middleware for sensor networks,”
Proceedings of the 2nd Workshop on Middleware for
Pervasive and Ad-hoc Computing, Vol. 77, 2004, pp. 127-
134.

[28] K. Whitehouse, C. Sharp, E. Brewer, et el. “Hood: a
Neighborhood Abstraction for Sensor Networks,” In
Proceedings of ACM International Conference on Mobile
Systems, Applications, and Services (MobiSys), Boston, MA,
June, 2004. URL:
http://www.cs.berkeley.edu/~kamin/pubs/hood04mobisys.pd
f (accessed in February 2006).

[29] Cougar Project. URL:
http://www.cs.cornell.edu/database/cougar (accessed in
February 2006).

[30] DSWare. URL:
http://www.cs.virginia.edu/colloquia/event302.html
(accessed in February 2006).

[31] Srisathapornphat, C.Jaikaeo, and C.C. Shen. “Sensor
Information Networking Architecture,” International
Workshops on Parallel Processing, 2000, pp. 23-30.

[32] P. Kang, C. Borcea, Gang Xu, et el. “Smart Messages:
A Distributed Computing Platform for Networks of
Embedded Systems,” Special Issues on Mobile and
Pervasive Computing, The Computer Journal, 2004. URL:
http://discolab.rutgers.edu/sm/papers/sm03.pdf (accessed in
February 2006).

[33] MiLAN Project. URL:
http://www.futurehealth.rochester.edu/milan (accessed in
February 2006).

[34] K. Römer, O. Kasten, and F. Mattern. “Middleware
Challenges for Wireless Sensor Networks,” ACM
SIGMOBILE Mobile Computing and Communication Review
(MC2R), Vol. 6, Issue 4, October 2002, pp. 59 – 61.

[35] M. Wolenetz, R. Kumar, J. Shin, and U. Ramachandran.
“Middleware Guidelines for Future Sensor Networks,” First
workshop on broadband advanced sensor networks
(BaseNets), October 2004. URL: http://www-
static.cc.gatech.edu/~wolenetz/files/pubs/wolenetz_basenets
04.pdf (accessed in February 2006).

[36] Y. Yu, B. Krishnamachari, and V. K. Prasanna. “Issues
in Designing Middleware for Wireless Sensor Networks,”
IEEE Network Magazine, January 2004. URL:
http://www.im.cju.edu.tw/~cflin/931_R2006/2_07.pdf
(accessed in February 2006).

[37] P.J. Marron. “Middleware Approaches for Sensor
Networks,” University of Stuttgart, Summer School on WSNs
and Smart Objects Schloss Dagstuhl, Aug. 29th – Sep. 3rd,
2005. URL:
http://www.vs.inf.ethz.ch/events/dag2005/program/lectures/
marron-2.pdf (accessed in February 2006).

[38] K. Römer. “Programming Paradigms and Middleware
for Sensor Networks,” GI/ITG Fachgespraech Sensornetze,

Karlsruhe, 26-27 Feb, 2004. URL:
http://www.vs.inf.ethz.ch/publ/papers/middleware-kuvs.pdf
(accessed in February 2006).

[39] CS691AA - Security and Privacy. URL:
http://www.cs.umass.edu/~dganesan/courses/fall05/slides/CS
691AA-SecurityPrivacy.pdf (accessed in February 2006).

[40] S. Ozdemir, and P. Nair. “Wireless Sensor Network
Security,” Symposium on Research in Engineering & Applied
Sciences (REAS ’03,) Arizona State University, September
4th, 2003. URL:
http://www.geocities.com/gremates/REAS_WSNSecurity.pd
f (accessed in February 2006).

[41] SPINS: “Security Protocols for Sensor Networks,”
Wireless Networks Journal (WINE), September, 2002. URL:
http://www.ece.cmu.edu/~adrian/projects/mc2001/mc2001.p
df (accessed in February 2006).

[42] D. Wagner. “Security for Sensor Networks:
Cryptography and Beyond,” 2003 ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN 2003),
Invited speaker, October 31, 2003. URL:
http://www.cs.berkeley.edu/~daw/talks/SASN03.ppt
(accessed in February 2006).

[43] P. Juang, H. Oki, Y. Wang, et al. “Energy-Efficient
Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet,” Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
X), October 2002. URL: http://cs856.watsmore.net/prez-
zebranet.pdf (accessed in February 2006).

[44] TinyOS Project. URL: http://www.tinyos.net (accessed
in February 2006).

[45] P. J. Koopman. “Modern Stack Computer
Architecture,” System Design and Network Architecture
Conference, 1990. URL:
http://www.ece.cmu.edu/~koopman/forth/sdnc90b.pdf
(accessed in February 2006).

[46] R. Muller. “A Query Processing Middleware for Sensor
Networks,” Master Thesis, September 30th, 2005. URL:
http://www.inf.ethz.ch/personal/muellren/thesis.pdf
(accessed in February 2006).

[47] A. L. Murphy, G. P. Picco, and G. C. Roman. “Lime: A
Middleware for Physical and Logical Mobility,” 21st IEEE
International Conference on Distributed Computing Systems
(ICDCS ’01), April, 2001, pp. 524-533.

