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Abstract— Although task mapping and scheduling in wired
networks of processors has been extensively studied, their ap-
plication to WSNs remains largely unexplored. Existing algo-
rithms cannot be directly implemented in WSNs due to limited
resource availability and shared communication medium. In this
work, an application-independent task mapping and scheduling
solution in multi-hop WSNs is presented that provides real-
time guarantees. Using a novel multi-hop channel model and
a communication scheduling algorithm, computation tasks and
associated communication events are scheduled simultaneously
with a dynamic critical-path scheduling algorithm. Dynamic
Voltage Scaling (DVS) mechanism is implemented to further
optimize energy consumption. According to the simulation re-
sults, the proposed solution outperforms existing mechanisms
in terms of guaranteeing application deadlines with minimum
energy consumption.

I. INTRODUCTION

Many emerging applications for WSNs are associated with
real-time requirements that necessitate in-network processing.
Processing information locally and sending the end results
to a central location is generally more energy-efficient than
sending raw data across a multi-hop WSN. The reduced
communication volume also reduces the delivery latency, and,
hence, improves real-time performance. Many algorithms used
for in-network processing require significant processing power.
In case of video sensor networks, applications such as image
registration [1] and distributed visual surveillance [2] in-
volve computationally intensive operations. Collaborative in-
network processing is a viable solution to provide the required
processing power not available in stand-alone sensor nodes.
To enable collaborative in-network processing, the following
problems must be solved:

• Assignment of tasks to sensors,
• Determining execution sequence of tasks,
• Scheduling communication between sensors.

In high-performance computing, the first problem is referred
to as task mapping and the second one as task scheduling.
Both problems have been extensively studied in the past
for interconnected processors in wired networks. However,
these existing solutions cannot directly be implemented in
WSNs: Wireless communication scheduling such as collision
avoidance is not addressed. Furthermore, most of these so-
lutions do not explicitly consider energy consumption during
communication and task execution, which is one of the major
constraints in WSNs.

In large-scale WSNs, events of interest generally occur in re-
mote regions that only local sensors can detect. Consequently,
local information processing, and localized task mapping and
scheduling is more suitable for large-scale WSNs. In [3],
an online task scheduling mechanism (CoRAl) is proposed
to allocate network resources between the tasks of periodic
applications in WSN clusters iteratively: The frequencies of
the tasks on each sensor are optimized subject to the previ-
ously evaluated upper-bound execution frequencies. However,
CoRAl does not address mapping tasks to sensor nodes.
Distributed Computing Architecture (DCA) is proposed in [4],
which executes low level tasks on sensing sensors and offloads
all other high level processing tasks to cluster heads. However,
processing high level tasks can still exceed the capacity of
cluster heads’ computation power. Furthermore, application-
specific design of these solutions limit their implementation
for generic applications.

Task mapping and scheduling heuristics are presented in [5]
for heterogeneous mobile ad hoc grid environments. However,
the communication model adopted in [5] is not well-suited for
WSNs, which assumes individual channels for each node, and
concurrent data transmission and reception capacity of every
node. The EcoMapS algorithm in [6] aims to minimize the
schedule length subject to the energy consumption constraint
in single-hop clustered WSNs. However, EcoMapS does not
provide execution deadline guarantees for applications. In
[7], Energy-balanced Task Allocation (EbTA) is introduced
to minimize balanced energy consumption subject to ap-
plication deadline constraints. In [7], communications over
multiple wireless channels are modeled as additional linear
constraints of an Integer Linear Programming (ILP) problem,
and a heuristic algorithm with Dynamic Voltage Scaling
(DVS) mechanism is presented. However, the communication
scheduling model in [7] does not exploit the broadcast nature
of wireless communication, which can conserve energy and
time expenditure. All localized mechanisms above assume a
single-hop cluster environment, which hinders their application
to general implementations.

The aim of this work is to develop an application indepen-
dent solution to provide the in-network computation capacity
required by arbitrary real-time applications while minimizing
energy consumption. We consider delay-constrained applica-
tions executed in multi-hop clusters of homogeneous wireless
sensors. We propose the Dynamic Critical-path Task Map-
ping and Scheduling (DCTMP) solution that jointly schedules
communication and computation tasks of an application with



minimum energy consumption subject to delay constraints.
The proposed DCTMP algorithm is based on the high-level ap-
plication model that describes applications through a Directed
Acyclic Graph (DAG) [7], which can be used to model arbi-
trary applications. A novel communication model is proposed
to model multi-hop wireless channels. Based on this channel
model, a multi-hop communication scheduling algorithm is
integrated as part of DCTMP. In DCTMP, communication and
computation are jointly scheduled in two phases: task mapping
and scheduling phase and DVS phase. In the task mapping
and scheduling phase, communication and computation events
are scheduled at highest processing power to find a feasible
solution. The Dynamic Voltage Scaling (DVS) is implemented
in the DVS phase to reduce the energy consumption.

II. PRELIMINARIES

A. Network Assumptions

Our proposed task mapping and scheduling mechanism is
designed for applications executed within a multi-hop cluster
of WSNs. We assume the following WSN properties:

• Sensors are grouped into k-hop clusters with a clustering
algorithm. In this paper, we define a k-hop network as a
network G with diameter diam(G) ≤ k · r, where r is
the sensor transmission range.

• Each cluster executes an application which is either
assigned during the network setup time or remotely
distributed by base stations during the network operation.
With application arrivals, cluster heads create schedules
for execution within clusters.

• Calculated schedules are used to run the associated ap-
plications as many times as required by applications.

• Location information is locally available within clusters.
• Communication within a cluster is isolated from other

clusters through time division or channel hopping mech-
anisms with appropriate hardware support such as the
Chipcon CC2420 transceiver [8].

• Sensors are equipped with DVS processors [4] whose
speed and supply voltage can be dynamically adjusted
with finite number of levels. The overhead of speed and
voltage adjustment is assumed to be negligible.

It should be noted that while the intra-cluster communi-
cation is isolated from each other, the communication across
clusters is assumed to be handled over common time slots or
channels orthogonal to those used inside a cluster. As such,
information flow across the network is not hindered by intra-
cluster communication isolation.

B. Application and Energy Consumption Model

To have an application-independent solution, we represent
applications executed in clusters with Directed Acyclic Graphs
(DAG) [7]. A DAG T = (V,E) consists of a set of vertices V
representing the tasks to be executed and a set of directed
edges E representing communication dependencies among
tasks. The edge set E contains directed edges eij for each
task vi ∈ V that task vj ∈ V depends on. The computation
weight of a task is represented by the number of CPU clock
cycles to execute the task. Given an edge eij , vi is called the
immediate predecessor of vj , and vj is called the immediate
successor of vi. An immediate successor vj depends on its

(a) An Example DAG (b) Hyper-DAG Representation

Fig. 1. DAG Examples

immediate predecessors such that vj cannot start execution
before it receives results from all of it immediate predecessors.
A task without immediate predecessors is called an entry task
and a task without immediate successors is called an exit task.
We assume a DAG may have multiple entry tasks and one
exit task. If there are more than one exit-tasks, they will be
connected to a pseudo exit-task with computation cost equals
zero. Fig. 1(a) shows an example of a DAG.

In this paper, we assume that an entry task is a sensing-task
to detect certain physical events, and its sensor assignment
is determined according to application requirements. This
entry-task assignment requirement is referred to as Entry-task
Assignment Constraint throughout the paper.

In the DAG scheduling problem, if a task vj scheduled on
one node depends on a task vi scheduled on another node,
a communication between these nodes is required. In such a
case, vj cannot start its execution until the communication is
completed and the result of vi is received. However, if both of
the tasks are assigned on same node, the result delivery latency
is considered to be zero and vj can start to execute after vi is
finished. This execution dependency between tasks is referred
to as Communication Dependency Constraint throughout the
paper.

The energy consumptions of transmitting and receiving l-
bit data over a distance d that is less than a threshold do are
defined as Etx(l, d) and Erx(l), respectively:

Etx(l, d) = Eelec · l + εamp · l · d2, (1)

Erx(l) = Eelec · l, (2)

where Eelec and εamp are hardware related parameters [4] [9].
The energy consumption of executing N clock cycles with

CPU clock frequency f is given as:

Ecomp(Vdd, f) = NCV 2
dd + Vdd(Ioe

Vdd
nVT )(

N

f
), (3)

f � K(Vdd − c), (4)

where VT is the thermal voltage and C, Io, n, K and c are
processor dependent parameters [10] [4].

It should be noted that the energy consumption model
presented above only considers the energy expenditure directly
related with application executions, thus energy consumption
during idle time is not taken into account.



C. Problem Statement

The task mapping and scheduling problem is to find a set of
task assignments and their execution sequences on a network
that minimizes an objective function such as energy consump-
tion or schedule length. Let Hx = {hx

1 , hx
2 , ..., hx

n} denote a
task mapping and scheduling solution of the application DAG
T on a network G, where x is the index of the task mapping
and scheduling solution space. Each element hx

i ∈ Hx is
a tuple of the form (vi, mk, si,mk

, ti,mk
, fi,mk

, ci,mk
), where

mk represents the node to which task vi is assigned, si,mk
,

ti,mk
, fi,mk

, and ci,mk
represent the start time, execution

time, finish time, and energy consumption of vi on node mk,
respectively. The design objective of DCTMP is to find an
Ho ∈ {Hx} that has the minimum energy consumption under
the delay constraint:

min energy(Ho) =
∑
i,k

ci,mk
; (5)

subject to length(Ho) = max
i,k

fi,mk
≤ DL, (6)

where length(H) and energy(H) are the schedule length and
energy consumption of H , respectively, and DL is the deadline
of the application. DAG scheduling problem is shown to be
an NP-complete problem in general [11]. Therefore, heuristic
algorithms are needed to solve this problem in polynomial
time.

Some notations are listed here for convenience:
• pred(vi) and succ(vi) denote the immediate predecessors

and successors of task vi respectively,
• m(vi) denotes the node on which vi is assigned,
• T (mk) denotes the tasks assigned on node mk,
• T ft

st (mk) denotes the tasks assigned on node mk during
the time interval [st, ft].

III. THE PROPOSED SCHEDULING SOLUTION

The proposed scheduling solution consists of two phases:
task mapping and scheduling phase and DVS phase. In the
task mapping and scheduling phase, applications are scheduled
across application, MAC and network layers: Computation
tasks are assigned to sensors, their execution sequence are
decided, and communications between sensors are scheduled
based on the Communication Dependency Constraints. The
task mapping and scheduling phase aims to guarantee appli-
cation deadline constraints. We design a Dynamic Critical-
path Task Mapping and Scheduling (DCTMS) algorithm as
the multi-hop task schedule search engine. DCTMS dynam-
ically evaluates critical-paths of task graphs, and assigns the
most critical task to shorten schedule lengths. To guarantee
application deadline constraints, sensors are scheduled with
the maximum CPU speed fmax

cpu by the DCTMS algorithm.
Then, energy consumption of the schedules created in the first
phase are optimized in the DVS phase by reducing CPU speeds
to exploit CPU slack times.

Unlike traditional dynamic critical-path scheduling algo-
rithms such as [12] without considering wireless communi-
cation, DCTMS is designed for multi-hop WSN applications.
We developed a new multi-hop communication scheduling
algorithm based on our proposed Hyper-DAG representation
of tasks and multi-hop channel model. The communication

scheduling algorithm is utilized by the DCTMS algorithm dur-
ing task scheduling to satisfy the Communication Dependency
Constraints. In the following sections, the main components of
our proposed task mapping and scheduling algorithm, namely,
Hyper- DAG extension and multi-hop channel modeling,
communication scheduling algorithm, DCTMS algorithm, and
DVS algorithm, are presented.

A. Hyper-DAG Extension and Multi-Hop Channel Modeling

In WSNs, communication is broadcast in nature. When
a node transmits information, it is potentially received by
multiple nodes in the cluster. This property can be leveraged
to relay information generated by a task to all its successors
in a single transmission rather than multiple, sequential trans-
missions. This approach both reduces the execution time as
well as the energy consumption. To represent the broadcast
feature of wireless communication, the DAG representation of
applications is extended as follows: For a task vi in a DAG,
we replace the edges between vi and its immediate successors
with a net Ri. The weight of Ri equals to the result data
volume of vi. Ri represents the communication task to send
the result of vi to all its immediate successors in the DAG.
This extended DAG is a hypergraph and is referred to as
Hpyer-DAG. The Hyper-DAG representation of the DAG in
Fig. 1(a) is shown in Fig. 1(b). A Hyper-DAG is represented
as T ′ = (V ′, E′), where V ′ = {γi} = V ∪R denotes the new
set of tasks to be scheduled and E′ represents the dependencies
between tasks. Here, V = {vi} = {Computation Tasks}, and
R = {Ri} = {Communication Task}.

With Hyper-DAGs, communication events between com-
putation tasks are explicitly represented in task graphs. To
properly schedule communication events, we model multi-hop
channel as a virtual node C on which only communication
tasks can be executed. Different from the virtual node model
in [3] [6], where only single-hop channels are considered, our
channel model takes potential interference between simultane-
ous communications in multi-hop networks into consideration.

Unlike in single-hop networks, there can be multiple si-
multaneous communications in multi-hop networks. Thus, the
virtual node C in multi-hop channel model should be able
to execute multiple communication tasks simultaneously. To
avoid interference between scheduled communication tasks,
a “penalty function” is introduced into the cost function of
communication scheduling. Under unit disc graph model, the
“penalty” of scheduling a communication task is zero if it
does not cause interference; otherwise, it is infinite. The
communication scheduling algorithms will only schedule a
communication task with the minimum finite cost. The penalty
function P ft

st (v) of assigning a communication task v onto C
during time interval [st, ft] is defined as:

P ft
st (v) =

{∞,if ∃γ ∈ T ft
st (C) :S(γ) ∈ N(R(v)) or R(γ)∈N(S(v))

0, otherwise,

(7)
where S(γ) and R(γ) are the sender and receivers of commu-
nication task γ, respectively, and N(mk) is the set of sensor
m′

ks one-hop neighbors. With the penalty function defined
above, the multi-hop channel model is presented as follows:

• Wireless channel is modeled as a virtual node C.
• C executes communication tasks only.



• There can be multiple tasks on C in time interval [st, ft],
denoted as T ft

st (C).
• The cost of executing communication task vi on C in time

interval [st, ft] is cost(vi, st, ft) = st + P ft
st (vi).

With the Hyper-DAG representation and the channel model,
the Communication Dependency Constraint in Section II-B is
rephrased as follows: In the Hyper-DAG scheduling problem,
if a computation task vj scheduled on node mk depends on a
communication task vi scheduled on another sensor node or
C, a copy of the communication task vi needs to be scheduled
to mk, and vj cannot start to execute until all of its immediate
predecessors are received on the same node.

B. Communication Scheduling Algorithms

To meet the Communication Dependency Constraint in
Hyper-DAG scheduling, communication between nodes is re-
quired if a computation task depends on a communication task
assigned on another node. In multi-hop clusters, the sender and
the receiver of a communication task can be one or more hops
away from each other. We schedule multi-hop communication
following the paths generated by a routing algorithm. In every
hop, we use the one-hop communication scheduling algorithm.

We first introduce the one-hop communication scheduling
algorithm. With the Hyper-DAG and the multi-hop channel
models presented in Section III-A, scheduling communication
between single-hop neighbors is equivalent to first duplicating
a communication task from the sender to C, and then from
C to the receiver. If the requested communication task has
been scheduled from the sender to another node before,
the receiver will directly duplicate the communication task
from C if it is sent within its communication range and not
interfered by other scheduled neighboring communication.
This process is equivalent to receiving broadcast data, which
can lead to significant energy saving compared with multiple
unicasts between the sender and the receivers. The detailed
description of the single-hop communication scheduling
algorithm is presented below.

Input: Communication task: vi; sender of vi: ms; receiver of
vi: mr

Output: Schedule of duplicating vi from ms to mr

OneHopCommTaskSchedule(vi,ms,mr):
1. Find a copy of vi: vc

i ∈ T (C), S(vc
i ) = ms

2. IF vc
i does not exist

3. Find vi ∈ T (ms)

4. Find time interval [st,ft]:
5. cost(vi, st, ft) = min

6. st ≥ fvi,ms , ft − st ≥ tvi,C
7. Schedule a copy of vi to C:
8. svc

i ,C ← st, T (mk)← T (mk) ∪ {vc
i }

9. Schedule a copy of vc
i to mr:

10. svk
i ,mk

← fvc
i ,C , T (mk)← T (mk) ∪ {vk

i }
11.ELSE
12. st← svc

i
,C , ft← fvc

i
,C

13. IF � ∃γ ∈ T ft
st (C) : S(γ) ∈ N(mr)

14. Schedule a copy of vc
i to mr:

15. svk
i ,mk

← fvc
i
,C , T (mk)← T (mk) ∪ {vk

i }
16. R(vc

i )← R(vc
i ) ∪ {mr}

17. ELSE

18. Goto Step 3

Steps 2-10 stand for originating a new communication from
ms to mr, and Step 13-16 represent reception of a broadcast
data without interference. Compared with originating a new
communication, the broadcast reception method leads to en-
ergy saving of one data transmission for each additional data
reception.

In our multi-hop communication scheduling algorithm, the
low complexity stateless geographic routing algorithm, GPSR
[13] algorithm is used to obtain the path = (m1, ..., mn) from
sender ms to receiver mr, where m1 = ms and mn = mr.
After obtaining the path, the communication task will be
iteratively duplicated from the source to the destination.
Similar to that of the one-hop communication scheduling, the
requested data might have been scheduled from the source
to another node before. Thus, the requested communication
task may have duplicate copies distributed in the network.
To shorten communication latencies and to decrease
communication energy consumption, the communication task
should be forwarded starting from the location closest to
the destination. The detailed description of the multi-hop
communication scheduling is as follows:

Input: Communication task: vi; receiver of vi: mr; sensor
set SS

Output: Schedule of duplicating vi to mr

CommTaskSchedule(vi,mr):
1. IF � ∃ a copy of vi: vc

i ∈ T (C)
2. Find the sensor node ms: vi ∈ T (ms)

3. Calculate the path from ms to mr:path = (m1, ..., mn)

4. For mk = m2 to mn

5. OneHopCommTaskSchedule(vi , ms, mk)
6. ms ← mk

7. Return
8. ELSE
9. Find a copy of vi: vo

i ∈ T (C), dist(S(vo
i ), mr) = min

10. Find ms ∈ N(S(vo
i )): dist(ms, mr) = min

11. IF vi does not have a copy on ms

12. OneHopCommTaskSchedule(vi , S(vo
i ), ms)

13. Goto Step 3

A data transmission may reach multiple destinations un-
der our communication scheduling. Effectively, we achieve
multicast distribution of data, which has been proved to be
energy efficient. The communication scheduling algorithm is
used in conjunction with the task scheduling algorithm as
described in Section III-C.

C. Scheduling with DCTMS Algorithm

In the Task Mapping and Scheduling Phase, tasks of a
Hyper-DAG are assigned to sensors nodes and C. During
task mapping, several constraints must be satisfied. These
constraints together with the Communication Dependency
Constraint are represented as follows:

• A computation task can be assigned only on sensor nodes
• A communication task can be assigned both on sensors

and C. If a communication task has its immediate pre-
decessor and immediate successors assigned on the same
node, it has zero execution length and energy cost.



• If vi ∈ V and pred(vi) �= ∅, then pred(vi) ⊂ T (m(vi))
and svi,m(vi) ≥ max fpred(vi),m(vi)

With the Hyper-DAG representation, multi-hop channel
model, Communication Scheduling Algorithm, and the task
mapping constraints presented above, task mapping and
scheduling in multi-hop wireless networks can be tackled as a
generic task mapping and scheduling problem with additional
constraints. This problem is NP-complete in general [11] and
heuristic algorithms are needed to obtain practical solutions.
Dynamic critical-path scheduling is known for its relatively
low complexity with satisfying schedule length performance.
We propose our Dynamic Critical-path Task Mapping and
Scheduling (DCTMS) algorithm composed by the following
procedures:

• Dynamic critical-path evaluation and optimal task selec-
tion (DCEOTS)

• Optimal sensor searching and task assignment (OSSTA)
The DCEOTS procedure calculates the critical-path of Hyper-
DAGs, and finds the next task to be assigned accordingly. The
selected task will then be independently assigned on “active
sensors” one by one to find the optimal sensor giving the
shortest schedule length in OSSTA. Here, an “active sensor”
is a sensor that either runs computation tasks or participates
communication activities by sending, receiving or routing
communication tasks. These procedures are iteratively exe-
cuted until all tasks are assigned. In both procedures, network
topology and communication scheduling are embedded into
the decision making procedure to reflect the multi-hop wireless
network features. The details of DCTMS are described below.

1) DCEOTS Procedure: The core of the DCTMS schedul-
ing algorithm is the DCEOTS Procedure that dynamically
evaluates critical-paths, along which tasks potentially have the
largest execution time and may determine schedule lengths.
Unlike traditional dynamic critical-path scheduling algorithms
that have full connections between processors with fixed
communication latency, DCTMS is executed on Hyper-DAG
for wireless communication in multi-hop WSNs. Thus, the
execution time of a communication task is not only determined
by the communication data volume but the assignment of the
communication task: Depending on locations of senders and
receivers, communication tasks may travel various number of
hops. Since the selected task will be experimentally assigned
on each active sensor, we estimate the communication latency
with the average hop-distance AV Ghop between active sen-
sors, where AV Ghop is dynamically updated in the OSSTA
procedure.

The DCEOTS Procedure dynamically calculates critical-
paths as follows: Similar to the E-CNPT algorithm in [6],
DCEOTS first iteratively calculates the earliest start time
EST (vi) of task vi by traveling downward Hyper-DAGs. For
tasks that have already been assigned, their EST equals their
scheduled start time; Otherwise, their EST is given by:

EST (vi) = max
v∈pred(vi)

{EST (v) + tv}, (8)

tv = {Cv/fmax
CP U ,v∈R

AV Ghop·Rv/BW,v∈R, (9)

where Cv , Rv , and BW are the computation load, communi-
cation data volume, and channel bandwidth, respectively.

Similar to EST, the latest start time (LST) is calculated
by traveling upward Hyper-DAGs from the exit task. For

exit-tasks and assigned tasks, their LST equals to their EST.
Otherwise, their LST is given by:

LST (vi) = min
v∈succ(vi)

{LST (v)} − tvi , (10)

where tvi has the same definition as tv in Equation 9.
Starting from the exit-task, the path along which tasks have

the same value of EST and LST is the critical-path. A dynamic
critical-path ends at assigned tasks, and the unassigned “top”
task closest to assigned tasks is called a primary critical-
node (PC). A “mappable” PC with all immediate predecessors
already assigned will be passed to OSSTA for further process;
Otherwise, a secondary critical-path will be recursively found:
Starting from the PC, a task’s immediate predecessor with the
minimum LST is added to the path until an assigned task is
reached. The unassigned “top” task closest to assigned tasks is
called a secondary critical-node (SC), and is passed to OSSTA
for further process.

2) OSSTA Procedure: In the OSSTA Procedure, the
to-be-assigned task from DCEOTS will be experimentally
scheduled on active sensors, and the schedule with the
minimum schedule length will be kept. During the scheduling,
sensors are scheduled with full speed fmax

cpu .

Input: Hyper-DAG; sensor set: SS

Output: Schedule of vo

OSSTA Procedure:
1. Assign entry-tasks according to Entry-task Assignment Constraint
2. Initialize AV Ghop

3. WHILE not all tasks assigned
4. Find the next PC or SC vo with the DCEOTS procedure
5. IF vo ∈ R

6. Assign vo to m(pred(vo))

7. ELSE
8. FOR all active sensors mk

9. IF pred(vo) �⊆ T (mk)

10. FOR vn ∈ pred(vo)− T (mk)

11. CommTaskSchedule(vn,m(vo),mk)
12. Assign vo to mk

13. Keep the schedule with mo: fvo,mo = min

14. Update AV Ghop if new active sensors involved

D. The DVS Algorithm

Due to the discrete nature of task mapping and scheduling,
a schedule that meets a deadline may do so with some more
slack time until the deadline. The unbalanced load of sensors
and the communication scheduling also result in CPU idle
time. In the DVS Phase, the CPU idle time is exploited
by decreasing the CPU speed to reduce computation energy
consumption.

Before introducing the DVS Algorithm, a concept of CPU
utility η during a time interval [st, ft] is first defined as:

η = eft
st /(ft − st), (11)

where eft
st is the CPU execution time during [st, ft]. To exploit

the CPU slack time, the strategy of the CPU adjustment
algorithm is to slow down the CPU in proportion to the CPU
utility. After adjustment, the CPU utility will approach 1 (but
smaller than or equal to 1).



Our DVS algorithm has two stages: Schedule Length Ex-
tension (SLE) Stage and Schedule Hole Elimination (SHE)
Stage. In the SLE stage, the slack time between schedule
length length(H) and application deadline DL is eliminated if
any: Assume β = length(H)

DL < 1, we define the re-scale factor
as γ = 	β · fmax

cpu 
/fmax
cpu . Here, the function 	f
 is a ceiling

function that returns the minimum available CPU speed larger
than or equal to f . Then, the CPU speed is reduced and the
schedule length is increased in proportion to γ: All processors
are slowed down to γ · fmax

cpu with less energy consumption;
Computation tasks’ start time, execution time, and finish time
are extended with factor γ−1; A communication task vi’s finish
time fvi,mk

is multiplied by γ−1, its execution time tvi,mk

remains unchanged, and its start time svi,mk
is adjusted to

γ−1fvi,mk
− tvi,mk

.

After the SLE stage, slack times before application
deadlines are decreased. However, the CPU idle time caused
by the unbalanced load of sensors and the communication
scheduling still exists. Thus, the adjusted schedule from the
SLE stage needs to be further optimized in the SHE stage.
We first present the procedure to adjust the CPU speed of a
single sensor in a given time interval:

Input: sensor mk; time interval [st, ft]; original CPU speed
fcpu

Output: Adjusted CPU speed fo
cpu and task scheduling during

[st, ft]

SpeedAdjust Algorithm(mk,st,ft,fcpu):
1. eft

st ← 0, tt← st

2. FOR vi ∈ T ft
st (mk) and vi ∈ V

3. eft
st ← eft

st + tvi,mk

4. η ← eft
st/(ft− st)

5. fo
cpu ← �fcpu · η	

6. FOR vi ∈ T ft
st (mk) and vi ∈ V

7. svi,mk ← tt

8. tvi,mk ← tvi,mk · fcpu

fo
cpu

, fvi,mk ← svi,mk + tvi,mk

9. tt← fvi,mk

10. FOR vi ∈ T ft
st (mk) and vi ∈ R

11. IF pred(vi) ∈ T (mk)

12. svi,mk ← fpred(vi),mk
, fvi,mk ← fpred(vi),mk

13. Update the energy consumption of mk

In the SHE algorithm, the communication tasks on C are
kept unchanged, and their start time and finish time are taken
as the upper and lower bound to adjust the corresponding
sensors’ speed with the SpeedAdjust procedure. The SHE
algorithm is described in details as follows:

Input: schedule H from the Mapping and Scheduling Phase,
sensor set SS, application deadline DL

Output: Adjusted schedule Ho

SHE Algorithm:
1. FOR sensor mk ∈ SS

2. st← 0, ft←∞
3. FOR tasks vi ∈ T∞

st (mk)

4. IF There is a copy of vi: vc
i ∈ T (C)

5. Find the computation task vj following vi

6. IFmk is the sender of vc
i

7. ft← min(svc
i ,C, svj ,mk )

8. SpeedAdjust(mk,st,ft,γ · fmax
cpu )

9. st← ft

10. ELSE /*mk is the receiver of vc
i */

11. st← max(fvc
i ,mk

, svj ,mk)

12. ELSE IF vi is exit-task and fvi < DL

13. SpeedAdjust(mk,st,DL,γ · fmax
cpu )

IV. SIMULATION RESULTS

The performance of the DCTMS algorithm with DVS
adjustment is evaluated and compared with the DCA algorithm
[10] [4]. To provide persuasive results, DCA is extended using
our multihop communication model. It is also implemented
with DVS adjustment using the same algorithm as DCTMS.
We have run simulations to investigate the following aspects:

• Effect of the application deadline constraints
• Effect of the cluster size
• Effect of the number of tasks in applications
• Comparison with EbTA [7] in single-hop clusteres
In these simulations, the metrics are schedule length, energy

consumption, and deadline missing ratio (DMR). DMR is
defined as the ratio of the schedules that miss the deadlines.

A. Simulation Parameters

In our simulation study, the bandwidth of the channel is
set to 1Mb/s and the transmission range r = 10 meters.
Energy consumption model adopts Sensors equipped with the
StrongARM SA-1100 microprocessor, whose speed ranges
from 59 MHz to 206 MHz with 30 discrete levels. The
parameters of Equation 1 - 4 are the same as in [10], [4],
[9] as follows: Eelec = 50 nJ/b, εamp = 10 pJ/b/m2, VT = 26
mV, C = 0.67 nF, Io = 1.196 mA, n = 21.26, K = 239.28
MHz/V and c = 0.5 V.

Simulations are run on randomly generated DAGs which are
scheduled on randomly created multi-hop clusters. Random
DAGs are created based on three parameters: The number of
tasks numTask, the number of entry-tasks numEntry, and the
maximum number of immediate predecessors maxPred. The
number of immediate predecessors, the computation load (in
units of kilo-clock-cycle, KCC), and the communication data
volume (in units of bit) of a task are uniformly distributed
over [1, maxPred], [300K CC ±10%], and [800 bits ±10%],
respectively. The sensors are uniformly distributed in a disc
area with radius of k ·r and form a k−hop connected cluster.
We assume that there are n = 5 sensors in a single-hop cluster
and 5k2 sensors in a k − hop cluster. During simulations, the
entry-tasks are randomly assigned to sensors. The simulation
results are the average of 100 runs with different randomly
(DAG, cluster) combinations.

B. Effect of the Application Deadlines

We investigate the effect of application deadlines and DVS
adjustment with randomly created 3-hop clusters and DAGs
with numTask = 40, numEntry = 10, and maxPred = 10. To
evaluate the effect of DVS, the schedule length, energy con-
sumption and DMR of DCA and DCTMS before the voltage
adjustment (denoted as DCA* and DCTMS*, respectively) are
also investigated.

As shown in Fig. 2(a) and Fig. 2(c), DCTMS has a better
capability to meet deadlines compared with DCA. When
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Fig. 2. Effect of Application Deadlines

deadlines are very small, even though DMR of DCTMS and
DCA are both high, the average schedule length of DCTMS
is much smaller and closer to deadlines compared with DCA.
The reason is that DCA has only one sensor for high-level data
processing while DCTMS can have more sensors involved in
parallel, which speeds up execution.

Regarding energy consumption, DCA* has better energy
consumption performance than DCTMS* for most scenarios
according to Fig. 2(b). However, by implementing DVS al-
gorithm, this energy consumption difference is significantly
reduced. As shown in Fig. 2(b) and Fig. 2(a), DCTMS
even outperforms DCA in terms of energy consumption by
exploiting the much larger CPU slack time before deadlines
for scenarios with large deadlines. Even when deadlines are
relatively small and there is very little slack time before
application deadlines, the DVS adjustment of DCTMS can
still save about 22% energy compared with DCTMS*. This
energy saving stems from exploiting the slack time caused by
the unbalanced load of sensors and communication scheduling.
Though the DVS adjustment may increase schedule lengths
(Fig. 2(a)), the DMR is not affected (Fig. 2(c)) for any of the
simulated deadline values.
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Fig. 3. Effect of Cluster Size

C. Effect of the Cluster Size

In this section, the effect of the cluster size is evaluated. In
each simulation run, one random DAG with numTask = 40,
numEntry = 10 maxPred = 10, and one set of 2-hop, 3-hop,
and 4-hop random clusters are generated.

As shown in Figure 3, when the cluster size increases,
the performance of DCA degrades correspondingly. Regarding
DCTMS, the energy consumption proportionally increases
with increasing cluster size. An interesting observation is that
when the cluster size increases from 3-hop to 4-hop, the
DMR slightly decreases around the deadline of 35 ms. This
DMR improvement stems from better parallelism achieved
with larger network size: There can be more communication
scheduled simultaneously with larger network sizes, which
may lead to more computation tasks executed in parallel. Thus,
DCTMS has a better capacity to adapt to larger cluster sizes.

D. Effect of the Number of Tasks

Simulations are run on randomly generated DAGs with 40,
45, 50 tasks (numEntry = 10, maxPred = 10) to investigate the
effect of number of tasks in applications, and each set of 40,
45, 50 task DAG are scheduled on one randomly created 3-hop
cluster. According to the simulation results in Fig. 4(a), energy
consumptions is dominated by the number of tasks. When
the number of tasks increases, the energy consumption of
DCA and DCTMS both increase proportionally, and DCTMS
has higher energy consumption. However, when deadline is
increasing, the energy consumption of DCTMS decrease faster
than DCA by exploiting the available CPU slack time due to
its better capacity to meet deadlines. Regarding DMR, DCA
is dramatically affected with task volume increment while
DCTMS is less affected (Fig. 4(b)). Thus, DCTMS has a better
scalability compared with DCA regarding schedule length and
DMR.
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Fig. 4. Effect of Number of Tasks (40 tasks vs 45 tasks vs 50 tasks)

E. Comparison with EbTA

We compare the performance of DCTMS with EbTA for
single-hop, single-channel clusters. Due to the small scale of
a single-hop cluster (5 sensors as assumed), performances are
evaluated with less computation load: The presented results
are the average of 100 simulation runs of random DAGs with
numTask = 25, numEntry = 5 and maxPred = 5. As shown
in Fig. 5, DCTMS outperforms EbTA in terms of deadline
guarantee and energy consumption. The superior performance
of DCTMS mainly stems from the fact that DCTMS exploits
the broadcast feature of the wireless channel when scheduling
communication, while a task in EbTA must send information
individually to its immediate successors.

V. CONCLUSION

In this paper, we propose an application-independent task
mapping and scheduling solution for multi-hop WSNs - Dy-
namic Critical-path Task Mapping and Scheduling (DCTMP).
DCTMP aims to map and schedule the tasks of an application
with the minimum energy consumption subject to delay con-
straints. The multi-hop wireless channel is modeled as a virtual
node to execute communication tasks, and a penalty function is
proposed to avoid communication interference. Incorporating
our communication scheduling algorithm, DCTMP schedules
tasks with minimum energy consumption subject to dead-
line constraints. Simulations show significant performance
improvements compared with DCA and EbTA in terms of
minimizing energy consumption subject to delay constrains.
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Fig. 5. DCTMS vs EbTA


