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Abstract

In most research work for sensor network routings, per-
fect aggregation has been assumed. Such an assumption
might limit the application of the wireless sensor networks.
We address the impact of aggregation efficiency on energy
consumption in the context of GIT routing. Our questions
are how the most efficient aggregation point changes ac-
cording to aggregation efficiency and the extent to which
energy consumption can decrease compared to the origi-
nal GIT routing and opportunistic routing. To answer these
questions, we analyze a two-source model, which yields re-
sults that lend insight into the impact of aggregation ef-
ficiency. Based on analytical results, we propose an im-
proved GIT: “aggregation efficiency-aware GIT”, or AGIT.
We also consider a suppression scheme for exploratory mes-
sages: “hop exploratory.” Our simulation results show that
the AGIT routing saves the energy consumption of the data
transmission compared to the original GIT routing and op-
portunistic routing.

1 Introduction

Sensor networks are expected to operate under severe en-
ergy constraints because it is not practical to replace their
batteries because of the large number of sensor nodes. A
salient issue is reduction of the amount of transmitted data
because wireless communications at sensor nodes consume
more power than any other activity[8, 9, 10, 11, 12].

Data centric routing is a promising paradigm for sen-
sor network routing[10]. With data centric routing, rout-

ing decisions are based on the contents of the payloads of
packets rather than their destination addresses. A sensor
node might aggregate receiving packets that are temporally
buffered, generate a new packet, and then send it to the next
hop. Such a means of operation is expected to reduce the
amount of transmitted data, engendering remarkable power
savings. An example of data centric routing is directed dif-
fusion (DD)[7].

In most studies, perfect aggregation has been assumed
(e.g. [3, 5, 8, 9]). In this case, the most efficient data
paths from sources to a sink form a Steiner tree and/or min-
imal spanning tree. This fact encourages research of heuris-
tic distributed algorithms such as Greedy Incremental Tree
(GIT)[8] and the Nearest Neighbor Tree (NNT)[9]. How-
ever, perfect aggregation is not universal and possibly limits
applications of sensor networks, as mentioned above. Un-
fortunately, we do not have sufficient insight into the influ-
ence of the diversity of the aggregation to sensor network
routings.

In this work, we address the impact of aggregation ef-
ficiency on the energy consumption in the context of the
GIT routing[8]. The original GIT routing is a heuristic al-
gorithm to find a Steiner tree on a hop-count basis. Our
questions are how the most efficient incremental aggrega-
tion point changes according to aggregation efficiency and
how much energy consumption can decrease compared to
the original GIT routing. We analyze a simple two-source
model to answer these fundamental questions. Based on
results of our analysis, We improve the GIT routing algo-
rithm to find a more efficient aggregation point according to
aggregation efficiency. In this paper, we call the improved
GIT “aggregation efficiency-aware GIT (AGIT).”



This paper is organized as follows: Section 2 describes
the original GIT algorithm. In Section 3, we analyze a sim-
ple two-source model to investigate the impact of the effi-
ciency of aggregation on energy consumption. In Section
4, we propose AGIT routing. Section 5 shows some sim-
ulation results. Finally, we present conclusions in Section
6.

2 Greedy Incremental Tree

2.1 Directed Diffusion

GIT routing is based on directed diffusion (DD), which is
a typical data-centric routings for sensor networks. Before
describing GIT routing, we briefly explain DD.

In DD, a task described as a list of attribute-value pairs
is flooded into a network as an interest. Through the inter-
est diffusion process, a sensor node receives the interest sets
(or updates) a gradient toward the neighbor which sends the
interest, and resends the interest to some subset of its neigh-
bors (or broadcast) if it is different from the previously re-
ceived one. A sensor node to take the task described in the
interest sends an exploratory message to each neighbor to
whom a gradient is set. Intermediate nodes relay the ex-
ploratory message toward the sink along gradients of the
interest to match the task of the exploratory message. Be-
cause the sink possibly receives multiple exploratory mes-
sages originating at a source from its neighbors, it reinforces
a preferable path by sending reinforcing messages to partic-
ular ones among the neighbors from which it received an
exploratory message. Intermediate nodes receiving this re-
inforcing message treat it similarly, so that it is relayed in
the reverse direction on the path. As a result, a data path
is established from the source to the sink. Refer to [7] for
more detail on DD.

2.2 Finding of Aggregation Point in GIT
routing

In fact, GIT routing is a heuristic distributed algorithm
to construct a Steiner tree on a hop-count basis. Also, GIT
routing assumes perfect aggregation. Each source, one by
one, tries to find the shortest hop from itself to the existing
path tree or the sink.

To realize this process, each exploratory message in GIT
routing involves an additional attribute E, which denotes
the additional cost (hop-count) from the source originating
itself to the current node. The value of E is set to zero
initially. Whenever resending an exploratory message, the
nodes increment the value of E by one. The exploratory
message is distributed through the network according to the
gradient of the corresponding interest; it will arrive at nodes
on the existing path tree. Consequently, the nodes on the
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Figure 1. An example of path establishment
in GIT routing

existing path tree can know the hop-count from the source
that initiated the exploratory message.

Each source involved in the existing path tree initiates an
incremental cost message whenever it receives a previously
unseen exploratory message that was initiated by other
sources. The incremental cost message conveys two addi-
tional attributes: the random identifier of its corresponding
exploratory message and the cost (hop-count) from the ad-
ditional source (which initiated the exploratory message) to
the existing path. The incremental cost message is relayed
on the existing path from its originating source to the sink.
The intermediate nodes update if the value of C in the incre-
mental cost message is greater than or equal to the cached
value of E.

The sink waits directly and late-arriving exploratory
messages and other incremental cost messages for the pre-
defined interval immediately after the arrival of the first in-
cremental cost message. Then, the sink reinforces a neigh-
bor, which sends an exploratory message or an incremental
cost message with a lower additional energy cost C or E,
respectively. In the case where an incremental cost mes-
sage has the lowest additional energy cost C, the reinforc-
ing message containing the value of C travels toward to the
initiator of the incremental cost message on the existing es-
tablished path until it encounters an intermediate node with
E = C. This intermediate node becomes the aggregation
point for the additional source that initiated the exploratory
message. Then, the reinforcing message is diverted to the
additional source.

As a result of the procedure described above, the low-
est cost (minimal hop-count) branch is added to the existing



path tree. Refer to [8] for more details regarding GIT rout-
ing.

2.3 Discussion

In the case of perfect aggregation, the energy consump-
tion for data transmission on the newly added branch can be
regarded as the net increase of that on the entire data path.
This fact, however, is not always true in different aggrega-
tion schemes.

Let us consider the case where a packet has size
Lpacket = Lheader + Lpayload, where Lheader is the header
length and Lpayload is the payload length in bytes and N
packets are incoming and one packet is outgoing at an ag-
gregation point. In the case of the perfect aggregation,
the outgoing packet after aggregation has the same size
Lheader + Lpayload as an incoming packet. On the other
hand, in the case of linear aggregation, the outgoing packet
has larger size Lheader + N × Lpayload than that of per-
fect aggregation. Consequently, the linear aggregation con-
sumes more energy on the path from the aggregation point
to the sink than the perfect aggregation, thereby implying
that a node near to the sink on the path tree might be more
efficient as the aggregation point. But, how much energy
can be saved if we choose the aggregation point more care-
fully? We analyze a simple two-source model in the next
section to estimate the possible improvement.

3 Analysis of a Two-Source Model

This section shows the analysis for the simple two-
source model. We also have the result for the three-source
model, but we omit it because of space limitations.

3.1 Model Description

Figure 2 shows the two-source model that we analyze.
In this model, we assume that the nodes exist densely. In
this figure, however, we show only two sources – one sink
and one aggregation point – for simplicity. The aggregation
point is denoted as “p” in the figure. From the above as-
sumption, the hop-count between two nodes can be propor-
tional to Euclidean distance between them. In this model,
we assume that the distance between a source and the sink
is equal to one. We also assume that the energy consump-
tion to transfer a data packet per hop is proportional to the
packet size. Furthermore, we assume that the path between
the first source and the sink is an existing path and that the
second source is going to establish the path. Note that, in
the case of the original GIT routing, the second source will
have a perpendicular line as the additional path to the exist-
ing path.

Source1Sink
p

1 y

x 1-x

Source2

Figure 2. Two-source model.

Here we introduce the following notations: Let x and y
respectively denote the distances between the aggregation
point and the sink and the distance between source 2 to the
aggregation point, (0 ≤ x ≤ 1). We denote by θ the angle
between source 1 to source 2, as seen from the sink (0◦ ≤
θ ≤ 90◦). Let r denote the aggregation ratio of the size of
the aggregated packet to the total size of the original packets
( 1
2 ≤ r ≤ 1). In the case of the perfect aggregation, the

value r of the aggregation ratio is equal to 1
2 . Let E denote

the energy consumed to transfer the data packets from the
sources to the sink on the path tree.

3.2 Aggregation Point and Energy Con-
sumption

The above assumptions suggest the following relation-
ship:

E ∝ 2rx + (1 − x) + y, (1)

where
y =

√
x2 − 2x cos θ + 1. (2)

By performing some algebra for dE
dx = 0, we obtain

the value x′ to minimize the energy consumption for data
packet transmission on the path tree:

x′

=

{
0, cos θ+1

2 ≤ r < 1,

cos θ − sin θ
√

1
4r(1−r) − 1, 1

2 ≤ r < cos θ+1
2 .

(3)

By substituting x = x′ in (1), we have the scaled value
E′ of the energy consumption for data packet transmission
on the path tree in the case of the efficiency aggregation
point. We have the value EGIT expected for GIT routing,
as

EGIT ∝ 2r cos θ + (1 − cos θ) + sin θ. (4)

In the case of r = 0.5,

EGIT ∝ 1 + sin θ. (5)



0

0.2

0.4

0.6

0.8

1

 0.5  0.6  0.7  0.8  0.9  1

A
g

g
re

g
a

ti
o

n
 p

o
in

t,
 x

'

Aggregation ratio, r

15

45

75

Figure 3. Aggregation point in two-source
model.
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Figure 4. Gain by aggregation point in a two-
source model.

Since the aggregation point becomes nearer to the sink,
the path tree will become similar to that of “opportunistic
routing”[8], where data from different sources can be op-
portunistically aggregated at intermediate nodes along the
established paths. In the case of x = 0, y = 1, we have the
value Eopp expected for opportunistic routing, as

Eopp ∝ 2. (6)

To evaluate how much the aggregation point saves en-
ergy compared to the original GIT routing and opportunistic
routing, we introduce the following metric, “gain”, G:

G(r, θ) =
min(EGIT, Eopp) − E′

min(EGIT, Eopp)
× 100. (7)

3.3 Numerical Results

Figure 3 shows how the aggregation point changes ac-
cording to the values of the aggregation ratio and the angle
between the first and second sources. Figure 4 shows how
much gain can be achieved.

From Fig. 3, we can see that the aggregation point
changes widely according to the value of r as the angle
becomes narrower. Furthermore, the aggregation point be-
comes nearer to the sink compared to the foot of perpendic-
ular from the additional source to the existing path in the
case of 1

2 < r.
Fig. 4 shows that the larger the aggregation ratio is

(in other words, the smaller aggregation efficiency is), the
larger the gain is obtained by choosing the optimal aggre-
gation point. This tendency becomes noticeable in the case
where the angle is around 45◦. Figure 4 shows that the value
of gain has a peak in the middle region of r, and the larger
the peak value is (up to 4.5% for 15◦), the smaller the angle
is. The value r to give the peak gain increases as the angle
decreases. That is, the AGIT routing is more effective in the
case where sources exist near and the aggregation efficiency
is not so high. The value of gain converges to zero toward
to the both ends. This is because the path tree becomes sim-
ilar to that of the GIT routing for r = 0.5 and that of the
opportunistic routing for r = 1.

Although we do not show the results of the three-source
model, more gain is obtained compared to the two-source
model.

4 Aggregation Efficiency-Aware GIT

In this section, we propose “aggregation efficiency-
aware GIT (AGIT)” routing in order to find a more efficient
aggregation point to reduce the energy consumption inher-
ent in transmitting data packets.

4.1 Suppression of Exploratory Messages

In the DD, which is the basis of GIT routing, exploratory
messages are distributed widely according to the nodes’
gradients because interests do not contain any information
about a sink. As a result, the gradients are set in many di-
rections. (See Section 2.2.2 in [7].)

To some extent, GIT-like routing necessarily distributes
exploratory messages in order to determine the aggrega-
tion point for the existing path tree. Results of our anal-
ysis showed, however, that the aggregation point becomes
nearer to the sink than the foot of the perpendicular from the
additional source to the existing path in the case of 1

2 < r.
In the AGIT routing, we consider the following scheme

to suppress the excessive exploratory messages: “hop ex-
ploratory.” In the following, we assume that each node



can know the hop-count from the sink through interest dis-
semination. Each node caches the hop-count from the sink
for each interest as “own hop.” To do so, we also assume
that each interest has a random identifier to be distinguished
from the others.

4.1.1 Hop Exploratory

Each exploratory message contains the additional field
‘previous hop” to store the value own hop of its sender’s.
In addition, each exploratory message also contains the field
“hop” to store the hop count from the source that initiated
the exploratory message. Whenever a source initiates the
exploratory message with both previous hop and hop set
to own hop.

When the node receives the exploratory message with
previous hop, it rebroadcasts the exploratory messages
with previous hop set to own hop and with hop decre-
mented by one if

own hop ≤ previous hop and hop > 0. (8)

Figure 6 shows the phenomenon of dissemination of the
exploratory messages, where an arrow denotes the direc-
tion in which an exploratory message is sent. From this
figure, we can see that this scheme prevents network-wide
diffusion compared to traditional scheme in Fig. 5, which
indicates the dissemination of exploratory messages using
original scheme described in [7].

4.2 Adjustment of the Incremental Cost
Message Phase

The above suppression scheme involves some adjust-
ments of the incremental cost message phase because the
source nodes on the existing path tree might not receive the
exploratory messages. Consequently, the incremental cost
message is issued in such a case.

We take the following approach to overcome this prob-
lem. The intermediate nodes aside from the sources on the
existing path tree can initiate the incremental cost message.
In order to suppress the multiple incremental cost message,
the more distant intermediate node from the sink issues the
incremental cost message earlier. To do so, each intermedi-
ate node sets up an incremental cost message timer as

ti = (max hop − own hop) × δ, (9)

where max hop and δ respectively denote the predefined
network diameter and the timer granularity. The intermedi-
ate node issues the exploratory message if its timer expires
before receiving another exploratory message; otherwise it
suspends the issue.
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Figure 5. Phenomenon of dissemination of
exploratory messages in the traditional ap-
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Figure 6. Phenomenon of dissemination of
exploratory messages in the hop approach.

4.3 Finding of Aggregation Point in AGIT
routing

In the following, we assume that linear aggregation is
employed, whereby a packet has size Lpacket = Lheader +
Lpayload where Lheader is the header length and Lpayload is
the payload length in bytes. Furthermore, we assume that all
sources send the data packet at the same rate. The procedure
shown here can be extended easily to function in different
cases.

In the AGIT routing, the incremental cost message con-



tains an additional field to store the hop-count H from an
interim aggregation point. Whenever the source and/or the
intermediate nodes issue a new incremental cost message,
they set H = 1.

The intermediate nodes receiving the incremental cost
message execute the following:

if(E ≤ C + H · d) C = E, H = 1,
else H = H + 1,

(10)

where d = Lpayload/Lpacket. Recall that E denotes the
additional cost (hop-count) from the source joining to the
existing path tree to the current node.

In (10), C + H · d represents the net increase of power
consumption from the source nodes to the current node
when using the current interim aggregation point. If this
value is greater than or equal to the value of E, the current
node is more efficient than the interim aggregation point.
In such a case, the current node substitutes for the interim
aggregation point, so that it sets C = E and H = 1. Other-
wise, it increments the value of H by one.

Figure 7 shows the search procedure of the efficient ag-
gregation point. Here we assume that the packet length
is one and the payload length is 0.6. The first source re-
ceives the exploratory message from the second source, sets
C = E = 3 and H = 1 in it, and then forwards it the neigh-
bor node on the path from the first source and the sink. The
neighbor receiving it compares the value of E and the value
of C + H · d, where E = 3, C = 2, H = 1 and d = 0.6.
In this case, the node merely increments the value of H ,
and forwards the incremental cost message to its neighbor
to the sink. This manner is repeated until the incremental
cost message arrives at the sink.

The overhead of AGIT routing compared to the original
GIT routing merely comprises the hop-count field to store
H ; it can be negligible.

5 Simulation

In this section, we briefly explain our simulation condi-
tions; then we show some simulation results. The aim of
the simulation experiments is to confirm the effectiveness
of the AGIT routing in more complicated situations.

5.1 Model and Assumption

We implemented the original GIT routing, opportunistic
routing and the AGIT routing on a self-developed event-
driven simulator engine.

In this simulator, 500 sensor nodes are deployed ran-
domly in a 50 × 50 m2 field. The transmission range is
5 m. One sink is located at (45, 45) of the two-dimensional
coordinate. The number of sources is varied from two to
ten; they are arranged randomly in the field.
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Figure 7. An Example of Path Establishment
in AGIT

The packet has a 36-byte header. The payload length is
varied as 4, 36, 108, and 216 bytes.

We implemented two schemes of the dissemination of
the exploratory messages: “traditional exploratory” and
“hop exploratory.”

We implemented the ideal media access control (MAC)
on our simulator, where no collisions occur.

Assuming the case by which the pass loss coefficient of
n = 2, we modeled the energy consumption for transmis-
sion and reception of the packet of length l bits with dis-
tance R m, Etx and Erx, as follows:

Etx = (αtx + β · R2) · l, (11)
Erx = αrx · l, (12)

where αtx and αrx respectively denote the energy consump-
tions of the transmission circuit and the reception circuit,
expressed as nanojoules per bit, and β denotes the radiation
energy in appropriate units (nJ/bit/m2)[4].

In simulation experiments, we use αtx = 50 nJ/bit,
αrx = 300 nJ/bit, and β = 1.6 nJ/bit/m2. In each case,
50 simulation trials are executed. Each source to take the
task described in the interest sends a data packet toward the
sink only once by using the data path tree. In Figs. 8, 9 and
11, we will plot out the average value of them.
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5.2 Simulation Results

Figures 8 and 9 show the characteristics of gain defined
in Section 3 as a function of the number of sources for dif-
ferent payload lengths.

Figure 8 shows the results of the traditional exploratory
scheme. In this case, the exploratory messages are dis-
tributed network-wide. In the case of the small payload,
4 bytes, the gain is quite low because the aggregation ra-
tio of the linear aggregation is almost identical that of the
perfect aggregation. However, in the case of the medium
payload, 36 bytes, which is the same as the header, the gain
increases concomitant with the number of sources. This ten-

dency is more remarkable in the case of the large payload,
108 bytes. However, in the case of too large payload, 216
bytes, the path tree will become similar to that of the op-
portunistic routing. Therefore, the gains decrease. These
results coincide with predictions by our analysis shown in
Section 3.

Figure 9 shows results of the hop exploratory scheme.
From this figure, we can see that the AGIT routing is still
more efficient than GIT routing and opportunistic routing,
but the values of gain are decreased in comparison to those
of the traditional exploratory scheme because the spread
area of the exploratory messages is smaller than the tradi-
tional exploratory scheme.

The gain values are smaller than the expected values ob-
tained from analysis. For analysis, we assume a dense net-
work. However, in the simulation, the nodes are deployed in
a discrete fashion. For that reason, the range of choices for
the efficient aggregation point in the simulation is smaller
than that for the analysis.

Figures 8 and 9 show the gain in the data transmission
phase. From this viewpoint, the traditional exploration is
preferable. However, it includes the most overhead to con-
struct the path tree. For that reason, we investigate the
amount of the overhead. Figure 10 shows the total en-
ergy consumption of the entire network between the issue
of the interest and the completion of the receptions of one
data packet from every source. This figure indicates that
the traditional exploratory scheme has more overhead than
the others. A trade-off exists between the gain of the data
transmission phase and the overhead of the path tree con-
struction phase. The answer to the problem depends on the
applications: more precisely, it depends on how long the
data transmission phase lasts.

6 Conclusions

This paper presented the aggregation efficiency-aware
GIT (AGIT), and also described analyses incorporating the
suppression scheme for exploratory messages: hop ex-
ploratory.

The AGIT routing can construct a more efficient path
tree than the original GIT routing and the opportunistic rout-
ing. The improvement becomes more remarkable as the
payload packet length becomes larger and/or more sources
exist. Our simulation results demonstrate that the AGIT
routing achieves about 8% of the gain for the energy con-
sumption of the data transmission compared to the original
GIT routing. Our simulation results also emphasize that the
suppression scheme, hop exploratory, reduces energy con-
sumption up to 40%.
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