
PLT- Positional Lexicographic Tree: A New Structure for Mining Frequent
Itemsets

Azzedine Boukerche and Samer Samarah
School of Information Technology & Engineering

University of Ottawa, Ottawa, Canada
{boukerch, ssamarah@site.uottawa.ca}

Abstract

Association rules have proved their influence in different

industrial fields, where their goal is to identify the relations
existing among the events that are stored in large databases.
However, in order to enumerate the association rules, there
is a need to identify the frequent set of itemsets (i.e. those
events that occur together in a sufficient number of
transactions). In this paper, a new representation structure
for the data stored in any transactional database is proposed.
This structure, which we refer to as Positional Lexicographic
Tree (PLT), provides an efficient mechanism for subset
checking based on a summary of the data extracted from the
database. This makes PLT a promising tool for most of the
existing data mining approaches. Moreover, our proposed
PLT structure regulates the data in the database so that they
can be applicable to compression and indexing techniques,
which makes PLT suitable for supporting large databases.
First, we introduce the PLT construction process, then
highlight the different mining approaches that can be
modulated to take advantage of PLT. We then present our
algorithm and finally prove its correctness.

1. Introduction

Recent developments in information technology
have allowed a massive amount of data to be generated
and stored in large databases. These enormous
databases create a challenge in terms of discovering
hidden patterns presented in the data; these patterns
cannot be discovered using the traditional query
languages associated with the current database
management systems, and are important in that they
can improve the decision-making process.

Data mining has received a great deal of attention in
recent years within the database community, where
different data mining techniques have been proposed to
extract hidden patterns from large databases. Among
many interesting domains of data mining, transactional
databases of supermarkets have been the focus of many
researchers, where each record of these databases
contains information such as the transaction identifier,
the date of the transaction, the set of items bought in

that particular transaction, and possibly the customer
identifier. A data mining problem in this context is
mining the association rules; this problem was first
introduced in [1]. These rules give an idea of the set of
items that can be bought within the same transaction.
An example of such rules might be that 95 % of
customers who buy item X are willing to buy item Y in
the same transaction (95% is the support of the rule).
Generating all the association rules will help mangers
make decisions about their business, such as which
items should be placed next to or near each other,
catalog design, customers’ buying habits, and butting
items on sale. In addition, association rules have been
applied to other domains such as medical data and web
page access habits.

Theoretically, if we have a set of n events (items),
there is a potential for 2n relations to exist among these
events; these relations are used to formulate the
association rules. In order to compute the support of
the rules, the set of relations should be checked against
the database to determine the frequency of each
relation; for large n, this huge search space will
degrade the performance of any algorithm designed to
solve this problem. Another dimension that adds more
computational costs to the overall process is the large
size of the database, which must be scanned several
times in order to generate the frequencies. All of the
algorithms in the literature tried to utilize different
heuristics and pruning techniques in order to efficiently
determine the set frequent relations (a relation is
frequent if its frequency is greater than the user’s
predefined threshold).

The problem of the association rules can be divided
into two steps [1]. In the first step, the set of itemsets
(itemset and relation refer to the same concept) that
exceeds a predefined threshold are determined; these
itemsets are called frequent. In the second step, the
association rules are determined from this set of
frequent itemsets. In this paper, we introduce a new
representation for the data stored in the database; this
new representation takes the form of a lexicographic

tree that will be used to enumerate the frequent
relations present in large databases. Our enhancement
is in the way in which this representation makes subset
checking a light process, as well as the applicability of
this data to compression and indexing techniques.

This paper is organized as follows. Section 2
provides a formula definition for frequent itemset
generation. Section 3 surveys some of the existing
methods. Section 4 defines our new representation for
the data (the positional lexicographic tree). Section 5
illustrates the construction and mining procedure.
Section 6 concludes the paper.

2. Problem Definition

As defined in [2], the problem of mining
association rules can be formulated as follows: Let I =
{i1, i2,...,in} be a set of distinct items. Let D be a set of
transactions where each transaction T is a set of items
such that T ⊆ I, each transaction T∈D has an
associated identifier uniquely identifying it called TID.
Let X be a subset of items such that X ⊆ I, also
referred to as an itemset. A subset with K items is
called K-itemset. A transaction T supports X if X ⊆ T.
X has a support s, if s% of the transactions in D support
X1. The association rules are implications of the form X
⇒ Y where X ⊂ I, Y ⊂ I and X ∩ Y =Φ

The support of the rule (X ⇒ Y) is the support of
the itemset (X ∪ Y). We say that the rule has a
confidence c if c% of the transactions that contain X
also contain Y.

The Association rules mining problem over
database D, is to find all the association rules that have
support and confidence greater than or equal to the user
predefined minimum support and minimum confidence
respectively.

Once the frequent itemset are determined,
generating the rules is straightforward; so the focus of
the paper will be on how to enumerate the frequent
itemsets efficiently.

3. Related Works

Several algorithms in the literature proposed to
attack the problem of mining frequent itemsets from
large databases; these algorithms differ mainly in the
way in which they represent the database and in the
way in which they generate the frequent itemsets.

1 Through this paper we will refer to the support as the

number of transactions that contain the itemset rather than
ratio.

These algorithms can be classified into two main
approaches: the candidate generation approach and the
pattern growth approach. In terms of these approaches,
the algorithms also differ in the way in which they
represent the database. The two most popular formats
are vertical layout, where each item is associated with
the list of transaction identifiers where it was occurred,
and horizontal layout, where each transaction identifier
is associated with the list of items.

The candidate generation approach enumerates the
frequent itemsets in a level wise manner, with several
scans for the database. In each iteration, the itemsets
found to be frequent are used to generate the candidate
(possible frequent itemsets) to be counted in the next
iteration. Within this approach are the AIS algorithm
[1], Apriori, AprioriId, and AprioriHyprid [2], DHP
(Directed Hashing and Pruning) [5], the Partition
algorithm [6], and DIC (Dynamic Itemset Counting)
[7]. The most popular algorithm of the candidate
generation approach is the Apriori. Others except AIS
are optimization of Apriori.

 In the Apriori algorithm, a database scan is
conducted in order to determine the set of frequent
items. From this set of items it then generates a
candidate set to be counted in the next step by joining
the set of frequent itemset found to be frequent in the
current pass. In addition, it prunes the set of candidate
based on the anti monotone property, which states that
all subsets of frequent itemsets should be frequent in
order to eliminate candidates that have at least one
infrequent subset. This process is repeated a number of
times equal to the size of the largest frequent itemset.

 The pattern growth approach tries to avoid the
large number of candidates generated in each pass and
overcome the repeated scans of the database, which
makes most of the algorithms in this approach to
outperform most of the candidate generation approach
algorithms.

The core algorithm of the pattern growth approach
is the Frequent Pattern growth (FP-growth) proposed
by Han et al, [3]. In this method, the database is
converted to a compact representation in the form of a
tree called Frequent Pattern tree (FP-tree), which is
much smaller in size than the original database. The
FP-tree is constructed in such a way that all relevant
information needed in the mining process is presented
in the tree structure. Building the tree structure requires
only two scans for the database. After building the FP-
tree, the FP-growth routine mines all the frequent
patterns from the tree structure without referring to the
original database and without generating candidates.
Only one itemset can be considered at a time, and a
new tree is constructed from the set of itemsets that
occur. This tree is called conditional structure; this

process continues recursively until all the frequent
itemsets are generated.

Although the FP-growth method has proven its
efficiency in comparison to the candidate generation
approach, [8] noticed that the FP-growth method is not
suitable for all kinds of data. Specially when the
database is sparse, the resulting FP-tree is very large
and there is significant overhead in traversing the FP-
tree in the mining process. This led to the need for a
huge amount of space in the recursive process, which
will prevent the FP-growth method to scale well for
large amount of data. Several algorithms, such as (H-
Mine [8], FP-growth*, [4], COFI-tree [10], and ITI-
tree [19], CT-ITL [13]), have been proposed to
overcome these limitations

4. The PLT Structure Model

In this paper, a new annotation for the
lexicographic tree is introduced. This new presentation
allows data to be stored in a compressed form and
provides an easy mechanism to move between the
elements of the tree and an easy way for subset
checking during the mining process.

Let I = {i1, i2, …in} be a set of items. A
lexicographic order is assumed to exist among the
items of I; a lexicographic prefix tree is a tree
representation where the root node is labeled with null
and all other nodes represent elements in the set I listed
in lexicographic order from left to right. Each node is
linked to the nodes that represent the items that occur
after it in the lexicographic order. Figure 1 illustrates
the lexicographic tree of the set {A, B, C, D}.

Figure 1. The lexicographic tree of items {A, B, C,

D}

4.1. The Positional Lexicographic Tree

Definition 4.1.1: Rank (i) is a function that maps each
element (i ∈ I) to a unique integer in such a way that
the lexicographic order is maintained.

Definition 4.1.2: pos(n) is a function that maps each
node in the lexicographic tree to an integer that
represents its position among its siblings to the parent
node starting from left to right.

For example, in Figure 1, node C is a child of node A
at level 2 and pos(C) = 2 (i.e. C is in the position of
two lexicographically as a child of A).

Definition 4.1.3: Let Xk be a node at level k. V(Xk) =
[pos(x1), pos(x2),……,pos(xk)] is then a position vector
that encodes the position values of the nodes that
formulate the path from the root to node Xk.

Lemma 4.1.1: Let X ={x1, x2,…..,xk} be an itemset and
let V(X) = [pos(x1), pos(x2),……,pos(xk)] be the
corresponding position vector of X . For each xi in X, it
then holds

Rank(xi) =)(
1
∑

=

i

j
jxpos

During the construction process, the Rank function is
used to calculate the positions of the nodes as follows:
pos (j) = Rank (j) – Rank (i) where j is a child node of
node i and Rank(null) = 0. Figure 2 represents the
Positional Lexicographic Tree (the new compressed
structure) for set {A,B,C,D}. Each node in Figure 2
is associated with the integer (position value) that
represents its position for the parent node.

Figure 2. The PLT structure

Lemma 4.1.2: For each subset X ∈ P(I), P(I) is the
power set of the set I, V(X) uniquely determines
itemset X in the positional lexicographic tree.
Proof: Let X ={ x1, x2,…..,xk}, Y = { y1, y2,…..,ym} be
two itemsets such that X ≠ Y.
Case 1: X, Y are of a different size:
V(X) ≠ V(Y) because of characteristic of vector equality
(two vectors must be of the same size in order to be
equal).
Case 2: X, Y are of the same size (k = m):
Assume that V(X) = V(Y)

[pos(x1),pos(x2),..,pos(xk)] = [pos(y1),
pos(y2),..,pos(ym)] .

 pos(xi) = pos(yi) 1 <= i <= k.
Rank(xi)-Rank(xi-1) = Rank(yi) -Rank(yi-1), 1 < i <=

k.
Assume that xi = yi for 1<i <= k

 Rank(yi-1) = Rank(xi-1) 1< i <= k
By definition of the Rank function (the uniqueness
property), these sets of equalities can not be held
unless we have X = Y, which is a contradiction. □

Property 4.1.1: Let Tik be a sub-tree rooted with item i
at level k in the lexicographic tree. Let j be the parent
of node i. Tik then has n-repeated structures (sub-
trees) at level (k+1) within the same sub-tree rooted
with node j, where n is the number of siblings that
proceed item i in the lexicographic tree according to
parent j.

Referring once again to Figure 1, the sub-tree

rooted with node B in level 1 has the same structure
under its left sibling (node A) at level 2 (the sub trees
rooted with the gray nodes).

Lemma4.1.3: Let V(X) = [pos(x1),
pos(x2),……,pos(xk)] be a position vector of size k.
The position vector representation of any “k-1” level
subset of itemset X then has one of the following
forms:

a) [pos(x1), pos(x2),……,pos(xk-1)].
or
b)[pos(x1),pos(x2),…,pos(xi)+pos(xi+1)…,pos(xk] for

a given 1<= i <k. That is, the position vector of a
potential subset of X at level k-1 is achieved by
replacing two consecutive positions in V(X) with their
sum.
Proof: Let X ={x1, x2,…..,xk} and V(X) = [pos(x1),
pos(x2),……,pos(xk)].
Known: Any subset of X at level k-1 is any itemset X`
that is produced by removing an element from X one at
a time.
- Assume that the missing element is element xk. Thus,
X`={x1,x2,.,xk-1} and V(X`) = [pos(x1),pos(x2),…,pos(xk-

1)]…….lemma 4.1.3.a.
- Assume that the missing element is xi, where 1 <= i <
k:

X’ = {x1,x2,x’i, xi+2,..,.xk}1
We claim that pos`(x’i) in V(X’) is equal to pos(xi) +
pos(xi+1) in V(X);

 pos(x’i) = pos(xi) + pos(xi+1)
Rank(x’i) – Rank(xi-1) = pos(xi) + pos(xi+1)
Rank(x’i) = pos(xi) + pos(xi+1) + Rank(xi-1)……...2

From 1, we have
pos`(x’i) = Rank(x’i) – Rank(xi-1).
Replace Rank(x’i) by its definition from 2 we have
pos`(x’i) = pos(xi) + pos(xi+1) +Rank(xi-1) – Rank(xi-1).
= pos(xi) + pos(xi+1) our claim.

4.2. The Positional Lexicographic Tree

Now the complete process of constructing the PLT
can be represented. We begin by providing an
illustrative example followed by a formula description
of the algorithm.

Table 1 shows a database of six transactions. In the
first step, the database is scanned to determine the set
of frequent 1-itemset. Since the only frequent items can
participate in formulating the frequent itemsets, this
step aims to eliminate those items that less support
than the user’s predefined minimum support. Assume
that the absolute support count is 2. The set of
frequent 1 items are then{(A,4),(B,5),(C,5),(D,4)}. The
number beside the item refer to its frequency. The next
step is to associate a unique number with each item
using the Rank function. As a result we have: Rank(A)
=1, Rank(B) = 2, Rank(C) = 3, Rank(D) = 4.

 Table 1. Transactional database

TID Item Set
1 ABC
2 ABC
3 ABCD
4 ABDE
5 BCD
6 CDF

 In the second step, another scan of the database is

conducted; for each transaction, the set of infrequent
items is filtered out and a positional vector is created
and inserted in a table according to its length (we
assume that a table-like data structure is used to
represent the positional tree; a physical tree may also
be assumed). If this vector previously existed we
merely increment its frequency. Otherwise, we simply
add it with a support count equal to 1. In other words,
we partition the database to a set of partitions such that
each partition stores the vectors of the same length. In
addition, we store the summation of the position values
presented in the vector with each vector. This value
will be used during the mining procedure using the
conditional approach. Figure 3 provides two different
perspective for the data using the tree structure and the
matrix structure. Algorithm 1 gives the formula
specification for the positional tree construction
process.

Figure 3. (a) The matrices structure (b) The

tree structure

5. The PLT Mining Process

It is clear that the support count of any itemset is
equal to the number of times it occurs as a single
transaction plus the number of transactions in which
occurs as a subset. The next two subsections discuss
how the positional lexicographic tree can be used
during the mining process using two different
approaches. Top down and conditional.

5.1. The Top down Approach

In this methodology, we start with the database
partition that represents the itemset of maximum
length. For example k. Then for each entry presented in
Dk of the form [p1,p2,….,pk] with ps as positional
values, we generate the vectors of the first two subsets
at level k-1 as follows:

A) The first subset is constructed based on lemma
4.1.3.a by removing the last positional value
(pk)

B) The second subset is constructed by replacing
 (pk and pk-1) by their sum, lemma 4.1.3.b.

For reasons of efficiency and correctness, we may
include the first step above in the positional tree
construction process since we need this step only for
the already existed vectors not for those that are
generated using part B above. This is done by adding
the vector at different levels in the database by
considering one position at a time. For instance, vector
[1,1,1,1] should be added as [1,1,1], [1,1] at D3 and D2
partitions. In this case, the top down approach is
started by considering part B above and constructing
the vector [p1,p2,….,pk-1+pk] and adding it to the Dk-1
partition. The same thing is done for all the vectors in
Dk and the vectors in the other partitions by

considering the last tow positions. After this, part B
from above is repeated, but this time the process occurs
by shifting one position to the left (i.e. the pair (pk-2, pk-

1) for level k). The new vector is [p1,p2,..,pk-1+pk-2,pk),
and the same is the case for all other partitions one
shift to the left from the pervious location considered;
any vector that does not have enough space for
shifting has already gone through the mining process.
The entire process will continue until there is no longer
enough space to shift in any vector. The same
condition should be applied to the vectors that were
generated in previous iteration if they can satisfy the
shifting (i.e. consecutive positional can be added). In
this way, all of the subsets are generated and
frequency support is inherited by the subsets without
duplications.

Figure 4. The database after top-down approach

At the end of the above procedure, the database
contains all the frequencies of all the subsets that may
be presented in the database, and the frequent items are
those that have frequency grater than the predefined
minimum support. Figure 4 shows the database after
the above procedure has been applied to the database in
Table 1. We assumed that part A was constructed
during the constructions process. Algorithm 2 presents
the formula specification for part B.

Algorithm 2: Top Down Approach
Input: PLT Structure
Output: All Subsets with their frequencies
k = Maximum Vector Length.
For j = k down to 2
 L=j
 For i = k down to 2
 For each V ∈Di
 If pL exist in V
 p’ = pL + pL-1
 V’ = V | p’ replaced by pL,pL-1
 If V’ ∈Di-1 then
 V’.Freq += V.Freq
 Else
 Add V’ with V’.Freq = V.Freq
 L= L-1

Algorithm 1: PLT Construction
Input: D, min_sup
Output: PLT
Generate frequent 1 items.
For each transaction t ∈D
 Let t’ = [t’1,t’2,..,t’k] the frequent items in t.
 Generate V(t’)

 V(t’).sum = ∑
=

k

i
itpos

1
)'(

 If V(t’) ∈Dk
 Increment the current frequency
 Else
 Add V(t’) with V(t’).Freq =1

5.1. The Conditional Approach

The last subsection showed how the top down

approach can be used in the mining process. Although
this approach provides an efficient way to propagate
the frequency from an itemset to all of its subsets, it
does not fully utilize the anti-monotone property: “all
subsets of frequent itemsets should be frequent”. Later
we will discuss the appropriate situation for the top
down methodology. Here we will discuss the
possibility of having the positional tree cooperate with
the pattern growth approach that uses conditional
intermediate data structures. In this approach, the anti-
monotone property can be fully utilized; the
contribution of the positional lexicographic tree in this
method is the way in which it provides subset
checking between itemsets.

In the conditional method, the process begin be
considering an (item / itemset) at a time and
constructing its conditional database [3]. The
conditional database of an itemset provides a model
for all of the supersets of the itemset presented in the
original database. From this conditional database an
extension of the itemset then made from the frequent
items presented in its conditional database, and the
support count is computed from this database. A new
conditional database is constructed as long the
produced itemset is frequent. If the new extension is no
longer frequent, there is no need for a new conditional
database and the mining process ends with this itemset;
if it is frequent, another extension is considered and the
process continues recursively. The contribution of
positional lexicographic tree in this approach is in the
way in which the conditional tree of the new extended
itemset is identified, using lemma 4.1.1, and in the way
how the conditional structure presented where we
assume it as a new PLT structure and called it
conditional PLT.

For the database in Table 1, starting from the
highest ranked item, which is 4 (i.e. we are in the
process of building the conditional database of item D),
the conditional database for item D is the database that
contains vectors with a sum equal to D’s rank. The
support frequency of D is equal to the sum of the
frequencies of the vectors that participate in building
D’s conditional database. In order to obtain the correct
result, during the process of constructing D’s database
from the original database, for each vector support D a
new vector is constructed by removing the last position
value and inserting this vector into the proper partition
in the original database. Based on this discussion,
Figure 5 (a) and (b) shows the original database after
extracting D’s conditional structure and D’s

conditional structure itself. The process continues by
considering D’s conditional database and considering
extensions for D one by one in reverse lexicographic
order and building the conditional database of (D
∪ the new extension) where the new extension is the
highest ranked item presented in D’s conditional PLT.
If the new support is frequent, the mining process
continues. Otherwise, the mining process ends at this
stage. Algorithm 3 provides a formula description for
this conditional mining approach using PLT, which is
first invoked with an empty set as an itemset and the
PLT.

Figure 5. (a) D's conditional database (b) The
PLT

6. Conclusion

In this paper, a new data structure for mining
association rules was proposed. We successfully
showed how this structure can be used with the two
most popular mining methods, the top down and
conditional approaches. Compared to pervious
representations of the data, PLT provides a promising
structure that is applicable to indexing and
compression techniques, which makes PLT a solution
when large databases are being mined. In additions,
PLT is considered to be self-continued structure, which
means that there is no need for any other data structure
during the mining process. This is different from
pervious methods such as the Apriori algorithm that
required several data structures during the mining
process. Another contribution of PLT is the way in
which it provides subset checking which, is
considered to be one of the heaviest steps in the mining
process , and the way in which it identifies the
conditional structure, which is easier in PLT compared
to the links presented in the FP-tree. PLT provides
partition criteria that makes it easy to partition the
mining process into several separate tasks; each can be
accomplished separately. We have also shown how the
top down approach does not employ the anti-monotone
property, which makes it suitable for situations where a
very low minimum support is provided. Or, if it

coupled with a strategy with which to compute the
frequency and high level, the conditional approach is
best used when the data is dense and a high support
count is required.

References

 [1] R. Agrawal, T. Imilienski, A. Swami. Mining

association rules between sets of items in large
databases. In proceedings of the ACM SIGMOD
international conference on Management of data, PP:
207-216, 1993.Panther, J. G., Digital Communications,
3rd ed., Addison-Wesley, San Francisco, CA (1999).

[2] R. Agrawal, R. Srikant. Fast Algorithms for Mining
Association Rules. Proc. of the 20th VLDB Conf.,,
1994.

[3] J. Han, J. Pei, Y. Yin. Mining Frequent Pattern without
Candidate Generation. In Proceedings of the 2000 ACM
SIGMOD international conference on Management of
data, PP: 1-12, Dallas, Texas,USA, May 2000.

[4] G. Grahne, J. Zhu. Efficiently Using the Prefix-trees in
Mining Frequent Itemsets. FIMI'03, Workshop on
Frequent Itemset Mining Implementations, Melbourne,
Florida, USA, November 2003.

[5] J.S. Park, M. Chen, P.S. Yu. An Effective Hash-Based
Algorithm for Mining Association Rules. In
Proceedings of the ACM SIGMOD International
Conference on the Management of Data, pages 175-186,
May 1995.

[6] S. Brin, R. Motwani, J.D. Ulman, S. Tsur. Dynamic
Itemset Counting and Implication Rules for Market
Basket Data. In Proc. of the ACM SIGMOD

international conference on Management of data, PP:
255-264, 1997.

[7] J. Pei et al. H-Mine: Hyper-Structure Mining of Frequent
Patterns in Large Databases. In proceeding of the IEEE
Conference on Data Mining (ICDM), San Jose,
California, USA, November 2001.

 [8] R. Agarwal, C.Aggarwal, and V. Prasad. A tree
projection algorithm for generation of frequent itemsets.
Journal Parallel and Distributed Computing, 2000.

[9] R. Agarwal, C.Aggarwal, and V. Prasad. A tree
projection algorithm for generation of frequent itemsets.
Journal Parallel and Distributed Computing, 2000.

[10] M. EL-Hajj, O.R Zaiane. Non Recursive Generation of
Frequent K-itemset from Frequent Pattern Tree
Representation. FIMI'03, Workshop on Frequent Itemset
Mining Implementations, Melbourne, 2003.

[11] M.J. Zaki. Parallel and Distributed Association Mining:
A survey. IEEE Concurrency. Vol.7(4), pp.14-25, 1999.

[12] M.J. Zaki. Scalable Algorithms for Association Mining.
IEEE Trans. On Knowledge and Data Eng., 12 (3) 2000

[13] Y.G. Sucahyo, R.P. Gopalan. CT-ITL: Efficient
Frequent Item Set Mining Using a Compressed Prefix
Tree with Pattern Growth. In proceeding of the 14th
Australasian Database Conference, Vol 17, 2003..

[14] R. Agrawal, J. C. Shafer. Parallel Mining of
Association Rules, IEEE Transactions on Knowledge
and Data Engineering Vol8 , No 6, PP. 962 – 969,
1996 .

[15] EH. Han, G. Karypis, V. Kumar. Scalable parallel data
mining for association rules, In proceeding of the ACM
SIGMOD international conference on Management of
data, PP. 277-288, Tucson, Arizona, USA, 1997.

[16] M.J. Zaki, K. Gouda. Fast Vertical Mining using
Diffsets. In proceeding of the 9th International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, August 2003.

[17] D. Kreher, D. Stinson. Combinatorial Algorithms:
generation, enumeration and search. CRC Press. 1998.

[18] S.J. Yen, A.L.P. An Efficient Approach to Discovering
Knowledge from Large Databases. In Proceedings of the
fourth international conference on Parallel and
distributed information systems. PP:8-18.. 1996.

[19] R.P. Gopalan, Y.G. Sucahyo. Tree ITL-Mine: Mining
Frequent Itemsets Using Pattern Growth, Tid
Intersection and Prefix Tree. In proceeding of the 15th

Algorithm 3: Conditional Approach
Input: PLT Structure
Output: Frequent itemsets
Conditional_Construct(PLT, j)
For each V=[p1,..,pk] in D with V.Sum = j
 V’ = [p1,..,pk-1]
 Update PLT with V’
 Add V’ to CDj
 CPLT = PLT_Construction(CDj, Min_Supp)
Return CPLT
Mining (PLT, itemset)
Max = Maximum Rank in PLT
tem = itemset
For j = Max down to 1
 CPLT = Conditional_Construct(PLT, j)
 itemset = itemset ∪ j
 Output itemset
 Mining(CPLT, itemset)
 itemset = tem.

