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Abstract 

 
Association rules have proved their influence in different 

industrial fields, where their goal is to identify the relations 
existing among the events that are stored in large databases. 
However, in order to enumerate the association rules, there 
is a need to identify the frequent set of itemsets (i.e. those 
events that occur together in a sufficient number of 
transactions). In this paper, a new representation structure 
for the data stored in any transactional database is proposed. 
This structure, which we refer to as Positional Lexicographic 
Tree (PLT), provides an efficient mechanism  for subset 
checking based on a summary of the data extracted from the 
database. This makes PLT a promising tool for most of the 
existing data mining approaches. Moreover, our proposed 
PLT structure regulates the data in the database so that they 
can be applicable to compression and indexing techniques, 
which makes PLT suitable for supporting large databases. 
First, we introduce the PLT construction process, then 
highlight the different mining approaches that can be 
modulated to take advantage of PLT. We then present our 
algorithm and finally prove its correctness. 

 
1. Introduction 
 

Recent developments in information technology 
have allowed a massive amount of data to be generated 
and stored in large databases. These enormous 
databases create a challenge in terms of discovering 
hidden patterns presented in the data; these patterns 
cannot be discovered using the traditional query 
languages associated with the current database 
management systems, and are important in that they 
can improve the decision-making process. 

Data mining has received a great deal of attention in 
recent years within the database community, where 
different data mining techniques have been proposed to 
extract hidden patterns from large databases. Among 
many interesting domains of data mining, transactional 
databases of supermarkets have been the focus of many 
researchers, where each record of these databases 
contains information such as the transaction identifier, 
the date of the transaction, the set of items bought in 

that particular transaction, and possibly the customer 
identifier. A data mining problem in this context is 
mining the association rules; this problem was first 
introduced in [1]. These rules give an idea of the set of 
items that can be bought within the same transaction. 
An example of such rules might be that 95 % of 
customers who buy item X are willing to buy item Y in 
the same transaction (95% is the support of the rule). 
Generating all the association rules will help mangers 
make decisions about their business, such as which 
items should be placed next to or near each other, 
catalog design, customers’ buying habits, and butting 
items on sale. In addition, association rules have been 
applied to other domains such as medical data and web 
page access habits. 

Theoretically, if we have a set of n events (items), 
there is a potential for 2n relations to exist among these 
events; these relations are used to formulate the 
association rules. In order to compute the support of 
the rules, the set of relations should be checked against 
the database to determine the frequency of each 
relation; for large n, this huge search space will 
degrade the performance of any algorithm designed to 
solve this problem. Another dimension that adds more 
computational costs to the overall process is the large 
size of the database, which must be scanned several 
times in order to generate the frequencies. All of the 
algorithms in the literature tried to utilize different 
heuristics and pruning techniques in order to efficiently 
determine the set frequent relations (a relation is 
frequent if its frequency is greater than the user’s 
predefined threshold). 

The problem of the association rules can be divided 
into two steps [1]. In the first step, the set of itemsets 
(itemset and relation refer to the same concept) that 
exceeds a predefined threshold are determined; these 
itemsets are called frequent. In the second step, the 
association rules are determined from this set of 
frequent itemsets. In this paper, we introduce a new 
representation for the data stored in the database; this 
new representation takes the form of a lexicographic 



tree that will be used to enumerate the frequent 
relations present in large databases. Our enhancement 
is in the way in which this representation makes subset 
checking a light process, as well as the applicability of 
this data to compression and indexing techniques. 

This paper is organized as follows. Section 2 
provides a formula definition for frequent itemset 
generation. Section 3 surveys some of the existing 
methods. Section 4 defines our new representation for 
the data (the positional lexicographic tree). Section 5 
illustrates the construction and mining procedure. 
Section 6 concludes the paper. 
 
2. Problem Definition  
 

As defined in [2], the problem of mining 
association rules can be formulated as follows: Let I = 
{i1, i2,...,in} be a set of distinct items. Let D be a set of 
transactions where each transaction T is a set of items 
such that T ⊆ I, each transaction T∈D has an 
associated identifier uniquely identifying it called TID. 
Let X be a subset of items such that X ⊆  I, also 
referred to as an itemset. A subset with K items is 
called K-itemset. A transaction T supports X if X ⊆  T. 
X has a support s, if s% of the transactions in D support 
X1. The association rules are implications of the form X 
⇒  Y where X ⊂  I, Y ⊂  I and X ∩  Y =Φ  

The support of the rule (X ⇒  Y) is the support of 
the itemset (X ∪  Y). We say that the rule has a 
confidence c if c% of the transactions that contain X 
also contain Y. 

The Association rules mining problem over  
database D, is to find all the association rules that have 
support and confidence greater than or equal to the user 
predefined minimum support and minimum confidence 
respectively.  

Once the frequent itemset are determined, 
generating the rules is straightforward; so the focus of 
the paper will be on how to enumerate the frequent 
itemsets efficiently. 
 
3. Related Works 
 

Several algorithms in the literature proposed to 
attack the problem of mining frequent itemsets from 
large databases; these algorithms differ mainly in the 
way in which they represent the database and in the 
way in which they generate the frequent itemsets. 
                                                        
1 Through this paper we will refer to the support as the 

number of transactions that contain the itemset rather than 
ratio. 

 

These algorithms can be classified into two main 
approaches: the candidate generation approach and the 
pattern growth approach. In terms of these approaches, 
the algorithms also differ in the way in which they 
represent the database. The two most popular formats 
are vertical layout, where each item is  associated with 
the list of transaction identifiers where it was occurred, 
and horizontal layout, where each transaction identifier 
is  associated with the list of items. 

The candidate generation approach enumerates the 
frequent itemsets in a level wise manner, with several 
scans for the database. In each iteration, the itemsets 
found to be frequent are used to generate the candidate 
(possible frequent itemsets) to be counted in the next 
iteration. Within this approach are the AIS algorithm 
[1], Apriori, AprioriId, and AprioriHyprid [2], DHP 
(Directed Hashing and Pruning) [5], the Partition 
algorithm [6], and DIC (Dynamic Itemset Counting) 
[7].  The most popular algorithm of the candidate 
generation approach is the Apriori. Others except AIS 
are optimization of Apriori. 

 In the Apriori algorithm, a database scan is 
conducted in order to determine the set of frequent 
items. From this set of items it then generates a 
candidate set to be counted in the next step by joining 
the set of frequent itemset found to be frequent in the 
current pass. In addition, it prunes the set of candidate 
based on the anti monotone property, which states that 
all subsets of frequent itemsets should be frequent in 
order to eliminate candidates that have at least one 
infrequent subset. This process is repeated a number of 
times equal to the size of the largest frequent itemset. 

 The pattern growth approach tries to avoid the 
large number of candidates generated in each pass and 
overcome the repeated scans of the database, which 
makes most of the algorithms in this approach to 
outperform most of the candidate generation approach 
algorithms.  

The core algorithm of the pattern growth approach 
is the Frequent Pattern growth (FP-growth) proposed 
by Han et al, [3]. In this method, the database is 
converted to a compact representation in the form of a 
tree called Frequent Pattern tree (FP-tree), which is 
much smaller in size than the original database. The 
FP-tree is constructed in such a way that all relevant 
information needed in the mining process is presented 
in the tree structure. Building the tree structure requires 
only two scans for the database. After building the FP-
tree, the FP-growth routine mines all the frequent 
patterns from the tree structure without referring to the 
original database and without generating candidates. 
Only one itemset can be considered at a time, and a 
new tree is constructed from the set of itemsets that 
occur. This tree is called conditional structure; this 



process continues recursively until all the frequent 
itemsets are generated. 

Although the FP-growth method has proven its 
efficiency in comparison to the candidate generation 
approach, [8] noticed that the FP-growth method is not 
suitable for all kinds of data. Specially when the 
database is sparse, the resulting FP-tree is very large 
and there is significant overhead in traversing the FP-
tree in the mining process. This led to the need for a 
huge amount of space in the recursive process, which 
will prevent the FP-growth method to scale well for 
large amount of data. Several algorithms, such as (H-
Mine [8], FP-growth*, [4], COFI-tree [10], and ITI-
tree [19], CT-ITL [13]), have been proposed to 
overcome these limitations  

  
4. The PLT Structure Model 
 

In this paper, a new annotation for the 
lexicographic tree is introduced. This new presentation 
allows data to be stored in a compressed form and 
provides an easy mechanism to move between the 
elements of the tree and an easy way for subset 
checking during the mining process. 

Let I = {i1, i2, …in} be a set of items. A 
lexicographic order is assumed to exist among the 
items of I; a lexicographic prefix tree is a tree 
representation where the root node is labeled  with null 
and all other nodes represent elements in the set I listed 
in lexicographic order from left to right. Each node is 
linked to the nodes that represent the items that occur 
after it in the lexicographic order. Figure 1 illustrates 
the lexicographic tree of the set {A, B, C, D}. 

 
Figure 1. The lexicographic tree of items {A, B, C, 

D} 

4.1. The Positional Lexicographic Tree 
 
Definition 4.1.1:  Rank (i) is a function that maps each 
element ( i ∈  I) to a unique integer in such a way that  
the lexicographic order is maintained.  
 
Definition 4.1.2:  pos(n) is a function that   maps each 
node in the lexicographic tree to an integer that 
represents its position among its siblings  to the  parent 
node starting from left to right.  

 

For example, in Figure 1, node C is a child of node A 
at level 2 and pos(C) = 2 ( i.e. C is in the position of 
two lexicographically as a child of  A). 
 
Definition 4.1.3: Let Xk be a node at level k.  V(Xk) = 
[pos(x1), pos(x2),……,pos(xk)] is then a position vector 
that encodes the position values of the nodes that 
formulate the path from the root to node Xk.  
 
Lemma 4.1.1: Let X ={x1, x2,…..,xk} be an itemset and 
let V(X) = [pos(x1), pos(x2),……,pos(xk)] be the 
corresponding position vector of X . For each xi in X, it 
then holds 

Rank(xi) = )(
1
∑

=

i

j
jxpos  

During the construction process, the Rank function is 
used to calculate the positions of the nodes as follows: 
pos (j) = Rank (j) – Rank (i)  where j is a  child node of  
node i and Rank(null) = 0. Figure 2 represents the 
Positional Lexicographic Tree (the new compressed 
structure)   for  set {A,B,C,D}. Each node in Figure 2 
is associated with the integer (position value) that 
represents its position for the parent node. 

 
Figure 2. The PLT structure 

 
Lemma 4.1.2: For each subset X ∈  P(I), P(I) is the 
power set of the set I, V(X)  uniquely determines 
itemset X in the positional lexicographic tree. 
Proof: Let X ={ x1, x2,…..,xk}, Y = { y1, y2,…..,ym} be 
two itemsets such that X ≠  Y. 
Case 1: X, Y are of a different size: 
V(X) ≠ V(Y) because of characteristic of vector equality 
(two vectors must be of the same size in order to be 
equal). 
Case 2:  X, Y are of the same size (k = m): 
Assume  that V(X) = V(Y) 

[pos(x1),pos(x2),..,pos(xk)] = [pos(y1), 
pos(y2),..,pos(ym)] . 

 pos(xi) = pos(yi)      1 <= i <= k. 
Rank(xi)-Rank(xi-1) = Rank(yi) -Rank(yi-1),  1 < i <= 

k.  
Assume that xi = yi  for    1<i <= k 

 Rank(yi-1) = Rank(xi-1)  1< i <= k 
By definition of the Rank function (the uniqueness 
property), these sets of equalities can not be held 
unless we have X = Y, which is a contradiction.   □ 
 



Property 4.1.1:  Let Tik be a sub-tree rooted with item i 
at level k in the lexicographic tree. Let j be the parent 
of  node i. Tik  then has n-repeated structures (sub-
trees) at level (k+1) within the same sub-tree rooted 
with node j, where n is the number of siblings that   
proceed  item i in the lexicographic tree according to  
parent j. 

 
Referring once again to Figure 1,  the sub-tree 

rooted with node B in level 1 has the same structure 
under its left sibling (node A) at level 2  (the sub trees 
rooted with the gray nodes). 
 
Lemma4.1.3: Let V(X) = [pos(x1), 
pos(x2),……,pos(xk)] be a position vector of size k.  
The position vector representation of any “k-1” level 
subset of itemset X then has one of the following 
forms:  

a) [pos(x1), pos(x2),……,pos(xk-1)]. 
or 
b)[pos(x1),pos(x2),…,pos(xi)+pos(xi+1)…,pos(xk] for 

a given 1<= i <k. That is, the position vector of a 
potential subset of X at level k-1 is achieved by 
replacing two consecutive positions in V(X) with their 
sum. 
Proof: Let X ={x1, x2,…..,xk} and V(X) = [pos(x1), 
pos(x2),……,pos(xk)]. 
Known: Any subset of X at level k-1 is any itemset X` 
that is produced by removing an element from X one at 
a time. 
- Assume that the missing element is  element xk. Thus, 
X`={x1,x2,.,xk-1} and V(X`) = [pos(x1),pos(x2),…,pos(xk-

1)]…….lemma 4.1.3.a. 
- Assume that the missing element is xi, where 1 <= i < 
k:  

X’ = {x1,x2,x’i, xi+2,..,.xk} .....................1 
We claim that pos`(x’i) in V(X’) is equal to pos(xi) + 
pos(xi+1) in V(X); 

 pos(x’i) = pos(xi) + pos(xi+1)  
Rank(x’i) – Rank(xi-1) = pos(xi) +  pos(xi+1) 
Rank(x’i) =  pos(xi) + pos(xi+1) + Rank(xi-1)……...2 

From 1,  we have 
pos`(x’i) = Rank(x’i) – Rank(xi-1).  
Replace Rank(x’i) by its definition from 2 we have 
pos`(x’i) = pos(xi) + pos(xi+1) +Rank(xi-1) – Rank(xi-1). 
= pos(xi) + pos(xi+1) our claim. 
 
4.2. The Positional Lexicographic Tree 
 

Now the complete process of constructing the PLT 
can be represented. We begin by providing an 
illustrative example followed by a formula description 
of the algorithm. 

Table 1 shows a database of six transactions. In the 
first step, the database is scanned to determine the set 
of frequent 1-itemset. Since the only frequent items can 
participate in formulating the frequent itemsets, this 
step aims to eliminate those items that less support  
than the user’s predefined minimum support. Assume  
that the  absolute support count is 2. The set of 
frequent 1 items are then{(A,4),(B,5),(C,5),(D,4)}. The 
number beside the item refer to its frequency. The next 
step is to associate  a unique  number with each item 
using the Rank function. As a result we have: Rank(A) 
=1, Rank(B) = 2, Rank(C) = 3, Rank(D) = 4.  

  
   Table 1. Transactional database 

TID  Item Set  
1 ABC 
2 ABC 
3 ABCD 
4 ABDE 
5 BCD 
6 CDF 

 
  In the second  step, another scan of the database is 

conducted; for each transaction, the set of infrequent 
items is filtered out and a positional vector is created 
and inserted in a table according to its length (we 
assume that a table-like data structure is used to 
represent the positional tree; a physical tree may also 
be assumed). If this vector previously existed we 
merely increment its frequency. Otherwise, we simply 
add it with a support count equal to 1. In other words, 
we partition the database to a set of partitions such that 
each partition stores the vectors of the same length. In 
addition, we store the summation of the position values 
presented in the vector with each vector. This value 
will be used during the mining procedure using the 
conditional approach. Figure 3 provides two different 
perspective for the data using the tree structure and the 
matrix structure. Algorithm 1 gives the formula 
specification for the positional tree construction 
process. 

 
Figure 3. (a) The matrices structure (b) The 

tree structure 



 
 
5. The PLT Mining Process 
 

It is clear that the support count of any itemset is 
equal to the number of times it occurs as a single 
transaction plus the number of transactions in which 
occurs as a subset. The next two subsections discuss 
how the positional lexicographic tree can be used 
during the mining process using two different 
approaches. Top down and conditional. 

 
5.1. The Top down Approach 
 

In this methodology, we start with the database 
partition that represents the itemset of maximum 
length. For example k. Then for each entry presented in 
Dk  of  the form [p1,p2,….,pk] with ps as  positional 
values, we generate the  vectors of the first two subsets 
at level k-1  as follows: 

A) The first subset is constructed based on lemma 
4.1.3.a by removing the last positional value 
(pk)  

B) The second subset is constructed by replacing  
                 (pk and pk-1) by their sum, lemma 4.1.3.b. 

For reasons of efficiency and correctness, we may 
include the first step above in the positional tree 
construction process since we need this step only for 
the already existed vectors not for those that are 
generated using part B above. This is done by adding 
the vector at different levels in the database by 
considering one position at a time. For instance, vector 
[1,1,1,1]  should be added as [1,1,1], [1,1] at D3 and D2 
partitions.  In this case, the top down approach is 
started by considering part B above and constructing 
the vector [p1,p2,….,pk-1+pk] and adding it to the Dk-1 
partition. The same thing is done for all the vectors in 
Dk and the vectors in the other partitions by 

considering the last tow positions. After this, part B 
from above is repeated, but this time the process occurs 
by shifting one position to the left (i.e. the pair (pk-2, pk-

1) for level k). The new vector is [p1,p2,..,pk-1+pk-2,pk), 
and the same is the case for all other partitions one 
shift to the left from the pervious location considered; 
any vector that does not  have enough space for 
shifting has  already gone through the mining process. 
The entire process will continue until there is no longer 
enough space to shift in any vector.  The same 
condition should be applied to the vectors that were 
generated in previous iteration if they can satisfy the 
shifting (i.e. consecutive positional can be added). In 
this way, all of the subsets are generated and  
frequency support is inherited by the subsets without 
duplications. 

 
Figure 4. The database after top-down approach 

At the end of the above procedure, the database 
contains all the frequencies of all the subsets that may 
be presented in the database, and the frequent items are  
those that have frequency grater than the predefined 
minimum support. Figure 4 shows the database after 
the above procedure has been applied to the database in 
Table 1. We assumed that part A was constructed 
during the constructions process. Algorithm 2 presents 
the formula specification for part B.  

 

Algorithm 2: Top Down Approach 
Input: PLT Structure 
Output: All Subsets with their frequencies 
k = Maximum Vector Length. 
For  j = k down to 2 
     L=j 
     For i = k down to 2 
          For each V  ∈Di 
              If  pL exist in V 
                   p’ = pL + pL-1 
                   V’ =  V | p’ replaced by pL,pL-1 
                    If  V’ ∈Di-1 then 
                        V’.Freq += V.Freq 
                   Else 
                         Add V’ with V’.Freq = V.Freq 
          L= L-1       

Algorithm 1: PLT Construction  
Input: D, min_sup 
Output: PLT 
Generate frequent 1 items. 
For each transaction t ∈D 
  Let t’ = [t’1,t’2,..,t’k] the frequent items in t. 
  Generate V(t’) 

   V(t’).sum = ∑
=

k

i
itpos

1
)'(  

   If V(t’) ∈Dk 
              Increment the current frequency 
      Else  
             Add  V(t’) with V(t’).Freq =1 
 



 
5.1. The Conditional Approach 
 
The last subsection showed how the top down 

approach can be used in the mining process. Although 
this approach provides an efficient way to propagate 
the frequency from an itemset to all of its subsets, it 
does not fully utilize the anti-monotone property: “all 
subsets of frequent itemsets should be frequent”. Later 
we will discuss the appropriate situation for the top 
down methodology. Here we will discuss the 
possibility of having the positional tree cooperate with 
the pattern growth approach that uses conditional 
intermediate data structures. In this approach, the anti- 
monotone property can be fully utilized; the 
contribution of the positional lexicographic tree in this 
method is the way in which it provides  subset 
checking between  itemsets.  

In the conditional method, the process begin be 
considering an (item / itemset) at a time and 
constructing its conditional database [3]. The 
conditional database of an itemset provides a model  
for  all  of the supersets of the itemset presented in the 
original database. From this conditional database an 
extension of the itemset then made from the frequent 
items presented in its conditional database, and the 
support count is computed from this database. A new 
conditional database is constructed as long the 
produced itemset is frequent. If the new extension is no 
longer frequent, there is no need for a new conditional 
database and the mining process ends with this itemset; 
if it is frequent, another extension is considered and the 
process continues recursively. The contribution of 
positional lexicographic tree in this approach is in the 
way in which the conditional tree of the new extended 
itemset is identified, using lemma 4.1.1, and in the way 
how the conditional structure presented where we 
assume it as a new PLT structure and called it 
conditional PLT. 

For the database in Table 1, starting from the 
highest ranked item, which is 4 (i.e. we are in the 
process of building the conditional database of item D), 
the conditional database for item D is the database that 
contains vectors with a sum equal to D’s rank. The 
support frequency of D is equal to the sum of the 
frequencies of the vectors that participate in building 
D’s conditional database. In order to obtain the correct 
result, during the process of constructing D’s database 
from the original database, for each vector support D a 
new vector is constructed by removing the last position 
value and inserting this vector into the proper partition 
in the original database. Based on this discussion, 
Figure 5 (a) and (b) shows the original database after 
extracting D’s conditional structure and D’s 

conditional structure itself. The process continues by 
considering D’s conditional database and considering 
extensions for D one by one in reverse lexicographic 
order and building the conditional database of (D 
∪ the new extension) where the new extension is the 
highest ranked item presented in D’s conditional PLT. 
If the new support is frequent, the mining process 
continues. Otherwise, the mining process ends at this 
stage. Algorithm 3 provides a formula description for 
this conditional mining approach using PLT, which is 
first invoked with an empty set as an itemset and the 
PLT.  

 

Figure 5. (a) D's conditional database   (b) The 
PLT 

 
 
6. Conclusion  
 

In this paper, a new data structure for mining 
association rules was proposed. We successfully 
showed how this structure can be used with the two 
most popular mining methods, the top down and 
conditional approaches. Compared to pervious 
representations of the data, PLT provides a promising 
structure that is applicable to indexing and 
compression techniques, which makes PLT a solution 
when large databases are being mined. In additions, 
PLT is considered to be self-continued structure, which 
means that there is no need for any other data structure 
during the mining process. This is different  from 
pervious methods such as the  Apriori algorithm that 
required several data structures during the mining 
process. Another contribution of PLT is the way in 
which it provides  subset checking which, is 
considered to be one of the heaviest steps in the mining 
process , and the way in which it identifies the 
conditional structure, which is easier in PLT compared 
to the links  presented in the FP-tree. PLT provides 
partition criteria that makes it easy to partition the 
mining process into several separate tasks; each can be 
accomplished separately. We have also shown how the 
top down approach does not employ the anti-monotone 
property, which makes it suitable for situations where a 
very low minimum support is provided. Or, if it 



coupled with a strategy with which to compute the 
frequency and high level, the conditional approach is 
best used when the data is dense and a high support 
count is required. 
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Algorithm 3: Conditional Approach 
Input: PLT Structure 
Output: Frequent itemsets 
Conditional_Construct(PLT, j) 
For each V=[p1,..,pk]  in D with V.Sum = j 
    V’ = [p1,..,pk-1] 
    Update PLT with V’ 
    Add V’ to CDj 
    CPLT = PLT_Construction(CDj, Min_Supp)  
Return CPLT 
Mining (PLT, itemset) 
Max = Maximum  Rank in PLT 
tem = itemset 
For j = Max down to 1 
    CPLT = Conditional_Construct(PLT, j) 
     itemset = itemset ∪ j 
     Output itemset 
     Mining(CPLT, itemset)   
     itemset = tem.  


