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Abstract

In large-scaled environments such as Computing Grids,

data replication is used to permit a better bandwidth us-

age of the network. Nevertheless, high latency time ex-

poses the replica management protocols to potential per-

formance degradations. Two new protocols are presented

in this paper1 in order to avoid this degradation. Their goal

is to ameliorate the access performance of replicated data

in computing grids. The two protocols permit the dynamic

reconfiguration of a tree-structured coterie [2] in function

of the load of the machines possessing the data replicas.

Each of the protocols permits to apply a tree transforma-

tion. The elementary permutation can be performed by hav-

ing the load information of a small group of machines pos-

sessing the copies, whereas a global permutation must have

the load information of all the machines that posses the

copies. The implementation and the evaluation of our al-

gorithms have been based on the existing atomic read/write

service of [14]. We demonstrate that the permutations per-

mit to ameliorate the system’s throughput. The results of

our simulation show that tree reconfiguration based on the

elementary permutation is more efficient for a small number

of copies. The global permutation scales well and is more

efficient when there is a large number of replicas.

1. Introduction

Replication permits a better bandwidth usage of the net-

work by avoiding unnecessary data transfers between the

sites. Nevertheless, high latency time exposes the replica

management protocols to potential performance degrada-

tions. Among the existing replica management protocols,

the quorum ones are well suitable because of their ability

1This work is part of the french RNTL project ViSaGe which is sup-

ported by the french ministry for research n◦04K459

of diminishing the number of exchanged messages for the

Read/Write operations applied to the copies. To perform an

operation, copies of a quorum (read or write) must be con-

tacted to insure consitency among the replicas. The set of all

the possible quorums is called a coterie [11]. We can make

a distinction between majority-based quorum [12] systems

and structured ones [2, 13, 7]. The former uses the major-

ity of the replicas (possibly weighted) to construct the quo-

rums. The latter uses a logical organization of the copies to

diminish the quorum’s cardinality and thus the number of

exchanged messages of an operation.

Many works focus on quorum systems’ performance

improvement. They usually concentrated on the latency

between processors that maintain the copies to construct

adapted structured-coterie [10]. The authors of [6] proposed

an algorithm for the creation of geographic quorums. They

created a coterie in such a way that the distance between

any client and any quorum is optimal. Their solutions are

based on the distance between the sites, which is a static

value and is related to the used accessing media’s physical

time latency and not to the loads of the machines or the net-

work. There is a dynamic characteristic that must be taken

into more consideration than the static one, which is the

load of the processors [5, 18]. We generally associate this

load to the service response time of an operation. As the

load increases, the service response time becomes longer.

In distributed environments like computing grids [9], the

grid scheduler can not have total control over the nodes to

which it delegates tasks. In fact, a shared machine in the

grid is not always dedicated to the task that the scheduler

has granted to it. The local user of the machine is its only

master and hence can ask it to realize tasks of which the

grid system has no knowledge about them and that it can

not quantify (in terms of the load) them in advance. More-

over, computing grids are characterized by certain common

properties such as weak bandwidth and high latency be-

tween the sites, distinct administrative domains and strong



heterogeneity among the resources. Therefore such an en-

vironment is the perfect context to manage replicated data

and use structured quorum consensus protocols based on the

processor’s load.

Hence we target to the problem to which this paper

addresses, that is the dynamic reconfiguration of a tree-

structured coterie in function to the load of its processors. A

processor can be a node, a personnal computer, or a single

storage resource in a grid environment. What is important

is the fact that a processor has a quantity of work to fulfill

that we characterize it as its load and possesses a replica.

Contributions In this paper, we present two new tree-

based coterie reconfiguration schemes used in a multi-

reader/writer fault-tolerant algorithm. Our main contribu-

tions are:

1. The definition of quorum and coterie loads in order to

construct a coterie based on the processors’ loads.

2. The introduction of two reconfiguration schemes to the

tree-structured coterie of [2]. These reconfigurations

are based on the processors’ loads and permit to dimin-

ish the coterie’s overall load. The first reconfiguration

scheme is called elementary permutation of the tree

coterie and is based only on the load of any quorum of

a coterie. The second is called global permutation and

is based on the whole coterie’s load information.

3. The extension of the algorithm of [14] to embed our

elementary and global permutations. The extension

is made to take into account the following three poli-

cies: an information policy, a selection policy and a

reconfiguration policy. The information policy is used

to collect the processor’s load. The selection policy

is used to choose the right moment of reconfigura-

tion. The reconfiguration policy applies one or several

above mentionned permutations.

4. The implementation of this extended algorithm in the

neko simulator [20] to demonstrate the performance

improvement of our solutions. We show that through-

put is improved by both permutations : the elemen-

tary and the optimal. Our simulations leverage inter-

esting results on scalability issues. So we noticed that

the global permutation based algorithm performs bet-

ter than the elementary one when there are plenty of

processors. It’s the opposite when the number of pro-

cessors decreases.

Related Work There exists extensions of the different

quorum protocols that permit the reconfiguration of a co-

terie when one of the nodes crashes (crash-stop) [1, 17, 3,

16]. When the failure of one node is detected, a new coterie

is constructed with n− 1 nodes. In our solution, in addition

to being active or not, we take into account the availability

of a node on its load basis. In [4], they focus on byzantine

quorum systems and discuss on the quorum’s load. How-

ever, their load definition of quorums differs from that of

ours which will be given in the coming sections. In fact, the

authors consider the inherent load of the coterie by taking

into account the structure of the coterie and the accessing

probability of a quorum but not the workload of each node.

For example, if a node belongs to all quorums, then it will

be more loaded than a node which belongs only to one quo-

rum. On the contrary, we took into account the workload of

a node to construct a new coterie whose load is less than the

previous one.

These different previous works focalise on static sys-

tems in constract of mobile, dynamic systems. More re-

cent works focalize on mobile computing where client are

volatile and move across different sites. In [8] the authors

present an algorithm for the construction of a geographic

quorum system which is optimal in terms of distance be-

tween a client and the nearest quorum. They use computa-

tional geometry to achieve their goal. The problem exposed

in [15], is a bit different then the previous one because the

authors do not suppose that servers are static. They want to

form a quorum of mobile nodes. They introduced the dy-

namic path quorum system as a good candidate to resolve

the problem of node dynamicity.

In [19], the ViSaGe project was presented. This grid

level software’s objective is to provide to the grid commu-

nity a flexible storage virtualization service. ViSaGe will

permit to share storage ressources in a transparent manner

and with some levels of quality of services. An adminis-

trator of such a service can choose to plug any consistency

management protocol such as the protocols we will intro-

duced later.

The rest of the paper is organized as follows. In the fol-

lowing section, we present our load model. Sections 3 and 4

introduce our two permutation schemes, the elementary and

the optimal permutations respectively. Section 5 presents

the extension of the used read/write algorithm as well as the

three policies that are introduced to integrate our permuta-

tions to this algorithm. Section 6 presents the implemen-

tation and the evaluation of performance of our proposals.

The conclusion is the subject of section 7.

2 The Coterie’s Load Model and the Problem

We consider Pr as the set of all processors such that

Pr = {P is a processor}. To each processor P , a work-

ing load is associated which will be denoted by xp. Each

processor possesses a copy of the data item d. In the re-

maining of this paper, we will reason about only a single

data item, without losing generality.



Whatever is the quorum protocol type, either a majority

quorum or a structured one, all of these types are subject to

two properties : the intersection and minimality properties

[11] whose definitions are given hereafter.

Definition 1. Coterie and quorum
Let C be a set of groups of Pr, then C is called a coterie if
it satisfies the following condition:

C = {Q ∈ P(Pr)|

∀Q′ : Q′ ∈ P(Pr) ∧ Q′ 6= Q → Q ∩ Q′ 6= ∅ ∧ Q * Q′}

The Q ∩Q′ property is called the intersection property and

the Q * Q′ property is called the minimality property. Each

element Q of a coterie C is called a quorum.

The dynamic reconfiguration algorithms of a coterie that

we present in the following sections are based on the load

level of the processors to decide whether to perform a re-

configuration or not. One of the most important property

that we take into account is the load of a quorum that we

define it as such.

Definition 2. Load of a quorum

The load YQ of a quorum Q is the maximum of the loads

xP of the processors P that constitute this quorum.

YQ = Max(xP : P ∈ Q)

We consider that the accesses to different quorums of a

coterie are fairly distributed among the quorums. We define

the fairness access as such:

Definition 3. Fairness access

Let m be the number of quorums Q of a coterie C. Let RQ

be the accessing probability to a quorum Q for a Read or

Write operation. Then we consider the following:

∀Q ∈ C : RQ =
1

m

We define the load of the coterie below. It will permit

us to evaluate the efficiency of the configuration of a coterie

with respect to another, for the same number of quorums

and for the same loaded nodes.

Definition 4. Load of a coterie

Let m be the number of quorums of a coterie C. We denote

the load of the coterie by δC which is equivalent to the sum

of the loads of all the quorums of C.

δC =
∑

Q∈C

YQ

The quorum protocol that we use in this work is the

one that was presented in [2]. In the remaining of this pa-

per, when we use the word coterie, we mean a binary tree-

structured coterie.

Definition 5. Binary tree-structured coterie

The processors are logically organized in the form of a bi-

nary tree. The processors are the nodes or the leaves of the

tree. A Read or Write operation is carried out on a quo-

rum of the coterie. A quorum is obtained by taking all the

processors located on any path that starts from the root and

terminates at the leaves of a binary-tree.

This protocol is classified as one of the structured quo-

rum protocols. Intersection and minimality properties are

well respected by this protocol. Figure 1 presents an exam-

ple of a binary tree-structured coterie. In this Figure, there

are 15 processors that contain the replicas. The in-circle

numbers represent the load of the processors and the out-

circle numbers represent the identity of the processors. For

example, P1 is the root of the tree and its load is 2. The light

gray-colored processors {P1, P3, P6, P13}, form one of the

eight possible quorums.

The Problem The problem is to minimize the tree-

structured coterie’s load. This can be achieved by apply-

ing a reconfiguration to a given coterie. Next, we propose

two possible transformations called elementary permuta-

tion and global permutation. We show that both of them

diminish the coterie’s load.
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Figure 1. Elementary permutation sequence



3 The Elementary Permutation

In this section, we define the notion of an elementary

permutation that can be used to reconfigure a tree-structured

coterie. In fact, during the dynamic reconfiguration of a

coterie with partial knowledge of the load of the proces-

sors, a new coterie is constructed by applying one or several

elementary permutations to the previous one (see section

5.2.1).

3.1 Principle and Algorithm

The principle of an elementary permutation is to find a

particular pattern in the tree of the form (P, P ′) such that P ′

is the son of P and xP > xP ′ (see Figure 1), and to trans-

form it into another pattern (by permuting the two nodes

thus P becomes the son of P ′) in such a way that it amelio-

rates the performance.

Figure 1 illustrates the application of several elementary

permutations to a coterie. The algorithm 1 presents a more

precise definition of an elementary permutation. In this al-

gorithm, we also introduce a node and a binary tree coterie

data types.

Algorithm 1: The Elementary Permutation Algorithm

type Node is record (name:String;load:Int)

type TreeCoterie is array(1..N) of Node

The first item of a TreeCoterie tc is tc[1] and

corresponds to the root of the tree.

The left child of tc[i] corresponds to tc[2i] and the

right child to tc[2i+1]

Input: c:TreeCoterie,child:Int

Output: c’:TreeCoterie

Data: nodeTemp:Node

begin

c’←c if c’[child].load < c’[⌊ child/2 ⌋].load

then

Permutation between the parent and the child

nodeTemp←c’[child]

c’[child]← c’[⌊ child/2 ⌋]
c’[⌊ child/2 ⌋]← nodeTemp

return c’

end

3.2 About Coterie’s Load

By applying an elementary permutation to the tree, the

performance must be ameliorated. The metric that we have

taken to measure the gain in performance is the overall load

of the coterie. An elementary permutation must at best di-

minish this load and at worst must not increase it.

Given two coterie configurations C and C ′ such that C ′

is obtained by applying an elementary permutation to C.

We consider δC and δC′ as the loads of the coteries C and

C ′ respectively. If we consider the definition of the ele-

mentary permutation to be the same as defined previously (

algorithm 1), then we must have δC′ 6 δC .

Let us consider the levels of the nodes of the tree in the

following manner : the nodes at the leaves are at level 0 and

the root’s node is at the highest possible level. According to

the tree-structured coterie definition, we deduce that a node

at level i belongs to 2i quorums. An elementary permuta-

tion is applied to two nodes, the parent P i+1
a at level i + 1

and its child P i
b at level i, if and only if xP

i+1
a

> xP i

b

. Thus

after the permutation, the more loaded node P i+1
a will be at

level i, hence we denote it by P i
a whereas the less loaded

node P i
b , will be at level i + 1, hence we denote it by P i+1

b .

So P i
a will be contained in 2i quorums whose loads remain

the same and P i+1

b will be in 2i+1 quorums distributed in

the following manner :

• (2i+1−2i) quorums whose loads may have diminished

because xP
i+1
a

> xP i

b

(the dark-gray colored left sub-

tree of Figure 2)

• the other 2i quorums of P i
a (the light-gray colored sub-

tree of Figure 2)

0

i

i+1

R

unchanged quorums loads

2
i+1

2
i

2
i+1

2
i

−

b

Pa

l

levels

diminished quorums loads

P

Figure 2. After an elementary permutation be-

tween Pa and Pb

3.3 Limitations of an Elementary Permu-
tation

The application of several consecutive elementary per-

mutations do not lead to an optimal configuration. In fact,

after a certain number of these elementary permutations, all

the heavily loaded processors will be located at the leaves.

In such a case, an elementary permutation can no more be



applied and the performance might be degraded. For exam-

ple, if the load of the processors at the leaves continues to

augment then the elementary permutation becomes unsuit-

able. Hence, we can find a more convenient configuration

where the most heavily loaded node are in the same subtree,

for example. In the following section, we introduce the no-

tion of the global permutation that permits to resolve this

problem.

4 The Global Permutation

By global permutation, we mean another binary-tree

structured coterie reconfiguration based again on the load of

its processors. Such a permutation permits to obtain an opti-

mal configuration in terms of the overall load of the coterie.

In contrast to the elementary permutation, this permutation

needs to know the load of every processor of a coterie.

4.1 Principle and Algorithm

By having the list of all processors’ loads, we can con-

struct an optimal coterie in terms of its overall load. To

achieve this, the transformation constructs a binary tree

where the processors are sorted in their decreasing load or-

der. The construction of such a tree is performed by using

the suffix first depth method2 beginning with the most heav-

ily loaded processor (this will be located at the left-most leaf

of the tree) until the least loaded processor (this will be at

the root of the tree).

4.2 About Coterie’s Load

Here, we discuss the impact which can have a global per-

mutation on the load of a coterie. We have the intuition that

the new coterie’s load obtained after the application of a

global permutation is optimal , i.e., if δC is the load of the

new coterie C then ∄C ′, δC′ < δC . In fact, after a global

permutation, all the most loaded nodes are in the left subtree

of the coterie (subtree A in Figure 3), the least loaded node

is at the root of the tree and the other nodes are in the right

subtree (subtree B in Figure 3). Thus one can easily notice

that the root and the right subtree contain all the less loaded

quorums. These quorums are of optimal load because the

load of the nodes is in decreasing order from the root to a

leaf. On the other side of the tree, the root and the left sub-

tree contain the other quorums of the coterie which are the

most loaded quorums. For example, in Figure 3, the two

most heavily loaded nodes of the coterie are located at the

leaves of this left subtree. Moreover, the third most loaded

node is also contained in subtree A and its load is hidden by

2Such a method is organized in the following order : left child, right

child and parent.

Algorithm 2: The Global Permutation Algorithm

An array of nodes sorted by descending load:

Input: st:array(1..N) of Node

The new Coterie obtained by global permutation

Output: c’:TreeCoterie

begin

pos←globalPermutation(c’,1,st,1)

return c’

end

function globalPermutation(c:TreeCoterie,

nodePosition:Int, sortedNodes:array(1..N) of

Nodes,pos:Int):Int

begin

if nodePosition*2>N then

–It’s a leaf level

c[nodePosition]←sortedNodes[pos]

return pos+1

else

–It’s a node level

pos←globalPermutation(c, 2*nodePosition,

sortedNodes, pos)

pos←globalPermutation(c,

2*nodePosition+1, sortedNodes, pos)

c[nodePosition]←sortedNodes[pos]

return pos+1

end

the two other nodes. It is the fact of hiding the third node

in the subtree A which makes it possible to have an optimal

load with a global permutation.

4.3 Discussion

The difference between the elementary and the global

permutations is that the latter takes into account the load

information of all the processors of a coterie whereas the

former only needs the load information of all the processors

of a quorum. As a conclusion, we dispose two permutation

protocols to ameliorate the performance of a quorum sys-

tem. More precisely, the elementary permutation amelio-

rates the performance with a minimum cost: the load of the

processors of the quorum is necessary. On the other hand,

the global permutation permits to obtain an optimal config-

uration with a little bit higher cost because it is necessary to

know the loads of all the processors of the coterie. In sec-

tion 6, we present the evaluation of these two permutation

protocols.
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P2
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Figure 3. After a global permutation, the

heavily loaded nodes are in subtree A, the

least loaded node correspond to the root and

the others are in subtree B, i.e., xP7
≥ xP6

≥
xP5
≥ ... ≥ xP1

5 Reconfiguration Algorithms

Our elementary and global permutations of the tree-

structured coterie must be embedded in a suitable read/write

algorithm. This algorithm must take care of concurrent

accesses as well as dynamic reconfiguration of the tree-

structured coterie with our permutation schemes. We

present next an existing algorithm chosen from the literature

of distributed systems. This algorithm is the one presented

in [14].

5.1 The Used Atomic Read/Write Service

This algorithm is composed of two interfaces : the user

interface that permits to access data by the well known

read/write operations and the management interface which

is used to reconfigure the current coterie.

User Interface The read/write operations of a data item

consist of two phases: a query phase and a propagation

phase. At the time of the query phase, a read quorum is con-

tacted and each processor of the quorum returns the value

and the version of their local replica as well as the value

and the version of their current coterie. Once all the an-

swers are collected, the most recent version of the data is

extracted. According to the operation, this recent version is

either incremented and propagated (write) or simply propa-

gated (read). In this propagation phase, the new value and

the new version of the data is assigned to a write quorum.

These two phases are carried out systematically for a read

or write operation, that makes it possible to update the ob-

solete copies even when a data is read.

Figure 4 illustrates these two phases. Subfigure (a)

shows us the read/write protocol. Subfigure (b) gives us

the used three processors of a coterie and its corresponding

read/write quorums. In the tree-structured coterie, read and

write quorums are identical.

Management Interface The service also possesses a

management interface which makes it possible the dynamic

reconfiguration of the used coterie. A reconfiguration can

be carried out as the read or write operations are being per-

formed. A reconfigurer is in charge of the reconfiguration

process. It can be either an elected or a dedicated processor.

The reconfiguration protocol is composed of three phases.

During the installation phase, the reconfigurer contacts a

minimal group of processors. The contacted group is the

union of a read quorum and a write quorum to which the

new configuration is send by the reconfigurer. The proces-

sors return to the reconfigurer the value and the version of

their local replica. When all the answers are arrived, the re-

configurer enters the propagation phase. During this phase,

a write quorum of this new coterie is contacted which guar-

antees the consistency among the replicas. Finally, the con-

firmation phase confirms the installation of the new config-

uration by sending it to a write quorum of this new coterie.

Figure 5 illustrates the exchanged messages during the

reconfiguration process. On Figure 5(a), we added the re-

configurer which initiates the reconfiguration. The new co-

terie obtained after this procedure is shown in Figure 5(b).

5.2 Extensions of the Atomic Read/Write
Service

We propose to extend the atomic read/write service by

adding three functionalities which are beyond the scope of

[14] and that permit to realize our elementary and global

permutations.

These functionalities are as follows:

1. an information policy: to gather information concern-

ing the load of each processor,

2. a selection policy: to define the possible and conve-

nient moment of reconfiguration,

3. a reconfiguration policy: to choose one of the previ-

ously defined permutations to apply if a reconfigura-

tion can be carried out.

Next, we introduce the two extensions which correspond

respectively to the elementary permutation and the global

permutation presented in the preceding sections by specify-

ing the different policies of each extension.

5.2.1 Elementary Permutation Based Extension

Here we describe our elementary permutation based exten-

sion of the read/write atomic service. This extension con-

sists of the following three policies.

The information policy An elementary permutation can

be carried out by having the load information of the proces-

sors that must be permuted. Hence, the major role of the in-

formation policy is to acquire, during the propagation phase
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of the read/write operations, the load of the processors of a

quorum. The collected loads are enough to apply one or

more elementary permutations within only one quorum: a

path from the root to a leaf.

The selection policy The choice of when to reconfig-

ure is the major role of the selection policy. The question

here is when to apply one or more elementary permutations.

This choice is made naturally at the time of each operation,

once the propagation phase is completed and the operation

is confirmed. Each operation leads to contact a quorum.

If this quorum contains a pattern where a parent is more

loaded than a child then an elementary permutation can be

carried out.

The reconfiguration policy After each propagation

phase, once the loads are known and the patterns are identi-

fied in the used read/write quorum, all possible elementary

permutations can be applied. So after the reconfiguration,

the path from the root to a leaf contains the processors in

descending order of loads. The less loaded processor of the

initial quorum is at the root and the more loaded one is at

the leaf.

In Figure 4 the propagation phase’s bold lines correspond

to our information policy. Just after the propagation phase,

the processor performs the reconfiguration policy by com-

puting all the permutations that can be achieved. We call

this phase a “computation phase”. If there exists one or

several permutations to be applied, the new configuration is

R

added message

unmodified exchanged message of the used algorithm

P
1

P
2

P
3

confirmationpropagation
phase phase

installation
phase

computation
phase

information
phase

period completed
reconfiguration

Figure 5. Dynamic coterie Reconfiguration of

the Read/Write Atomic Service

sent to the reconfigurer in order to perform the actual re-

configuration which is depicted as the “reconfiguration re-

quest”.

5.2.2 Global Permutation Based Extension

Like the preceding extension, we introduce here the three

policies needed by the global permutation based algorithm.

The information policy A global permutation must

know the loads of all the processors of the coterie in or-

der to be applied. The information policy of this extension

cannot be satisfied with the information of loads of only one

quorum. We add an information phase in the reconfigura-

tion process (see Figure 5). This information phase is real-

ized before the three phases of the reconfiguration process

(installation, propagatoion and confirmation). This permits

to acquire the load information of all the processors of the

coterie.

The selection policy The choice to process a reconfigu-

ration is periodic. If the period is reached, the reconfigurer

processor starts the reconfiguration phase by first execut-

ing the information phase. The periodicity of verification

is a parameter of the selection policy. We discuss it in the

evalaution section.

The reconfiguration policy The reconfiguration policy

of this extension is obvious. The new configuration is ob-

tained by applying a global permutation on the current tree

coterie.

6 Implementation and Evaluation

In order to evaluate our both algorithms, we imple-

mented them in the Neko simulation environment [20]. We

then proceeded to a simulation campaign where we stud-

ied several different characteristics such as throughput and

scalability. We also studied the impact of the global permu-

tation’s periodicity parameter. We present these different



results in the subsequent subsections but we first introduce

the chosen simulation process.

We realized each simulation by taking into consideration

the following three cases: without reconfiguration (WP),

with elementary permutation (EP) and with global permu-

tation (GP). For each case, we used different numbers of

replicas: 7, 15, 31, 63 and 127, each corresponding to a

number of processors. Each processor has its own load that

can evolve randomly during the simulation. The time dur-

ing which the load remains constant is called the session

time. The session time follows the Poisson law that permits

a long enough session. The number of read/write requests

executed by each processor is also a parameter of the sim-

ulation. What we first found out is the fact that there is a

strong relationship between the session time and the num-

ber of requests in our simulation results. So we took into

account diiferent number of requests per session to present

our simulation results. The simulation time was fixed so

that we can compare the number of confirmed requests of

our different cases.

The first obtained results indicated us that the fact of ap-

plying the elementary and global permutations permit to

augment significantly the number of performed read/write

operations whenever the number of requests per session is

high. Figure 6, represents the throughput as a function of

the number of replicas. Each subfigure corresponds to a

specific number of requests per session. From 50 requests

per session and on (subfigures 6(b),6(c),6(d)), one of the

two permutation algorithms is always better than the one

with no permutation. For a low number of requests per ses-

sion, performing no permutation at all seems the most con-

venient solution (6(a)).

Next, we precisely define the differences between the

elementary and global permutations’ simulation results by

taking into account the cases where the number of requests

per session exceeds 50 (subfigures 6(b),6(c),6(d) and Figure

7).

6.1 Increased Throughput with Elemen-
tary Permutation

The performed simulations showed that the elementary

permutation based algorithm is the one that permits to ob-

tain the best throughput. In fact, if the number of replicas to

be managed is not large, then this algorithm performs bet-

ter than the others. We note that the maximum throughput

is always achieved by the elementary permutations : sub-

figure 6(b) and (c) for 31 replicas and,6(d) for 15 replicas.

For example, in this last case we notice a throughput ame-

lioration of more than 50% with respect to a non permuted

system and to 25% with respect to the global permutation

based solution. We noticed that the elementary permuta-

tion algorithm permits to construct quickly a quasi-optimal
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(a) 25 requests per session
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(b) 50 requests per session
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(c) 75 requests per session
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Figure 6. The throughput as a function of the

number of replicas. There are three differ-

ent represented series : WP (Without Permuta-

tion), EP (Elementary Permutation) and GP500000

(Global Permutation with a period of 500000 simula-

tion steps)
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Figure 7. Various Global Permutation (GP#)

results with different reconfiguration periods

compared to Elementary Permutation (EP)

and Without Permutation (WP). GP50000 is

for Global Permutation with a reconfiguration

period of 50000 simulation unit time. The

number of requests per session is equal to

75. The fixed simulation time we used is 2M.

tree in terms of the charge of the processors, having in mind

that all the quorums are fairly accessed (see definition 3).

We will obtain most of the time a tree with the least loaded

node at the root and the heavily loaded nodes at the leaves.

Nevertheless, when the number of nodes increases, we

noticed the application of too many reconfigurations. It is

in this case that a global permutation algorithm becomes

more convenient. The extreme cases show that an algorithm

with no permutation premits to obtain better results when

the number of nodes increases. Now we treat this scalability

problem with the results obtained from global permutations.

6.2 High Scalability of the Global Permu-
tation

We can notice in Figure 7 that the global permutation al-

gorithm is best suited for a system possessing a large num-

ber of replicas. Whatever is the number of requests per

session, whenever there are 127 nodes, the throughput be-

comes higher than that of the other algorithms. For exam-

ple, for 75 requests per session, global permutation permits

to perform 50% more requests than the elementary permu-

tations and 40% more requests than non-permuted systems.

On the other hand, when the number of replicas is small,

this solution is often less convenient. The main objective

of the global permutation is to regroup the heavily loaded

nodes into the same path in such a way that they hide each

other. In fact, the greater is the size of the quorum, the

more we can regroup together the nodes of equivalent loads.

Hence it is reasonable to obtain the best results when the

number of nodes is important.

6.2.1 The Impact of the Periodicity

Figure 7 exhibits the various global permutations. Each se-

ries corresponds to a different reconfiguration period. The

GP50000 series correponds to a global permutation of a

50K period. Knowing that the simulation time is 2M, this

simulation has undergone about 40 reconfigurations. The

other series such as GP100000, GP200000 and GP500000

correspond to the periods of 100K, 200K and 500K time

units respectively. For 127 nodes, we can note the strong

impact of the periodicity on the throughput. In fact, by

choosing a large period with respect to the simulation time,

we obtain throughtput ameliorations at a magnitude of 15%

between GP500000 and GP200000. This is due to the

number of abandoned requests during the reconfiguration

phases. As the number of nodes increases, the number of

abandoned requests during these phases becomes larger, so

a reconfiguration becomes more expensive.

7 Conclusion

We have linked the construction of a coterie to the loads

of its processors. We have defined the notion of a quorum’s

load as well as coterie’s load. These definitions helped us

to propose two types of reconfigurations applied to a tree-

structured coterie : the principle of elementary and global

permutations. We have shown that these two permutation

protocols permit to ameliorate the load of a coterie. We

have extended an atomic read/write algorithm that permits

dynamic reconfigurations of a coterie so that we can embed

our permutation schemes. The simulation campaigns that

we have carried out thanks to the Neko simulator, showed

us the benefits of our simulations. The elementary permu-

tation permits to ameliorate the throughput by 25% for a

small number of processors and a large number of requests

per session. On the other hand, as the number of nodes

increases, the global permutation produces better results

hence improving the scalability.

Perspectives Even if part of this work is achieved, we

want to continue working on scalability and evaluate our so-

lutions with larger number of nodes. Peer to peer platforms

may help us in realizing this task. Moreover, once the ViS-

aGe project releases its first version (middle of 2006), we

will confirm the results presented here in a more realistic

environment than a simulator. In addition, we hope to cou-

ple the load of the processors with the transfer time in order

to have a finner criteria in constructing the coteries. The fact

of coupling these two criterias is an interesting issue.
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