
Parallel Algorithms for Motion Panorama Construction

Yong Wei, Hongyu Wang, Suchendra M. Bhandarkar and Kang Li

Department of Computer Science, The University of Georgia

Athens, Georgia 30602-7404, USA

E-mail: {yong, suchi, kangli}@cs.uga.edu

Abstract

A motion panorama is an efficient and compact

representation of the underlying video. However, the

motion panorama construction process is

computationally intensive and hence extremely time

consuming. Addressing this issue is crucial when one

considers using motion panoramas in a real-time

environment such as live video transmission. We

present two parallel algorithms for motion panorama

construction, namely, the shared memory parallel

algorithm (SMPA) that uses POSIX threads and the

distributed memory parallel algorithm (DMPA) that

uses MPI. The parallel algorithms are tested on real

videos. Experimental results show that the SMPA

achieves linear speedup in most cases whereas the

DMPA suffers from reduced efficiency when the

number of processors exceeds 8.

1. Introduction

 Motion panoramas are an efficient representation of

the underlying video and are based on image

mosaicking [1] where a set of small images are

combined into a larger composite image. The basic

idea is to extract several key frames from a video and

stitch them together into a single wide-angle panoramic

image. The stiching is done by aligning all frames of

that sequence to a fixed coordinate system and then

integrating the aligned images into a mosaic image.

 In a static panorama, the input video sequence is

segmented into contiguous scene subsequences, and the

mosaic image is constructed for each scene

subsequence to provide a snapshot view of the scene

subsequence. The static panorama exploits long-term

temporal redundancies over the entire scene

subsequence and spatial correlations over large

portions of the image frames, and therefore constitutes

an efficient scene representation. It is ideal for video

storage and retrieval, especially for rapid browsing in

large digital libraries and for enabling efficient random

access to individual frames of interest [3]. However,

the changes in the scene with respect to the background

(termed as residuals) caused by a moving object are

not captured by a static mosaic image and need

additional representation. On the other hand, a motion

panorama is a sequence of evolving mosaic images [1]

where the contents of each new mosaic image are

updated using the current information derived from the

most recent frame. In general, since the residuals are

relatively small, the motion panorama is an ideal tool

for low bit-rate transmission [2]. However, due to the

incremental nature of frame reconstruction, motion

panoramas, lack the important capability of random

access to individual frames of interest.

 Several applications of video-based static and

motion (dynamic) panoramas have been described in

the literature. Irani, Hsu, and Anandan [2] describe a

technique for video compression using dynamic

mosaics. Teodosio and Bender [3] introduce the notion

of Salient Stills (static panoramas) for the purpose of

video visualization. Irani et al. [4] demonstrate the use

of static and dynamic panoramas in scene change

detection, video search and indexing, and video editing

and manipulation. Shum and Szeliski [5] show how

motion panoramas can be used to create virtual reality

environments to enable virtual travel. Irani and Peleg

[12] show how motion panoramas can be used to

improve the resolution of the underlying video data

resulting in a super-resolution mosaic. Static and

dynamic video mosaics have also been used as the

basis of generative video models [15]. More recently,

Pan [14] has shown how motion panoramas can be

used for video transcoding in low-power mobile

multimedia devices. Some applications of video-based

static and motion panoramas have also been

commercialized [6]–[8].

 In spite of several algorithmic advances,

construction of video-based static and motion

panoramas is a computationally intensive process. For

example, a serial implementation of the recent motion

panorama reconstruction algorithm proposed by Bartoli

et al. [1] was observed to take more than 9 minutes to

process a 12-frame video sequence on a Sun

UltraSPARC workstation with a 1.05 GHz CPU and

1.0 GB of RAM. Note that at a normal sampling rate, a

1-second video sequence usually consists of 30 frames.

Therefore, most algorithms for generation of video-

based panoramas are suitable only for off-line

applications. For applications with real-time

constraints, the need for faster processing capability is

critical. Even in the case of applications where the

panorama generation could be done off-line, faster

processing capability is clearly desirable.

 In light of the above, we present two parallel

algorithms for motion panorama construction, namely,

a shared memory parallel algorithm (SMPA) that uses

POSIX threads (Pthreads) [18] and a distributed

memory parallel algorithm (DMPA) that uses the

Message Passing Interface (MPI) [17]. The SMPA is

conceptually and practically simpler since it does not

require the user to explicitly specify the communication

of data between tasks. However, the fact that the data

locality and data placement are transparent to the

programmer, could have a negative impact on

performance and scalability of the SMPA. The DMPA

offers performance and scalability but compromises the

ease of use since the programmer is typically

responsible for sending and receiving data amongst the

processors. In addition, the DMPA might not scale well

on problems that require a lot of data communication

amongst the tasks since the complexity of the inter-

processor communication overhead typically scales

super-linearly with respect to the number of processors

in the networked cluster.

2. Sequential Algorithm for Motion

Panorama Construction

The sequential motion panorama construction

algorithm [1] consists of three major phases: static

background generation, background-foreground

segmentation (i.e., extraction of moving objects) and

final panorama composition. During the first phase, the

homographies corresponding to the motion of the

camera are computed for certain frames. The static

background for the entire scene underlying the video

sequence is generated by stitching the individual

frames into a single large wide-angle panoramic image

using these homographies. In the second phase, the

dynamic foreground, which includes regions

corresponding to both, moving objects and false

detections in the scene, is segmented by warping

together three consecutive frames in the video sequence

and consequently detecting the intensity discrepancy at

each pixel location. The noise in the dynamic

foreground is smoothed using a Gaussian filter. The

moving objects are detected using a connected

components labeling (CCL) algorithm. Regions

corresponding to false motion are deleted using a size

filter applied to the output of the CCL algorithm.

Finally, the foreground objects are pasted back onto the

static background using the location information from

the homographies computed in the first phase and the

position coordinates computed during the second

phase. For further details on the sequential motion

panorama construction algorithm, the interested reader

is referred to [1].

3. Parallel Algorithms for Motion

Panorama Construction

Each of the aforementioned steps in the sequential

algorithm for motion panorama construction is

parallelized as described in the following subsections:

3.1. Homography Estimation

The Homography Estimation procedure in the case

of the sequential motion panorama construction

algorithm consists of four computational tasks that are

performed in order: (a) Interest Point Detection where

interesting feature points (typically corner points) are

detected in each video frame; (b) Correspondence

Matching where for feature points detected in a given

frame, the corresponding matching feature points in the

reference frame are identified; (c) RANSAC-based

Estimation where false matches or outliers are

removed; and (d) Optimal Transformation Estimation

where the homography transformation between the

current frame and the reference frame is computed.

Figure 3.1 CPU time distribution for various tasks

in sequential homography estimation

Figure 3.1 shows the CPU time distribution of the

aforementioned tasks in the Homography Estimation

process. As can be seen from Figure 3.1, the tasks of

Interest Point Detection, Correspondence Matching and

RANSAC Estimation require the most computation and

collectively account for 98% of the total execution time

of the sequential Homography Estimation algorithm.

Hence, an efficient parallel algorithm for each of these

three steps is crucial to the final outcome. On the other

hand, Optimal Transformation Estimation requires little

computation and has limited parallelization potential.

The remaining time is spent mostly on file I/O which,

in the current implementation, is not parallelized.

3.1.1. Interest point detection. Since the interest value

of a pixel only depends on the color values of

neighboring pixels in the original image frame, no data

dependence exists between any two computations.

Thus parallelization can be achieved by partitioning the

original image frame, consisting of 480 rows and 720

columns in our case, into as many blocks as the number

of processors, such that each block has an almost equal

number of pixels, and assigning one block to a

processor for computation. Once the above process is

completed, the resulting matrix of interest points is also

divided into as many blocks as the number of

processors. Each processor searches for the pixel that

has the largest interest value within each neighboring

and non-overlapping 3030 × window within its

assigned block. These pixels are then marked as

interest points.

 In the SMPA, no synchronization is required during

the entire interest point detection process because the

block partition remains the same. The overhead for the

SMPA, if any, is due to memory contention. The

DMPA does not suffer from memory contention,

however, it requires explicit communication amongst

the nodes at the end of the computation so that all

nodes can obtain a local copy of the matrix of interest

points. The simplest approach is to communicate the

entire matrix. However, because there is only one

interest point within a 3030 × region, communicating

the entire matrix is extremely inefficient. Thus, in

order to reduce the redundancy during the

communication, an array of size (480×720)/(30×30)×2

is used in the communication instead of the entire

matrix. Each node copies the coordinates of all interest

points within its assigned block into the array before

performing an all-to-all communication over the entire

array. At the end of the communication, the array in

each node, which contains the coordinates of all the

interest points, is used to mark the local interest point

matrix. As a result, the size of data used in the

communication is reduced by a factor of 2/(30×30) =

1/450.

3.1.2. Correspondence matching. After having

determined the interest points in a given frame, the next

step is to search the following frame in the video

sequence for the corresponding matching interest

points [10]. Again, there is no data dependence

between any two distinct searches for the

corresponding matching interest points. Hence, the key

issue in the parallelization is how to assign the interest

points evenly to each processor so that the workload is

balanced amongst all the available processors. Our

implementation is similar to a multiple server queue,

where several servers simultaneously serve a group of

clients. A client waits in the queue until a server has

finished its assigned task. Thus all servers are kept

busy until each server finishes its assigned task and

there is no client in the queue.

 In the SMPA, we use a global cursor to identify the

first interest point in the queue. When a processor is

available, it first locks the cursor from being accessed

by another processor. After it gets the information

about the first interest point in the queue, it updates the

cursor’s position, releases the lock attached to the

cursor and begins to search for the corresponding point

in the next frame. If there is no interest point left in the

queue, the processor releases the lock attached to the

cursor and waits for other processors to finish their

assigned tasks. The overhead incurred during this step

is the time spent in synchronizing the value of the

global cursor. An alternative approach is to statically

assign the interest points to the processors based on a

certain criterion. For example, we can partition equally

the set of interest points and assign each subset to a

processor. Such an approach can eliminate the

synchronization overhead, but may also suffer from an

unbalanced load. This is so because the computation

required for each single search may vary and with static

assignment, the worst case could occur where all the

interest points that require less computation are

assigned to one processor and all interest points that

require extra computation are assigned to the others.

 We have tested the performance of the SMPA for

both, dynamic and static assignments of interest points

to processors. In the case of static assignment, we

employ the same scheme used in the DMPA, discussed

in the following paragraph. Experimental results show

that there is almost no difference between the

performance of the SMPA with dynamic and static

assignments when using 2 or 4 processors. When using

8 processors, our dynamic assignment scheme performs

on average 2%-3% better than the static version in

terms of total execution time. This is expected since the

probability of a load imbalance increases as the number

of processors increases.

 In the case of the DMPA, we did not employ the

above dynamic assignment scheme. The reason is that

the use of a global cursor would entail a costly

overhead of explicit inter-processor communication

over the cursor. Any performance gain would most

probably be offset by the inter-processor

communication overhead. Hence, in the DMPA, the

interest points are assigned based on the following

scheme. In our implementation, we first number the

interest points from 0 to P. The interest points with the

numbers 0,
nN ,

nN2 ,
nN3 …, where

nN is the total

number of nodes (processors), are assigned to the node

with id 0, interest points with the numbers 1, 1+nN ,

12 +nN , 13 +nN … are assigned to the node with id 1,

and so on. Although this static assignment may suffer

from a load imbalance problem, the experiment results

discussed in Section 4, however show that the resulting

performance is still quite satisfactory.

3.1.3. RANSAC estimation. The RANSAC algorithm

[16] basically repeats a statistical sampling process for

a certain number of iterations in order to remove

outliers from the input data. Each sampling process is

independent. Also, the computation entailed by each

sampling process is roughly the same. Therefore, the

RANSAC procedure can be easily parallelized by

sharing the total number of sampling iterations amongst

all the available processors. Regardless of whether the

SMPA or DMPA is used, the total number of sampling

iterations is divided by the total number of available

processors. The result is the number of sampling

iterations a processor should repeat. If there is a

residual R (where R > 0), processors with an id from 0

to R-1 will perform an additional iteration.

 Each processor computes the homography from its

local consensus set with the largest number of inliers.

The local largest number of inliers amongst all the

processors is finally compared and the homography

computed from the largest number of inliers among all

the processors is selected. In the SMPA, this is done by

using mutex_lock() & mutex_unlock() operations so

that the homography and the largest number of inliers

are updated by each processor one by one. In the

DMPA, all child nodes send their local copies of

homographies along with the largest number of inliers

to the master node. The master node computes the

result based on the data it receives.

Algorithm for Homography Estimation:

1: Partition the frame into a several blocks, assign each

block to a processor and let it calculate the interest

values of all pixels within that block.

2: Within each 30 × 30 window, find the pixel with the

maximum interest value and mark it as an interest point.

3: In the case of the SMPA, do the following:

Let the global cursor 0=C

Let the total no. of interest points = P

for all interest points from 1=i to P do

 mutex_lock()

 if Ci > then

 iC =

 mutex_unlock()

 search for the corresponding point of

 interest point i

 else

 mutex_unlock()

 continue

 end if

 end for

In the case of the DMPA, do the following:

 Let the total no. of interest points = P

 for all interest points from 1=i to P do

 if (i mod total_number_of_processors) =

 processor’s ID then

 search for the corresponding point of

 interest point i

 else

 continue

 end if

 end for

4: Let

=nS

processorsofnumbertotaliterationssamplingtotal ___/__

5: Randomly select 4 pairs of corresponding points and

estimate the homography based on these points, use the

homography to compute the number of inliers.

6: Each processor repeats step 5 Sn times.

7: The master processor uses the homography with the

largest number of inliers among all processors to

estimate the final optimal transformation.

3.2. Background Mosaic Generation

 Background mosaic generation consists of two tasks:

(a) estimating the homographies for a series of frames

in the video sequence, and (b) mapping these frames

onto the final static background mosaic using the

estimated homographies. The background mosaic

generation procedure is parallelized by first running the

parallel algorithm (SMPA or DMPA) for homography

estimation on a single frame and then using a single

processor to execute the mapping process. This

procedure is repeated on a series of frames in the video

sequence.

3.3. Dynamic Foreground Segmentation

 The sequential algorithm for dynamic foreground

segmentation consists of three major processes

performed in order: (a) generation of the probability

image, (b) Gaussian filtering of the probability image,

and (c) connected component labeling (CCL) and

segmentation of the foreground objects from the

background. Figure 3.2 depicts the CPU time

distribution for the three major procedures involved in

the sequential algorithm for dynamic foreground

segmentation. The processes of generating the

probability image and then performing Gaussian

filtering on the probability image together take up over

99% of the total execution time. Our works focuses

mainly on the parallelization of these two tasks.

Figure 3.2 CPU time distribution for various tasks
in dynamic foreground segmentation

3.3.1. Computation of the probability image. The

two major steps in this task are: estimating the

homography between two consecutive frames and

computing the Mahalanobis distance matrix for all

pixels [1]. We use the same parallel algorithm for

homography estimation as the one used in static

background mosaic generation. To parallelize the

computation of the Mahalanobis distance matrix, we

partition the matrix into several blocks and share the

computation amongst all the available processors. This

matrix computation depends only on the estimated

homography and the color values of all pixels in a

single frame. So once the homography is obtained, no

further data synchronization or communication is

required.

3.3.2. Gaussian filtering of the probability image. A

two-dimensional Gaussian filter is applied on the

probability image. Since the two-dimensional Gaussian

filter is separable, the filtering operation is tantamount

to applying the one-dimensional Gaussian filter along

the x-axis followed by the application of the same filter

along the y-axis. When applying the filter along the x-

axis, the value of each pixel is updated based on the

values of its neighbors on the same row. On the other

hand, when applying the filter along the y-axis, the

value of each pixel is updated based on the values of its

neighbors in the same column.

 In the SMPA, the changes in the data dependence

pattern require the data to be synchronized before a

different filter is applied. This can be easily done by

placing a barrier() before applying the Gaussian filter

along the second dimension. In the DMPA, the need

for explicit inter-processor communication amongst all

the processors has a significant negative impact on

performance. Our original implementation used the

MPI_Allgather() operation to communicate the entire

probability image matrix. This approach is proven to be

very inefficient. In Section 4.3, we provide an

optimized version of the inter-processor

communication process. After the probability image

has been processed by the Gaussian filter masks along

each dimension, it is partitioned into a several blocks

such that each processor works on only one block for

the remainder of the computation.

Algorithm for Foreground Segmentation:
1. Use the parallel algorithm to estimate the homography

pH between the current and the previous frame.

2. Let each processor compute a portion of Mahalanobis

Distance matrix
pMD based on

pH .

3. Use the parallel algorithm to estimate the homography

nH between the current and the next frame.

4. Let each processor compute a portion of Mahalanobis

Distance matrix
nMD based on

nH .

5. The matrix MD is computed as the sum of
pMD and

nMD .

6. Partition the matrix MD and let each processor apply the

x-mask of the Gaussian filter on a portion of the matrix.

7. Perform barrier synchronization.

8. Partition the matrix MD and let each processor apply the

y-mask of the Gaussian filter on a portion of the matrix.

9. Partition the matrix MD and let each processor find the

maximum value within its assigned partition of the

matrix.

10. Let the master processor gather the results and compute

the threshold as 1/5 of the maximum value of the whole

matrix.

11. Partition the matrix MD and let each processor mark the

pixels within its assigned partition whose values are

greater than the threshold as foreground.

12. Let the master processor run the procedures for dynamic

component labeling and segmentation.

4. Experimental Results

 The experimental results for the SMPA were

obtained using a Sun Fire 880 server with 8

UltraSPARC III 750MHz processors, where each

processor has 8MB internal cache and shares a total of

16GB of global memory. Experimental results for the

DMPA were obtained on a cluster of 16 Sun Blade

1500 workstations, each equipped with an UltraSPARC

IIIi 1.05Ghz processor, 1MB Cache and 1GB local

memory.

We measured the speedup for each parallelizable

task during static background generation and dynamic

foreground segmentation. As mentioned before, once

the static background generation and dynamic

foreground segmentation are performed, the final

panorama composition does not involve intensive

computation and is, in fact, intended to be performed

on the client side on a device with limited CPU

resources. Therefore, the final panorama composition

is not discussed in this section. However, the overall

performance, which includes both static background

generation and dynamic foreground segmentation, is

included for comparison. In the SMPA, the total

number of processors used in the test ranged from 2 to

8, covering each power of 2. In the DMPA, we used the

maximum available 16 processors. All tests were

performed ten times and the averages of the results

were computed. The input video sequence consists of

14 image frames, each frame of size 480 rows × 720

columns. Note that the problem size does not depend

on the number of input frames, it only relates to the

dimensions of a single frame.

4.1. Performance of the SMPA

 Figure 4.1 shows the SMPA speedup results. It is

quite obvious that SMPA performs very well. The

overall CPU efficiency is shown in Table 4.1. Such

high efficiency is primarily due to the fact that the

motion panorama construction algorithm does not

require too many data communication operations. The

shared memory architecture with a high bandwidth

memory bus helps to reduce the time for data

synchronization. In both procedures, Correspondence

Matching and RANSAC Estimation, the dynamic work

load distribution technique proved to be extremely

effective in terms of load balancing. Both tasks achieve

nearly 100% CPU efficiency when using 4 or fewer

processors. When using 8 processors, the CPU

efficiency was reduced to approximately 89% due to

the fact that the data synchronization overhead

typically scales super-linearly with respect to the

number of processors.

 Figure 4.2 shows the proportion of the total

execution time taken by each task. It was observed that

the time spent in both file I/O and the inter-processor

communication overhead did not increase significantly

with the number of processors, thus proving that the

parallel algorithm does very well in balancing the load.

However, the proportion of total execution time taken

by non-parallelizable tasks such as file I/O and

dynamic component segmentation increases with an

increasing number of processors. With 8 processors,

these two tasks take up around 5% of the total

execution time. From the data tabulated in Figure 4.2,

we predict that the SMPA will work very well on at

least 16 processors.

1.987 2.011 1.998 1.988 1.896 1.982

3.957 4.011 3.999 3.931
3.812 3.884

7.796 7.788 7.830

7.156 7.105

7.591

0

1

2

3

4

5

6

7

8

9

Interest Points

Detection

Correspondence

Matching

RANSAC

Estimation

Compute

Probability Image

Gaussian Filter overall

different tasks

s
p

e
e
d

u
p 2 Processors

4 Processors

8 Processors

Figure 4.1 Speedup results for the SMPA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

number of processors

ru
n

n
in

g
 t

im
e
 p

ro
p

o
rt

io
n File I/O & Overhead

Foreground Segmentation

Gaussian Filter

Compute Probability Image

Optimal Estimation

RANSAC Estimation

Correspondence Matching

Interest Points Detection

File I/O & Overhead 4139.05 2788.94 3054.81 3014.33

Foreground Segmentation 1616.71 1269.55 1325.41 1258.04

Gaussian Filter 47388.16 24992.93 12432.14 6242.37

Compute Probability Image 488743.79 245887.43 124336.93 68301.79

Optimal Estimation 12.89 12.97 9.75 11.27

RANSAC Estimation 12142.26 6077.42 3036.5 1550.82

Correspondence Matching 215191.71 107018.74 53650.67 27630.84

Interest Points Detection 12814.97 6448.66 3238.35 1643.72

1 2 4 8

Figure 4.2 Proportion of the total execution time
taken by various tasks in the SMPA

Table 4.1 CPU efficiency results for the SMPA

processors 2 4 8

CPU efficiency 99.1% 97.1% 88.8%

4.2. Performance of the DMPA

The DMPA for video-based motion panorama

construction does not perform as well as the SMPA.

This is mostly attributed to the overhead arising from

explicit data communication amongst processors. The

parallel algorithm does work well on the first three

tasks, where little inter-processor communication is

entailed. The overall CPU efficiency is shown in Table

4.2. It is quite obvious that the)(2
nΟ communication

overhead has a significant negative impact on the

performance of the DMPA. The extreme case occurs

during the process of Gaussian filtering, where the

speedup for 8 processors exceeds the speedup for 16

processors. With 16 processors, the DMPA achieves a

CPU efficiency of only 62%. From Figure 4.4, we can

see that file I/O and Gaussian filtering have a

significant negative impact on the performance of the

DMPA. Optimization of the file I/O is beyond the

scope of this paper. In the next section, we describe the

optimization of Gaussian filtering in case of the

DMPA.

1.830 2.005 1.981 1.963 1.798 1.938

3.648
4.006 3.941 3.778

3.122

7.218

3.527

14.108

15.574
15.006

12.485

3.037

3.680

7.7487.921

6.413
7.049

9.905

0

2

4

6

8

10

12

14

16

18

Interest Points

Detection

Correspondence

Matching

RANSAC

Estimation

Compute

Probability Image

Gaussian Filter overall

different tasks

s
p

e
e
d

u
p 2 Nodes

4 Nodes

8 Nodes

16 Nodes

Figure 4.3 Speedup results for the DMPA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

number of processors

ru
n

n
in

g
 t

im
e
 p

ro
p

o
rt

io
n File I/O etc.

Foreground Segmentation

Gaussian Filter

Compute Probability Image

Optimal Estimation

RANSAC Estimation

Correspondence Matching

Interest Points Detection

File I/O etc. 3479.13 3510.98 3541.67 3925.56 3729.01

Foreground Segmentation 1192.94 1465.21 1170.2 1255.72 1415.15

Gaussian Filter 34420.99 19144.05 11023.79 9758.38 11333.79

Compute Probability Image 350791.47 178744.16 92852.1 49762.18 28095.99

Optimal Estimation 7.51 8.37 9.71 11.36 11.13

RANSAC Estimation 8710.43 4396.29 2210.39 1124.16 580.47

Correspondence Matching 153943.25 76772.51 38428.6 19435.21 9884.68

Interest Points Detection 9239.01 5048.27 2532.54 1280.06 654.88

1 2 4 8 16

Figure 4.4 Proportion of the total execution time

taken by various tasks in the DMPA

 Table 4.2 CPU efficiency results for the DMPA

processors 2 4 8 16

CPU efficiency 96.9% 92% 80.2% 61.9%

4.3. Optimization

 For reason of simplicity, we used the operation

MPI_Allgather() in the DMPA implementation of the

Gaussian filtering when the direction of data

dependences changes from along the rows to along the

columns. However, only 2 × 48 rows of data for each

node are actually useful, whereas a total 480 –

(480/NODES) – (2×48) rows of data per node during

the communication are redundant. Note that the value

of 48 rows is determined by the size of the Gaussian

filter mask. To eliminate this redundancy, we use the

following technique:

• Each node sends 48 rows of data to its upper and

lower neighbors. The upper neighbor for the node

0 is the last node, and the lower neighbor for the

last node is node 0.

• If a node has fewer than 48 rows of data, 2 or more

nodes will be involved in sending these 48 rows

data to the nodes upper and lower.

• All sending and receiving are non-blocking. This

process is blocked until all the receives are

completed.

 In the original implementation, MPI_Allgather() is

used at the end of the Gaussian filtering operation so

that each processor will have a local copy of the

filtered probability image. However, this is unnecessary

because only the master node performs the dynamic

foreground segmentation. Therefore, we further

optimize the algorithm by only gathering the data in the

master node. Figure 4.5 shows a significant

improvement in reduction of the communication

overhead, and Figure 4.6 shows a noticeable

improvement in overall performance.

1403.81

2130.38

5241.81

9031.36

521.85
789.71

1070.72
785.86

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

2 4 8 16

number of processors

c
o

m
m

u
n

ic
a
ti

o
n

 o
v

e
rh

e
a
d

Original Gaussian Filter

Optimized

Figure 4.5 Communication overhead for original

and optimized Gaussian filtering

5. Conclusions

 Motion panorama construction is commonly viewed

as an efficient representation for a video sequence for a

wide range of applications. Although sequential

algorithms for motion panorama construction yield

very good results, they are computationally infeasible

for real time applications. Parallelization is proposed as

a means to speed up the motion panorama construction

process thus making it suitable for real time

applications.

1.80

3.12

3.53

3.04

1.92

3.23

4.58

8.10

1.94

3.68

6.41

9.90

1.94

3.65

6.57

11.35

0.00

2.00

4.00

6.00

8.00

10.00

12.00

2 4 8 16

number of nodes

S
p

e
e
d

u
p Gaussian Filter

Gaussian Filter (Optimized)

Overall

Overall (Optimized)

Figure 4.6: Performance comparison for original

and optimized Gaussian filtering

 In this paper, we have compared the SMPA and the

DMPA, for motion panorama construction. In the

SMPA, we proposed a dynamic workload distribution

mechanism which leads to an algorithm with balanced

workload. Good speedup results were achieved when

the number of available processors ranges from 2 to 8.

We predict that the SMPA will continue to work well

on shared memory systems with up to 16 processors. In

the case of the DMPA, we devised an optimized

scheme for inter-processor communication when the

Gaussian filter is applied on the probability image,

which resulted in a noticeable improvement in terms of

overall performance of the DMPA. Nonetheless, the

DMPA was observed to have lower speedup and

efficiency than the SMPA on account of the need for

explicit inter-processor communication in case of the

DMPA.

 In terms of future work, we are currently working

on a hybrid parallel algorithm, targeted for a cluster of

shared-memory symmetric multiprocessors (SMPs)

which provides a combination of both shared memory

and distributed memory architectures.

6. References

[1] A. Bartoli, N. Dalal, B. Bose, and R. Horaud, From

video sequences to motion panoramas, Proc. IEEE

Wkshp. Motion Video Comp., Dec. 2002, pp. 201- 207.

[2] M. Irani, S. Hsu, and P. Anandan, Mosaic based video

compression, Proc. SPIE Conference on Electronic

Imaging, Digital Video Compression: Algorithms and

Technologies, Feb. 1995, vol. 2419, pp. 242-253.

[3] L. Teodosio, and W. Bender, Salient video stills:

Content and context preserved, Proc. ACM Intl. Conf.

Multimedia, 1993, pp. 39-46.

[4] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu,

Efficient representations of video sequences and their

applications, Signal Processing: Image Communication,

May 1996, vol. 8(4), pp. 327-351.

[5] H.Y. Shum and R. Szeliski, Panoramic image mosaics,

Microsoft Research Tech. Report, 1997, vol. MSR-TR-

97-23.

[6] DARTFISH Ltd, DartTrainer Software, 2001/2002,

http://www.dartfish.com/.

[7] Salient Stills Inc, VideoFOCUS Software,

http://www.salientstills.com/.
[8] S.E. Chen, QuickTime VR - An Image-based Approach

to Virtual Environment Navigation, Proc. ACM

SIGGRAPH, 1995, pp. 29-38.

[9] S. Hsu, and P. Anandan, Hierarchical Representations

for Mosaic Based Video Compression, Proc. Picture

Coding Symp., Mar. 1996, pp. 395-400.

[10] P.H.S. Torr. and A. Zisserman, Feature based methods

for structure and motion estimation, Vision Algorithms:

Theory and Practice, July 1999.

[11] M. Irani, and S. Peleg, Motion analysis for image

enhancement: Resolution, occlusion, and transparency,

Jour. Visual Comm. Image Representation, Dec. 1993,

vol. 4, pp. 324–335.

[12] M. Irani, and S. Peleg, Improving resolution by image

registration, CVGIP: Graphical Models and Image

Processing, May 1991, vol. 53, pp. 231-239.

[13] J.Y.A. Wang and E.H. Adelson, Representing moving

images with layers, IEEE Trans. Image Processing,

September 1994, vol. 3, no. 5, pp. 625-638.

[14] X.Y. Pan, Motion panorama construction from

streaming video for power-constrained mobile

multimedia environments, MSAI Thesis, University of

Georgia, Athens, Georgia, 2004.

[15] M. Pedro, Q. Aguiar, R. Jasinschi, José M. F. Moura,

and C. Pluempitiwiriyawej, Content-based Image

Sequence Representation, (ed. Todd Reed), Digital

Image Sequence Processing: Compression and

Analysis, CRC Press Handbook, Boca Raton, FL, 2004.

Chapter 2, pp. 5-72.

[16] M. A. Fischler, and R. C. Bolles, Random Sample

Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated

Cartography, Comm. ACM, 1981, vol. 24, pp. 381-395.

[17] P.S. Pacheco, Parallel Programming With MPI,

Morgan Kaufmann, San Francisco, CA, 2003.

[18] G. Andrews, Foundations of Multithreaded, Parallel,

and Distributed Programming, Addison Wesley,

Reading, MA, 2000.

