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Abstract 
 

A motion panorama is an efficient and compact 

representation of the underlying video. However, the 

motion panorama construction process is 

computationally intensive and hence extremely time 

consuming. Addressing this issue is crucial when one 

considers using motion panoramas in a real-time 

environment such as live video transmission. We 

present two parallel algorithms for motion panorama 

construction, namely, the shared memory parallel 

algorithm (SMPA) that uses POSIX threads and the 

distributed memory parallel algorithm (DMPA) that 

uses MPI. The parallel algorithms are tested on real 

videos. Experimental results show that the SMPA 

achieves linear speedup in most cases whereas the 

DMPA suffers from reduced efficiency when the 

number of processors exceeds 8.  

 

1. Introduction 
 

    Motion panoramas are an efficient representation of 

the underlying video and are based on image 

mosaicking [1] where a set of small images are 

combined into a larger composite image. The basic 

idea is to extract several key frames from a video and 

stitch them together into a single wide-angle panoramic 

image. The stiching is done by aligning all frames of 

that sequence to a fixed coordinate system and then 

integrating the aligned images into a mosaic image. 

   In a static panorama, the input video sequence is 

segmented into contiguous scene subsequences, and the 

mosaic image is constructed for each scene 

subsequence to provide a snapshot view of the scene 

subsequence. The static panorama exploits long-term 

temporal redundancies over the entire scene 

subsequence and spatial correlations over large 

portions of the image frames, and therefore constitutes 

an efficient scene representation. It is ideal for video 

storage and retrieval, especially for rapid browsing in 

large digital libraries and for enabling efficient random 

access to individual frames of interest [3]. However, 

the changes in the scene with respect to the background 

(termed as residuals) caused by a moving object are 

not captured by a static mosaic image and need 

additional representation. On the other hand, a motion 

panorama is a sequence of evolving mosaic images [1] 

where the contents of each new mosaic image are 

updated using the current information derived from the 

most recent frame. In general, since the residuals are 

relatively small, the motion panorama is an ideal tool 

for low bit-rate transmission [2]. However, due to the 

incremental nature of frame reconstruction, motion 

panoramas, lack the important capability of random 

access to individual frames of interest. 

    Several applications of video-based static and 

motion (dynamic) panoramas have been described in 

the literature. Irani, Hsu, and Anandan [2] describe a 

technique for video compression using dynamic 

mosaics. Teodosio and Bender [3] introduce the notion 

of Salient Stills (static panoramas) for the purpose of 

video visualization. Irani et al. [4] demonstrate the use 

of static and dynamic panoramas in scene change 

detection, video search and indexing, and video editing 

and manipulation. Shum and Szeliski [5] show how 

motion panoramas can be used to create virtual reality 

environments to enable virtual travel. Irani and Peleg 

[12] show how motion panoramas can be used to 

improve the resolution of the underlying video data 

resulting in a super-resolution mosaic. Static and 

dynamic video mosaics have also been used as the 

basis of generative video models [15].  More recently, 

Pan [14] has shown how motion panoramas can be 

used for video transcoding in low-power mobile 

multimedia devices. Some applications of video-based 

static and motion panoramas have also been 

commercialized [6]–[8]. 

    In spite of several algorithmic advances, 

construction of video-based static and motion 

panoramas is a computationally intensive process. For 

example, a serial implementation of the recent motion 

panorama reconstruction algorithm proposed by Bartoli 

et al. [1] was observed to take more than 9 minutes to 



process a 12-frame video sequence on a Sun 

UltraSPARC workstation with a 1.05 GHz CPU and 

1.0 GB of RAM. Note that at a normal sampling rate, a 

1-second video sequence usually consists of 30 frames. 

Therefore, most algorithms for generation of video-

based panoramas are suitable only for off-line 

applications. For applications with real-time 

constraints, the need for faster processing capability is 

critical. Even in the case of applications where the 

panorama generation could be done off-line, faster 

processing capability is clearly desirable.  

    In light of the above, we present two parallel 

algorithms for motion panorama construction, namely, 

a shared memory parallel algorithm (SMPA) that uses 

POSIX threads (Pthreads) [18] and a distributed 

memory parallel algorithm (DMPA) that uses the 

Message Passing Interface (MPI) [17]. The SMPA is 

conceptually and practically simpler since it does not 

require the user to explicitly specify the communication 

of data between tasks. However, the fact that the data 

locality and data placement are transparent to the 

programmer, could have a negative impact on 

performance and scalability of the SMPA. The DMPA 

offers performance and scalability but compromises the 

ease of use since the programmer is typically 

responsible for sending and receiving data amongst the 

processors. In addition, the DMPA might not scale well 

on problems that require a lot of data communication 

amongst the tasks since the complexity of the inter-

processor communication overhead typically scales 

super-linearly with respect to the number of processors 

in the networked cluster.  

 

2. Sequential Algorithm for Motion 

Panorama Construction 
 

The sequential motion panorama construction 

algorithm [1] consists of three major phases: static 

background generation, background-foreground 

segmentation (i.e., extraction of moving objects) and 

final panorama composition. During the first phase, the 

homographies corresponding to the motion of the 

camera are computed for certain frames. The static 

background for the entire scene underlying the video 

sequence is generated by stitching the individual 

frames into a single large wide-angle panoramic image 

using these homographies. In the second phase, the 

dynamic foreground, which includes regions 

corresponding to both, moving objects and false 

detections in the scene, is segmented by warping 

together three consecutive frames in the video sequence 

and consequently detecting the intensity discrepancy at 

each pixel location. The noise in the dynamic 

foreground is smoothed using a Gaussian filter. The 

moving objects are detected using a connected 

components labeling (CCL) algorithm. Regions 

corresponding to false motion are deleted using a size 

filter applied to the output of the CCL algorithm. 

Finally, the foreground objects are pasted back onto the 

static background using the location information from 

the homographies computed in the first phase and the 

position coordinates computed during the second 

phase. For further details on the sequential motion 

panorama construction algorithm, the interested reader 

is referred to [1]. 

 

3. Parallel Algorithms for Motion 

Panorama Construction 
 

Each of the aforementioned steps in the sequential 

algorithm for motion panorama construction is 

parallelized as described in the following subsections: 

 

3.1. Homography Estimation 
 

The Homography Estimation procedure in the case 

of the sequential motion panorama construction 

algorithm consists of four computational tasks that are 

performed in order: (a) Interest Point Detection where 

interesting feature points (typically corner points) are 

detected in each video frame; (b) Correspondence 

Matching where for feature points detected in a given 

frame, the corresponding matching feature points in the 

reference frame are identified; (c) RANSAC-based 

Estimation where false matches or outliers are 

removed; and (d) Optimal Transformation Estimation 

where the homography transformation between the 

current frame and the reference frame is computed. 

 
Figure 3.1 CPU time distribution for various tasks 

in sequential homography estimation 

 

Figure 3.1 shows the CPU time distribution of the 

aforementioned tasks in the Homography Estimation 

process. As can be seen from Figure 3.1, the tasks of 

Interest Point Detection, Correspondence Matching and 

RANSAC Estimation require the most computation and 



collectively account for 98% of the total execution time 

of the sequential Homography Estimation algorithm. 

Hence, an efficient parallel algorithm for each of these 

three steps is crucial to the final outcome. On the other 

hand, Optimal Transformation Estimation requires little 

computation and has limited parallelization potential. 

The remaining time is spent mostly on file I/O which, 

in the current implementation, is not parallelized. 

 

3.1.1. Interest point detection. Since the interest value 

of a pixel only depends on the color values of 

neighboring pixels in the original image frame, no data 

dependence exists between any two computations. 

Thus parallelization can be achieved by partitioning the 

original image frame, consisting of 480 rows and 720 

columns in our case, into as many blocks as the number 

of processors, such that each block has an almost equal 

number of pixels, and assigning one block to a 

processor for computation. Once the above process is 

completed, the resulting matrix of interest points is also 

divided into as many blocks as the number of 

processors. Each processor searches for the pixel that 

has the largest interest value within each neighboring 

and non-overlapping 3030 ×  window within its 

assigned block. These pixels are then marked as 

interest points. 

    In the SMPA, no synchronization is required during 

the entire interest point detection process because the 

block partition remains the same. The overhead for the 

SMPA, if any, is due to memory contention. The 

DMPA does not suffer from memory contention, 

however, it requires explicit communication amongst 

the nodes at the end of the computation so that all 

nodes can obtain a local copy of the matrix of interest 

points. The simplest approach is to communicate the 

entire matrix. However, because there is only one 

interest point within a 3030 × region, communicating 

the entire matrix is extremely inefficient.  Thus, in 

order to reduce the redundancy during the 

communication, an array of size (480×720)/(30×30)×2 

is used in the communication instead of the entire 

matrix. Each node copies the coordinates of all interest 

points within its assigned block into the array before 

performing an all-to-all communication over the entire 

array. At the end of the communication, the array in 

each node, which contains the coordinates of all the 

interest points, is used to mark the local interest point 

matrix. As a result, the size of data used in the 

communication is reduced by a factor of 2/(30×30) = 

1/450. 

3.1.2. Correspondence matching. After having 

determined the interest points in a given frame, the next 

step is to search the following frame in the video 

sequence for the corresponding matching interest 

points [10]. Again, there is no data dependence 

between any two distinct searches for the 

corresponding matching interest points. Hence, the key 

issue in the parallelization is how to assign the interest 

points evenly to each processor so that the workload is 

balanced amongst all the available processors. Our 

implementation is similar to a multiple server queue, 

where several servers simultaneously serve a group of 

clients. A client waits in the queue until a server has 

finished its assigned task. Thus all servers are kept 

busy until each server finishes its assigned task and 

there is no client in the queue. 

    In the SMPA, we use a global cursor to identify the 

first interest point in the queue. When a processor is 

available, it first locks the cursor from being accessed 

by another processor. After it gets the information 

about the first interest point in the queue, it updates the 

cursor’s position, releases the lock attached to the 

cursor and begins to search for the corresponding point 

in the next frame. If there is no interest point left in the 

queue, the processor releases the lock attached to the 

cursor and waits for other processors to finish their 

assigned tasks. The overhead incurred during this step 

is the time spent in synchronizing the value of the 

global cursor. An alternative approach is to statically 

assign the interest points to the processors based on a 

certain criterion. For example, we can partition equally 

the set of interest points and assign each subset to a 

processor. Such an approach can eliminate the 

synchronization overhead, but may also suffer from an 

unbalanced load. This is so because the computation 

required for each single search may vary and with static 

assignment, the worst case could occur where all the 

interest points that require less computation are 

assigned to one processor and all interest points that 

require extra computation are assigned to the others. 

    We have tested the performance of the SMPA for 

both, dynamic and static assignments of interest points 

to processors. In the case of static assignment, we 

employ the same scheme used in the DMPA, discussed 

in the following paragraph. Experimental results show 

that there is almost no difference between the 

performance of the SMPA with dynamic and static 

assignments when using 2 or 4 processors. When using 

8 processors, our dynamic assignment scheme performs 

on average 2%-3% better than the static version in 

terms of total execution time. This is expected since the 

probability of a load imbalance increases as the number 

of processors increases. 

    In the case of the DMPA, we did not employ the 

above dynamic assignment scheme. The reason is that 

the use of a global cursor would entail a costly 



overhead of explicit inter-processor communication 

over the cursor. Any performance gain would most 

probably be offset by the inter-processor 

communication overhead. Hence, in the DMPA, the 

interest points are assigned based on the following 

scheme. In our implementation, we first number the 

interest points from 0 to P. The interest points with the 

numbers 0, 
nN , 

nN2 , 
nN3 …, where 

nN  is the total 

number of nodes (processors), are assigned to the node 

with id 0, interest points with the numbers 1, 1+nN , 

12 +nN , 13 +nN … are assigned to the node with id 1, 

and so on. Although this static assignment may suffer 

from a load imbalance problem, the experiment results 

discussed in Section 4, however  show that the resulting 

performance is still quite satisfactory. 

3.1.3. RANSAC estimation. The RANSAC algorithm 

[16] basically repeats a statistical sampling process for 

a certain number of iterations in order to remove 

outliers from the input data. Each sampling process is 

independent. Also, the computation entailed by each 

sampling process is roughly the same. Therefore, the 

RANSAC procedure can be easily parallelized by 

sharing the total number of sampling iterations amongst 

all the available processors.  Regardless of whether the 

SMPA or DMPA is used, the total number of sampling 

iterations is divided by the total number of available 

processors. The result is the number of sampling 

iterations a processor should repeat. If there is a 

residual R (where R > 0), processors with an id from 0 

to R-1 will perform an additional iteration. 

    Each processor computes the homography from its 

local consensus set with the largest number of inliers. 

The local largest number of inliers amongst all the 

processors is finally compared and the homography 

computed from the largest number of inliers among all 

the processors is selected. In the SMPA, this is done by 

using mutex_lock() & mutex_unlock() operations so 

that the homography and the largest number of inliers 

are updated by each processor one by one. In the 

DMPA, all child nodes send their local copies of 

homographies along with the largest number of inliers 

to the master node. The master node computes the 

result based on the data it receives. 

Algorithm for Homography Estimation: 

1: Partition the frame into a several blocks, assign each 

block to a processor and let it calculate the interest 

values of all pixels within that block.  

2: Within each 30 × 30 window, find the pixel with the 

maximum interest value and mark it as an interest point.  

3: In the case of the SMPA, do the following: 

Let the global cursor 0=C  

Let the total no. of interest points = P 

for all interest points from 1=i  to P do 

   mutex_lock() 

   if Ci >  then 

       iC =  

    mutex_unlock() 

    search for the corresponding point of  

                interest point i 

   else 

      mutex_unlock() 

     continue 

   end if 

 end for 

In the case of the DMPA, do the following: 

 Let the total no. of interest points = P 

 for all interest points from 1=i  to P do 

 if (i mod total_number_of_processors) =  

                processor’s ID then 

    search for the corresponding point of 

                   interest point i 

       else 

   continue 

 end if 

     end for 

4: Let 

=nS

processorsofnumbertotaliterationssamplingtotal ___/__

 

5: Randomly select 4 pairs of corresponding points and 

estimate the homography based on these points, use the 

homography to compute the number of inliers. 

6: Each processor repeats step 5 Sn times. 

7: The master processor uses the homography with the 

largest number of inliers among all processors to 

estimate the final optimal transformation.  

 

3.2. Background Mosaic Generation 
 

    Background mosaic generation consists of two tasks: 

(a) estimating the homographies for a series of frames 

in the video sequence, and (b) mapping these frames 

onto the final static background mosaic using the 

estimated homographies. The background mosaic 

generation procedure is parallelized by first running the 

parallel algorithm (SMPA or DMPA) for homography 

estimation on a single frame and then using a single 

processor to execute the mapping process. This 

procedure is repeated on a series of frames in the video 

sequence. 

 

3.3. Dynamic Foreground Segmentation 
 

    The sequential algorithm for dynamic foreground 

segmentation consists of three major processes 

performed in order: (a) generation of the probability 

image, (b) Gaussian filtering of the probability image, 

and (c) connected component labeling (CCL) and 



segmentation of the foreground objects from the 

background. Figure 3.2 depicts the CPU time 

distribution for the three major procedures involved in 

the sequential algorithm for dynamic foreground 

segmentation. The processes of generating the 

probability image and then performing Gaussian 

filtering on the probability image together take up over 

99% of the total execution time. Our works focuses 

mainly on the parallelization of these two tasks.  

 

 
 

Figure 3.2 CPU time distribution for various tasks 
in dynamic foreground segmentation 

 

3.3.1. Computation of the probability image. The 

two major steps in this task are: estimating the 

homography between two consecutive frames and 

computing the Mahalanobis distance matrix for all 

pixels [1]. We use the same parallel algorithm for 

homography estimation as the one used in static 

background mosaic generation. To parallelize the 

computation of the Mahalanobis distance matrix, we 

partition the matrix into several blocks and share the 

computation amongst all the available processors. This 

matrix computation depends only on the estimated 

homography and the color values of all pixels in a 

single frame. So once the homography is obtained, no 

further data synchronization or communication is 

required. 

 

3.3.2. Gaussian filtering of the probability image. A 

two-dimensional Gaussian filter is applied on the 

probability image. Since the two-dimensional Gaussian 

filter is separable, the filtering operation is tantamount 

to applying the one-dimensional Gaussian filter along 

the x-axis followed by the application of the same filter 

along the y-axis. When applying the filter along the x-

axis, the value of each pixel is updated based on the 

values of its neighbors on the same row. On the other 

hand, when applying the filter along the y-axis, the 

value of each pixel is updated based on the values of its 

neighbors in the same column. 

    In the SMPA, the changes in the data dependence 

pattern require the data to be synchronized before a 

different filter is applied. This can be easily done by 

placing a barrier() before applying the Gaussian filter 

along the second dimension. In the DMPA, the need 

for explicit inter-processor communication amongst all 

the processors has a significant negative impact on 

performance. Our original implementation used the 

MPI_Allgather() operation to communicate the entire 

probability image matrix. This approach is proven to be 

very inefficient. In Section 4.3, we provide an 

optimized version of the inter-processor 

communication process. After the probability image 

has been processed by the Gaussian filter masks along 

each dimension, it is partitioned into a several blocks 

such that each processor works on only one block for 

the remainder of the computation. 

Algorithm for Foreground Segmentation: 
1. Use the parallel algorithm to estimate the homography 

pH  between the current and the previous frame.  

2. Let each processor compute a portion of Mahalanobis 

Distance matrix 
pMD  based on 

pH .  

3. Use the parallel algorithm to estimate the homography 

nH  between the current and the next frame.  

4. Let each processor compute a portion of Mahalanobis 

Distance matrix 
nMD  based on 

nH .  

5. The matrix MD is computed as the sum of 
pMD  and 

nMD .  

6. Partition the matrix MD and let each processor apply the 

x-mask of the Gaussian filter on a portion of the matrix.  

7. Perform barrier synchronization.  

8. Partition the matrix MD and let each processor apply the 

y-mask of the Gaussian filter on a portion of the matrix.  

9. Partition the matrix MD and let each processor find the 

maximum value within its assigned partition of the 

matrix.  

10. Let the master processor gather the results and compute 

the threshold as 1/5 of the maximum value of the whole 

matrix.  

11. Partition the matrix MD and let each processor mark the 

pixels within its assigned partition whose values are 

greater than the threshold as foreground.  

12. Let the master processor run the procedures for dynamic 

component labeling and segmentation.  

 

4. Experimental Results  
 

    The experimental results for the SMPA were 

obtained using a Sun Fire 880 server with 8 

UltraSPARC III 750MHz processors, where each 

processor has 8MB internal cache and shares a total of 

16GB of global memory. Experimental results for the 

DMPA were obtained on a cluster of 16 Sun Blade 

1500 workstations, each equipped with an UltraSPARC 

IIIi 1.05Ghz processor, 1MB Cache and 1GB local 

memory.  



We measured the speedup for each parallelizable 

task during static background generation and dynamic 

foreground segmentation. As mentioned before, once 

the static background generation and dynamic 

foreground segmentation are performed, the final 

panorama composition does not involve intensive 

computation and is, in fact, intended to be performed 

on the client side on a device with limited CPU 

resources. Therefore, the final panorama composition 

is not discussed in this section. However, the overall 

performance, which includes both static background 

generation and dynamic foreground segmentation, is 

included for comparison. In the SMPA, the total 

number of processors used in the test ranged from 2 to 

8, covering each power of 2. In the DMPA, we used the 

maximum available 16 processors. All tests were 

performed ten times and the averages of the results 

were computed. The input video sequence consists of 

14 image frames, each frame of size 480 rows × 720 

columns. Note that the problem size does not depend 

on the number of input frames, it only relates to the 

dimensions of a single frame. 

 

4.1. Performance of the SMPA 
 

    Figure 4.1 shows the SMPA speedup results. It is 

quite obvious that SMPA performs very well. The 

overall CPU efficiency is shown in Table 4.1. Such 

high efficiency is primarily due to the fact that the 

motion panorama construction algorithm does not 

require too many data communication operations. The 

shared memory architecture with a high bandwidth 

memory bus helps to reduce the time for data 

synchronization. In both procedures, Correspondence 

Matching and RANSAC Estimation, the dynamic work 

load distribution technique proved to be extremely 

effective in terms of load balancing. Both tasks achieve 

nearly 100% CPU efficiency when using 4 or fewer 

processors. When using 8 processors, the CPU 

efficiency was reduced to approximately 89% due to 

the fact that the data synchronization overhead 

typically scales super-linearly with respect to the 

number of processors.  

    Figure 4.2 shows the proportion of the total 

execution time taken by each task. It was observed that 

the time spent in both file I/O and the inter-processor 

communication overhead did not increase significantly 

with the number of processors, thus proving that the 

parallel algorithm does very well in balancing the load. 

However, the proportion of total execution time taken 

by non-parallelizable tasks such as file I/O and 

dynamic component segmentation increases with an 

increasing number of processors. With 8 processors, 

these two tasks take up around 5% of the total 

execution time. From the data tabulated in Figure 4.2, 

we predict that the SMPA will work very well on at 

least 16 processors. 
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Figure 4.1 Speedup results for the SMPA 
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Figure 4.2 Proportion of the total execution time 
taken by various tasks in the SMPA 

Table 4.1 CPU efficiency results for the SMPA  

# processors 2 4 8 

CPU efficiency 99.1% 97.1% 88.8% 

 

4.2. Performance of the DMPA 
 

The DMPA for video-based motion panorama 

construction does not perform as well as the SMPA. 

This is mostly attributed to the overhead arising from 

explicit data communication amongst processors. The 

parallel algorithm does work well on the first three 

tasks, where little inter-processor communication is 

entailed. The overall CPU efficiency is shown in Table 

4.2. It is quite obvious that the )( 2
nΟ  communication 

overhead has a significant negative impact on the 

performance of the DMPA. The extreme case occurs 

during the process of Gaussian filtering, where the 



speedup for 8 processors exceeds the speedup for 16 

processors. With 16 processors, the DMPA achieves a 

CPU efficiency of only 62%. From Figure 4.4, we can 

see that file I/O and Gaussian filtering have a 

significant negative impact on the performance of the 

DMPA. Optimization of the file I/O is beyond the 

scope of this paper. In the next section, we describe the 

optimization of Gaussian filtering in case of the 

DMPA. 
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Figure 4.3 Speedup results for the DMPA 
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Figure 4.4 Proportion of the total execution time 

taken by various tasks in the DMPA 

    Table 4.2 CPU efficiency results for the DMPA  

# processors 2 4 8 16 

CPU efficiency 96.9% 92% 80.2% 61.9% 

 

4.3. Optimization 
 

    For reason of simplicity, we used the operation 

MPI_Allgather() in the DMPA implementation of the 

Gaussian filtering when the direction of data 

dependences changes from along the rows to along the 

columns. However, only 2 × 48 rows of data for each 

node are actually useful, whereas a total 480 – 

(480/NODES) – (2×48) rows of data per node during 

the communication are redundant. Note that the value 

of 48 rows is determined by the size of the Gaussian 

filter mask. To eliminate this redundancy, we use the 

following technique: 

• Each node sends 48 rows of data to its upper and 

lower neighbors. The upper neighbor for the node 

0 is the last node, and the lower neighbor for the 

last node is node 0. 

• If a node has fewer than 48 rows of data, 2 or more 

nodes will be involved in sending these 48 rows 

data to the nodes upper and lower.  

• All sending and receiving are non-blocking. This 

process is blocked until all the receives are 

completed. 

    In the original implementation, MPI_Allgather() is 

used at the end of the Gaussian filtering operation so 

that each processor will have a local copy of the 

filtered probability image. However, this is unnecessary 

because only the master node performs the dynamic 

foreground segmentation. Therefore, we further 

optimize the algorithm by only gathering the data in the 

master node. Figure 4.5 shows a significant 

improvement in reduction of the communication 

overhead, and Figure 4.6 shows a noticeable 

improvement in overall performance. 
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Figure 4.5 Communication overhead for original 

and optimized Gaussian filtering 

 

5. Conclusions 
 

    Motion panorama construction is commonly viewed 

as an efficient representation for a video sequence for a 

wide range of applications. Although sequential 

algorithms for motion panorama construction yield 

very good results, they are computationally infeasible 

for real time applications. Parallelization is proposed as 

a means to speed up the motion panorama construction 



process thus making it suitable for real time 

applications. 
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Figure 4.6: Performance comparison for original 

and optimized Gaussian filtering 

 

    In this paper, we have compared the SMPA and the 

DMPA, for motion panorama construction. In the 

SMPA, we proposed a dynamic workload distribution 

mechanism which leads to an algorithm with balanced 

workload. Good speedup results were achieved when 

the number of available processors ranges from 2 to 8. 

We predict that the SMPA will continue to work well 

on shared memory systems with up to 16 processors. In 

the case of the DMPA, we devised an optimized 

scheme for inter-processor communication when the 

Gaussian filter is applied on the probability image, 

which resulted in a noticeable improvement in terms of 

overall performance of the DMPA. Nonetheless, the 

DMPA was observed to have lower speedup and 

efficiency than the SMPA on account of the need for 

explicit inter-processor communication in case of the 

DMPA.  

    In terms of future work, we are currently working 

on a hybrid parallel algorithm, targeted for a cluster of 

shared-memory symmetric multiprocessors (SMPs) 

which provides a combination of both shared memory 

and distributed memory architectures.  
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