
Abstract— Most image processing applications are character-
ized by computation-intensive operations, and high memory and
performance requirements. Parallelized implementation on
shared-memory systems offer an attractive solution to this class of
applications. However, we cannot thoroughly exploit the advan-
tages of such architectures without proper modeling and analysis
of the application. In this paper we describe our implementation
of a 3D facial pose tracking system using the OpenMP platform.
Our implementation is based on a design methodology that uses
coarse-grain dataflow graphs to model and schedule the applica-
tion. We present our modeling approach, details of the implemen-
tation that we derived based on this modeling approach, and
associated performance results. The parallelized implementation
achieves significant speedup, and meets or exceeds the target
frame rate under various configurations.

I. INTRODUCTION

A large class of image processing applications is character-
ized by computation- and memory- intensive operations. Most
of these applications have inherent parallelism in them, both
data as well as instruction-level parallelism. Such applications
yield significant performance gains when this parallelism is
properly exploited. Proper exploitation of this parallelism is
not always easy, however, since there are significant memory
operations involved — much of the data parallelism involves
operations on image frames that are of considerable size —
that can overshadow the performance gain obtained by paral-
lelization.

For instance, in many serial implementations there is only
one reading of the image frame together with sequential opera-
tions that process the frame. However, in a parallel implemen-
tation, each processor usually requires its own local copy of the
image data, which adds significantly to the memory overhead.
Clearly, there is a trade-off involved here. As the number of
processors is increased, more parallelism in the operations can
be exploited, but at the same time, more memory is required to
store the local sets of image data for the processors. Thus, for
optimized implementation of such applications, we need to
understand their high-level structure in relation to the target
architecture, and we need to balance the trade-offs suitably
across the available processors.

In this paper we present our work on the implementation of
such an application — a particle-filter based 3D facial pose
tracking system. A parallelized multiprocessor implementation
of this system requires each processor to store a local copy of
the image. These local copies are needed for reading purposes,
but not necessarily for writing purposes. Since tracking

belongs to the class of applications that need to meet real-time
constraints, performance is an important criterion. At the same
time, memory optimization is important due to the large num-
bers of pixels that must be processed. For such applications,
shared-memory parallel systems provide a promising solution
space. For our implementation, we use the openMP model,
which is gradually becoming a popular standard for shared
memory systems.

To more effectively exploit the parallelism of signal pro-
cessing applications, such as applications in the image process-
ing domain, it is beneficial to model the high-level application
structure using coarse-grain dataflow graphs (e.g., see [4]).

In this paper, we employ one of the most popular forms of
coarse-grain dataflow, called synchronous dataflow, for signal
processing applications. In the context of embedded multipro-
cessor implementation, synchronous dataflow has primarily
been applied to one-dimensional signal processing applica-
tions, most notably, in the domain of digital communications.
In this, paper we apply synchronous dataflow as a formal mod-
eling tools for the multi-dimensional signal processing domain
of image processing. Specifically, we demonstrate how syn-
chronous dataflow based design can be used to expose the
inherent parallelism present in a 3D tracking system, and how
this parallelism can be exploited during system implementation
to achieve an effective trade-off between performance and
resource requirements.

The main contribution of this paper is therefore in our inte-
gration of coarse-grain dataflow graph modeling, dataflow-
based memory/performance trade-off analysis, and OpenMP
parallel implementation for a challenging image processing
application. In our experiments, the modeling and scheduling
of the dataflow graph has been performed using the dataflow
interchange format (DIF), which is an evolving language and
associated design tool framework for dataflow-based model-
ing, analysis, porting, synthesis, and optimization [11].

The rest of the paper is organized as follows. In Section II
we present an overview of related work. In Sections III and IV
we present the details of the targeted 3D tracking application,
and a discussion of dataflow modeling for signal processing
applications. Section V discusses our study in dataflow model-
ing, scheduling, and synthesis of the tracking application using
DIF. Section VI and VII present OpenMP implementation
details and results, followed by the conclusions, which are pre-
sented in section VIII.

Model-Based OpenMP Implementation of a
3D Facial Pose Tracking System

Sankalita Saha1,3, Chung-Ching Shen1,3, Chia-Jui Hsu1,3, Gaurav Aggarwal1,3, Ashok Veeraraghavan1,3, Alan
Sussman2,3 and Shuvra S. Bhattacharyya1,3

(1) ECE Dept. / (2) CS Dept. / (3) Institute for Advanced Computer Studies, University of Maryland, College Park MD, USA

II. RELATED WORK

Exploring parallelized implementations for performance
improvement of computationally-intensive operations has been
an active research field for many years. OpenMP [7] is gradu-
ally emerging as a standard for parallel programming on
shared-memory architectures. It is the first successful effort to
standardize shared memory programming directives and is gain-
ing more popularity compared to the message passing model,
because of its ease of use. However, for distributed systems,
MPI remains a more attractive choice. A combination of MPI
and OpenMP at different grains of parallelism is a useful
option for many applications. A comparative study of the
application of these two paradigms, either jointly or singly, to a
multitude of applications is presented in [5].

A variety of image processing applications have been imple-
mented on parallel architectures. In [17], an edge-detection
system has been implemented in a PVM network. In [13], par-
allel implementations of numerical and image processing
applications on a multiprocessor systems have been presented.
In [16] the implementation of the H.264 encoder using Intel’s
hyper-threading architecture has been presented, while in [8] a
3D-FWT video encoder has been implemented using both
OpenMP as well as Pthreads.

While these efforts have resulted in impressive performance
enhancements, they generally lack a systematic approach
towards exposing and exploiting the various levels of parallel-
ism inherent in image processing applications. There has also
been a significant amount of work done in automatic parallel-
ization of serial code [9], [3] but these efforts mainly rely on
program analysis and message passing.

In this paper, we present the parallelized implementation of
a particle-filter based 3D facial pose tracking system for video
using OpenMP. Our methods for analysis and parallelization
throughout the design and implementation process are based
on dataflow modeling and scheduling techniques that we apply
at the application level rather than program level.

III. 3D FACIAL POSE TRACKING

The aim in a 3D facial pose tracking system is to recover the
3D configuration of a face in each frame of a video. The track-
ing algorithm explored in the work of [1] combines the struc-
tural advantages of geometric modeling with the statistical
gains of particle-filter based inference and differs from other
related work on face tracking that uses 2D appearance based
models.

In this tracking algorithm, there are three main aspects that
capture the whole system. The first is the model to represent
the facial structure; the second is the feature vector used; and
the third is the tracking framework used. Each of these aspects
is elaborated on in the following sections.

A. Model to represent the facial structure
A model attempts to approximate the shape of the object to

be tracked in the video. One would like the model to capture
the shape as precisely as possible, but at the same time, the
model should not be very complicated, since that makes track-
ing more computation-intensive. For 3D tracking we need a 3D
model that approximates the shape of the object. A cylinder
with an elliptical cross-section is a suitable 3D model that can
be used to represent the 3D structure of faces.

B. Feature vector
For practical implementation, characteristics from the image

have to be used to capture the model in the image. A rectangu-
lar grid superimposed around the curved surface of the ellipti-
cal cylinder is used as the feature vector. The mean intensity
for each of the visible grids forms the feature vector. Figure 1
illustrates the model along with the feature vector.

Fig. 1. Image frames with tracking cylindrical mesh.

Fig. 2. 3D Facial Pose tracking algorithm.

InitializeInitialize

Predict particlesPredict particles

Calculate feature
vector for particles
Calculate feature

vector for particles

Calculate likelihood
for particles

Calculate likelihood
for particles

Choose particles
and resample

Choose particles
and resample

Output particle with
maximum likelihood
Output particle with
maximum likelihood

C. Tracking Framework
For the tracking framework, i.e., estimating the configura-

tion or pose of the moving face in each frame of a given video,
particle filter based inference is used. The motion of the face is
characterized by 3 translation and 3 orientation (yaw, pitch and
roll) parameters. For each new image frame read in from the
camera, multiple predictions for these parameters are made.
Each prediction is denoted as a particle. The number of parti-
cles for a system is fixed and usually decided by the user dur-
ing initialization. The feature vector is extracted for each
particle and then the particle that yields the best likelihood
value is said to give the position of the face in the frame. The
likelihood value is an estimate of the probability of the cylinder
position and depends on the distance of the cylinder in the cur-
rent frame from its position in the previous frame.

Figure 2 shows the algorithmic flow for the system.

IV. DATAFLOW MODELING

In the area of digital signal processing (DSP), dataflow is
widely recognized as a natural model for specifying applica-
tions. In dataflow, a program is represented as a directed graph,
called a dataflow graph, in which vertices, called actors, repre-
sent computations and edges represent FIFO channels, (also
called buffers). These channels queue data values, in the form
of tokens, which are passed from the output of one actor to the
input of another. When an actor is executed (fired), it consumes
a certain number of tokens from its inputs, and produces a cer-
tain number of tokens at its outputs.

The synchronous dataflow (SDF) model [12], proposed by
Lee and Messerschmitt, is a restricted version of dataflow. In
SDF the number of tokens produced (or consumed) by an actor
firing, on each output (or input) is a fixed number that is
known at compile time. This provides the major advantage that
SDF has over other dataflow models: whether a valid static
schedule for a given SDF graph exists can be determined at
compile time, and furthermore, when such a schedule exists, it
constructed at compile time. Here, by a valid schedule we
mean a schedule that can be repeated indefinitely with bounded
memory requirements, and without bringing the application
into a deadlocked state. The ability to iterate the graph indefi-
nitely is critical in many signal processing applications, where
the length of the input data stream (e.g., the number of voice
samples or image frames) to be processed is often not known
or bounded in advance.

The minimum number of times an actor must be fired in a
valid schedule is represented by a vector , called the repeti-
tions vector, that is indexed by the actors in . These mini-

mum numbers of firings can be derived by finding the
minimum positive integer solution to the balance equations for

, which specify that must satisfy

, for edge , (1)

where and denote the constant production and con-
sumption rates on .

A schedule for is a minimal periodic schedule if it
invokes each actor in exactly times. Figure 3
shows a simple SDF graph with a minimum periodic schedule.

Figure 4 shows an SDF representation for the 3D facial pose
tracking system. The “ND” on the edge from actor RS to FK2
represents units of delay that are present on this edge. Each
unit of delay can be implemented by placing an initial token on
the associated buffer. In this case, the delay tokens on the
edge are required to avoid deadlock in the graph.

Conceptually, the fork actors (FK1 and FK2) replicate each
token on their input data streams onto their output streams. In
practice, fork actors do not require any copying of data, and
can be implemented through manipulation of read and write
pointers into a common buffer.

G

A B C
2 1 1 3

D
AA BB CC

2 1 1 3
D

Schedule S1: (3A)(6B)(2C)
Fig. 3. A simple SDF graph and its schedule.

qG
G

G qG

qG src e()() p e()× qG snk e()() c e()×= e

p e() c e()
e

L G
A G qG A()

N

N

Fig. 4. Synchronous dataflow graph for 3D facial pose tracking system.

RI:Read Image PP:Predict Particles DO:Derive Observation

EF:Extract Features CL:Compute Likelihood ST:Sort

FK:Fork IM:Initial Model RS:Resample

MX:Max IW:Image Write

DO

Camera
Input

PP

ST

MX

1

N

1

1

m

1

1 1

1

N

1

IM

1

Output

1

ND

1

N

FK2

1
1 1

N

m

1

mmN

1

1

m

1 EF CL1

CL2

RI

FK1

RS

1

IW

m

1 1

1

Fig. 5. Hierarchical SDF graph for 3D facial pose tracking system.

Camera
Input

ST

MX

N

m

1

N

Output
ND

FK2

N

m

1

mmN

1

1

m

RI

FK1FK1

RS

1

IW

m

1 1

1

RI:Read Image A: Hierarchical Actor ST:Sort

FK:Fork IM:Initial Model RS:Resample

MX:Max IW:Image Write

A
1
1

1

1

1

IM

N

1

The portion of the graph marked with dotted lines shows a
group of operations that occur times for a given image
frame, where is the total number of particles of the system.
These executions are independent of each other since there
are no data dependencies among them. This is represented
clearly in the SDF graph: if we consider the marked portion of
the graph as one single (hierarchical) actor then we obtain the
hierarchical SDF graph in Figure 5. Applying the balance
equations (1), we obtain the repetition count of to be
while the rest of the actors have a repetition counts of 1. Due to

 delays on the edge between RS and FK2, it is possible to
execute the firings of independently (provided that the
initial tokens corresponding to the delays are first used to exe-
cute invocations of FK2). Therefore, the firings of
may be parallelized over multiple processors. All of these actor
firings would read the same image frame as shown in the graph
but would not write to it. After the iterations, there is a final
write to the image that marks the tracked face on the image.
This provides the main scope for parallelization across actor
firings.

V. DESIGN AND IMPLEMENTATION USING DIF

The SDF-based specification and scheduling for our tar-
geted application has been done using the DIF framework. In
the next three sections, we present a brief overview of DIF fol-
lowed by a discussion of our modeling and scheduling efforts
using DIF. The final code was derived by hand based on a
schedule that was generated automatically by DIF.

A. DIF Overview
The dataflow interchange format (DIF) project [10,11], an

ongoing research project at the University of Maryland, is a
framework for developing dataflow-based application models,
analysis algorithms, and design tools for signal processing
applications.

DIF involves two main parts: the DIF language [11] and the
DIF package. The DIF language is a language for specifying
and working with mixed-grain dataflow models for DSP sys-
tems. It provides a unique set of semantic features for specify-
ing graph topologies, hierarchies, dataflow-related properties,
and actor-specific information. The DIF package is an associ-
ated Java-based software package that provides object-oriented
intermediate representations, algorithm implementations, and
infrastructure for scheduling, optimization, porting, and soft-
ware synthesis.

Figure 6 illustrates the methodology of using DIF to inter-
face various dataflow models, system designs, software librar-
ies, dataflow-based design tools, and their supported embedded
processing platforms. The shaded areas in Figure 6 show the
facilities in the DIF package that we have used for implement-
ing the 3D facial pose tracking system.

B. DIF Specification
DIF, in contrast to other dataflow-based design environ-

ments, such as ADS from Agilent [14], the Autocoding Toolset
from MCCI [15], and the signal processing oriented subsystem

of LabVIEW by National Instruments, is developed as a text-
based, rather than graphics-based, programming and specifica-
tion format for DSP-oriented dataflow graphs. The text-based
format is useful for developing and managing large-scale
designs, while generators can be used to construct graphics-
based representations from textual DIF specifications.

After sketching the 3D facial pose tracking system in the
SDF graph form as shown in Figure 4, we specify the complete
SDF modeling semantics using the DIF language. Figure 7 pre-
sents the corresponding DIF specification of Figure 4, where

 and . For a full description of the DIF lan-
guage syntax, we refer the reader to [11].

C. Scheduling in the DIF Package
The DIF package provides implementations of various SDF

scheduling algorithms. These algorithm construct valid sched-
ules under various combinations of implementation objectives
and constraints. By compiling the DIF language specification
(Figure 7) of the 3D facial pose tracking system through the
DIF front-end tool (as shown in Figure 6), we can obtain a
Java-based intermediate representation of the SDF graph. To
this intermediate represent, we apply the LIAF [4] and
APGAN [4] scheduling algorithms on the SDF graph, which
are geared towards minimizing memory requirements. From
these schedules, we obtain the following “looped” schedule of
the 3D facial pose tracking system:

.
Here, each parenthesized term (schedule loop), which is of the
general form , represents successive execu-
tion of the subschedule , where each represents
either an actor or a (nested) schedule loop.

According to the schedule, we first execute IM (initial
model) and RI (read image), then we execute PP (predict parti-
cles), DO (derive observation), EF (extract features), CL1
(compute likelihood), and CL2 as a loop that is iterated 100
times, and finally we execute ST (sort), MX (max), and IW

N
N

N

A N

N
N A

N N A

N

Fig. 6. DIF-based design methodology.

The DIF Package

Dataflow Models

DIF Front-end

Dataflow-based
DSP Design
Tools

Autocoding
ToolsetPtolemy II Other

Tools

Embedded
Processing
Platforms

Java Other
Embedded
PlatformsJava VM

DIF SpecificationsDIF Language

Static
SDF

CSDFHSDF

Representative
DSP Domains

MDSDF
Image Proc

Audio Proc

Ada

VDM

Algorithms

DSP
Libraries

TI

VSIPL

DIF-to-C
DIF-to-VSIPL

C

DSPs

Other

AIF / Porting

DIF Spec

DIF Representations

Other Ex/Im

DIF Spec

SPGNMOML

DIF-Ptolemy Ex/Im

Meta-Modeling
BLDFPDF

Dynamic
DIF BDF

Comm Sys

DIF-AT Ex/Im

N 100= m 5=

IM RI 100 FK2 PP DO EF CL1 CL2() ST FK1 RS MX IW

nS1S2…Sm() n
S1S2…Sm Si

(image write). Note that the fork actors (FK1 and FK2) are
used to represent data branches in the SDF graph and are not
implemented in our actual code. By referring back to the SDF
graph model of the 3D facial pose tracking, we can easily
explore the parallel configurations of this schedule — in partic-
ular, the sub-schedule (100 FK2 PP DO EF CL1 CL2), together
with examination of the associated SDF subgraph, reveals that
the iterations of the loop (100 FK2 PP DO EF CL1 CL2) can
be executed in parallel (based on the number of available pro-
cessors).

VI. IMPLEMENTATION IN OPENMP

Our original implementation of the system was developed in
MATLAB. Prototyping the initial design in MATLAB is useful
to work out the basic functional correctness and calibrate algo-
rithm parameters. From the initial MATLAB specification, we
derived the parallel implementation in two steps. In the first
step, we derived a C-based serial version, and in the second
step, we parallelized our serial C version using OpenMP
together with the SDF-based analysis described in Sections IV
and V.

The resulting program structure follows the common struc-
ture of many parallel programs — that is, a serial portion
involving initialization followed by parallel code, followed
again by serial code that gathers data from parallel regions. In
the case of our design, this whole program structure repeats
itself for each image frame. The overall program structure is
illustrated in Figure 8. Here, the serial code was obtained by
first generating the modules for the actors in the SDF graph as
shown in Figure 4 and then ordering them according to the
schedule generated using the DIF package. The code was
parameterized in terms of the number of particles. As described
in section V, a high-level looped schedule was generated
through DIF for the program, and the repetition count of the
core loop in this schedule was equal to the number of particles.
Thus varying the code for different numbers of particles essen-

tially involved changing only a single loop iteration count.
The most important function in the implementation in terms

of tracking correctness was the prediction of particles. The role
of this function is to estimate the rotation and translation vec-
tors for the face for the next frame relative to the current frame.
The prediction is done based on a Gaussian distribution, which
requires a random number generator that generates normally
distributed random numbers. Without this prediction function,
the tracking accuracy of the algorithm deteriorates gradually
over frames. The random number generator provided by ANSI
C generates uniformly distributed random numbers. We per-
formed a conversion from uniform to Gaussian distribution
using inverse mapping. The overall system turned out to be
extremely sensitive to the random number generator function,
and the following mapping was used in our final implementa-
tion:

, (2)

where and are random numbers with uniform distribution
using thread-safe random number generators.

The tracking correctness was sensitive to the number of par-
ticles used as well. This is expected, as more particles yields a
wider range of values from which prediction can be made,
which in turn ensures higher prediction accuracy. For our
implementation, we used particle populations ranging from
100 to 1000.

Another important function in the implementation — which
is an important step for all practical implementations of parti-
cle filters — is resampling. Without resampling, a particle fil-
ter is highly likely to degenerate, and reduce the accuracy of
the overall system. Resampling is the act of redrawing particles
from the same density such that the weights of the particles are
approximately equal. Several methods for resampling exist. In
the algorithm used in this work, systematic resampling was
used. In systematic resampling, the new samples are exact rep-
licas of some of the old samples, but they occur with multiplic-

sdf graph FaceTracking {
topology {
nodes = RI, EF, CL1, CL2, IM, ST, FK1, RS, FK2,

PP, DO, MX, IW;
edges = e1(RI,EF), e2(EF,CL1), e3(EF,CL2),

e4(IM,CL2), e5(CL1,ST), e6(CL2,ST), e7(ST,FK1),
e8(FK1,RS), e9(RS,FK2), e10(FK2,PP), e11(PP,DO),
e12(DO,EF), e13(FK2,CL1), e14(FK1,MX), e15(MX,IW);
}
production {
e1=100; e2=1; e3=1; e4=100; e5=1; e6=1; e7=5;

e8=5; e9=100; e10=1; e11=1; e12=1; e13=1; e14=5;
e15=1;
}
consumption {
e1=1; e2=1; e3=1; e4=1; e5=100; e6=100; e7=5;

e8=5; e9=1; e10=1; e11=1; e12=1; e13=1; e14=5; e15=1;
}
delay {
e1=0; e2=0; e3=0; e4=0; e5=0; e6=0; e7=0; e8=0;

e9=100; e10=0; e11=0; e12=0; e13=0; e14=0; e15=0;
}

}

Fig. 7. DIF Specification of the 3D Facial Pose Tracking System.

Initialization

Read Image
Frame

Particle Prediction

Parallel Region

Collection of data
from parallel

region
Finalize results

Input frame

Output frame

Initialization

Read Image
Frame

Particle Prediction

Parallel Region

Collection of data
from parallel

region
Finalize results

Input frame

Output frame

Fig. 8. OpenMP code structure.

z 2 x()log⋅()–() 2 π y⋅ ⋅()cos⋅=

x y

ities that are proportional to their previous weights. In our case,
the previous weight of a particle is its likelihood value. The
new weights are all reset to .

For scheduling the threads, dynamic scheduling was used.
Since the load to a very large extent was uniformly distributed,
separate load-balancing techniques were not used. The image
was shared amongst all the threads. Apart from the image, all
the major data structures were shared, which provided a useful
degree of memory optimization, and also demonstrated the
suitability of the shared memory model. For example, the ini-
tialization data and the prediction vector generated at the
beginning of the parallel region for all the particles were
shared. Each particle modifies the likelihood vector and this
vector was also shared. Since no two threads modify the same
element of this vector at any given time, it was ensured that
there would be no writing violations.

It was observed that the execution times did not improve by
merely increasing the number of threads. In fact, there was
generally a point beyond which we found that increasing the
number of threads resulted in the execution time to increase.
This may be explained using Amdahl’s Law [2]. For parallel
computing, Amdahl's law states that if is the fraction of a
calculation that is sequential (i.e. cannot benefit from parallel-
ization), and is the fraction that can be parallelized,
then the maximum speedup that can be achieved by using
processors is

. (3)

When , the maximum speedup is given by .
Thus, theoretically the maximum speedup that can be achieved
in a parallelized code is inversely proportional to the execution
time of the sequential part in the code. But in practice, the

speedup is affected by other factors such as scheduling, com-
munication and synchronization. In our case, scheduling the
threads and synchronizing them at the end of their executions
were important factors that decided the maximum speedup.
These overheads are dependent on the number of threads and
can be expressed as a function of as

. (4)

Thus, the maximum speedup can now be expressed as

. (5)

Since, we used a run-time scheduler to schedule the threads,
defining the function precisely is not possible. However,
approximations can be derived by appropriate analysis, and
this is an interesting direction to explore for future work.

VII. RESULTS

In this section, we present results that we obtained on two
benchmark videos. The data for both the videos were taken
from the BU data set [6]. The system was implemented on a
Sunfire 6800 containing 24 SUN UltraSparcIII machines run-
ning at 750 MHz using 72GB of RAM. Two video sequences
from the data set, each 200 frames long and with an image
frame of size 36KB, were used to verify the correctness of the
implementation. The tracking of the facial pose was accurate
for both benchmark videos and sample tracking results from
video for the first benchmark are shown in Figure 9. The num-
ber of particles for this figure is 1000. Also, for this case, Fig-
ure 10 shows comparison of the ground truth values and the
estimated orientation values as predicted by the tracker. It may
be observed that the values match closely, demonstrating the

1 N⁄

Fig. 9. Sample tracking results (still) for the first benchmark video. The superimposed cylinder moves and tracks the face in each frame.

F

1 F–()
N

1

F 1 F–()
N

-----------------+

N ∞→ 1 F⁄

N

S f N()=

1

F 1 F–()
N

----------------- f N()+ +

--

f N()

correctness of the tracking operation.
The performance results shown in Figures 11 and 12 are

obtained for numbers of particles varying from 100 to 1000
and numbers of threads varying from 1 to 16. When only one
thread is used, essentially the serial implementation is realized
and hence the serial performance is given by the execution
times using one thread. As may be observed from the results,
the implementation using threads in OpenMP shows very large
performance improvements compared to the serial version (one
thread). The best performance is obtained for 8 threads and not
the maximum number of threads, which was 16. Beyond 8
threads, the amount of time spent in scheduling and coordinat-
ing the threads starts overshadowing the gains obtained from
parallelization, and hence the execution time starts increasing.

The MATLAB code, when run for 100 particles using MAT-
LAB version 7.0, requires an execution time of 650.421 sec-
onds for the first benchmark and an execution time of 885.954
seconds for the second benchmark, which indicates a level of
performance that is off from the target frame rate of 30 frames
per second (fps) by a large margin. For the first benchmark, the
best frame rate achieved is 33 fps using 8 threads for 100 parti-
cles which over-achieves the target rate, while the worst is 3
fps using 2 threads for 1000 particles. For the second bench-
mark, the best frame rate achieved is 34 fps using 8 threads for
100 particles, which once again over-achieves the target frame
rate, while the worst is 3 fps using 2 threads for 1000 particles.

Although our parallelized implementation does not always
meet the target frame rate, in general for all variations in num-
bers of particles, the implementation yields significant perfor-
mance improvement compared to the serial-C and MATLAB
versions. Also, for many relevant tracking applications, frame
rates up to 10 fps can be tolerated, and in most of the cases that
we experimented with, this requirement was met.

VIII. CONCLUSIONS

Shared memory architectures offer promising solutions for
computation- and memory-intensive image processing applica-
tions, and OpenMP provides a convenient platform to exploit
these architectures. However, to benefit from these advantages,
one needs to carefully exploit the parallelism that is inherent in
the application.

In this paper, we have presented our design and implementa-
tion of a 3D facial pose tracking algorithm on a shared memory
architecture. In our development, we have shown how data-
flow modeling techniques can be used to expose and exploit
parallelism in a simple yet powerful manner. Through the high

level structure of a well-designed dataflow representation, one
can efficiently explore trade-offs among algorithm accuracy
parameters, resource requirements, and performance to tailor
the characteristics of an implementation for the given set of
design objectives and constraints.

The tracking algorithm used in this work focuses on a sin-
gle-camera system. In our future work, we will explore multi-
ple-camera systems. One approach that we are investigating in
this line of work is integration with the MPI paradigm to
enable communication across the different processing plat-
forms for individual cameras.

IX. ACKNOWLEDGEMENTS

This research was supported in part by grant number
0325119 from the U.S. National Science Foundation.

Fig. 10. Comparison of the orientation parameters. The dashed curve
depicts the ground truth. The solid curve depicts the estimated values.

Fig. 11. Performance results for first benchmark

Benchmark 1 (No. of frames = 200)

0

20

40

60

80

100

120

140

1 2 4 8 9 10 12 16

No. of Threads

Ti
m

e
(s

ec
)

100 particles
200 particles
300 particles
500 particles
1000 particles

Fig. 12. Performance results for second benchmark

Benchmark 2 (No. of frames = 200)

0

20

40

60

80

100

120

140

1 2 4 8 9 10 12 16

No. of Threads

Ti
m

e
(s

ec
)

100 particles
200 particles
300 particles
500 particles
1000 particles

REFERENCES

[1] G. Aggarwal, A. Veeraraghavan, and R. Chellappa. 3D Facial Pose Tracking
in Uncalibrated Videos. In International Conference on Pattern Recognition
and Machine Intelligence (PReMI), 2005.

[2] G. Amdahl. Validity of the Single Processor Approach to Achieving Large-
Scale Computing Capabilities. In Proc. of AFIPS Conference, (30), pp. 483-
485, 1967.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic pro-
gram parallelization. Proceedings of the IEEE, 81(2):211-243, 1993.

[4] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from
Dataflow Graphs. Kluwer Academic Publishers. 1996.

[5] S. Bova, C. Breshears, H. Gabb, R. Eigenmann, G. Gaertner, B. Kuhn, B.
Magro, S. Salvini and H. Scott. Parallel Programming with Message Passing
and Directives. Computing in Science & Engineering, 3(5), 2001, pp. 22-37.

[6] M. La Cascia, S. Sclaroff and V. Athitsos. Fast, Reliable Head Tracking un-
der Varying Illumination: An Approach Based on Robust Registration of Tex-
ture-Mapped 3D Models. In IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 22(4), April, 2000.

[7] L. Dagum and R. Menon. OpenMP: An Industry-StandardAPI for Shared-
Memory Programming.In IEEE Computational Science and Engineering, 5(1),
1998, pp. 46-55.

[8] R. Fernandez, J. M. Garcia, G. Bernabe and M. E. Acacio. Optimizing a 3D-
FWT Video Encoder for SMPs and HyperThreading Architectures. In 13th Eu-
romico Conference on Parallel, Distributed and Network-Based Processing,
(PDP), 2005.

[9] J. Gu, Z. Li. Efficient Interprocedural array Data-flow Analysis for Auto-
matic Program Parallelization. IEEE Transactions on Software Engineering,
Volume 26, Issue 3, March 2000, Page(s):244 - 261.

[10] C. Hsu, M. Ko, and S. S. Bhattacharyya. Software synthesis from the data-
flow interchange format. In Proceedings of the International Workshop on Soft-
ware and Compilers for Embedded Systems, pages 37-49, Dallas, Texas,
September 2005.

[11] C. Hsu and S. S. Bhattacharyya. Dataflow interchange format version 0.2.
Technical Report UMIACS-TR-2004-66, Institute for Advanced Computer
Studies, University of Maryland, College Park, November 2004.

[12] E.A. Lee and D.G. Messerschmitt. Static Scheduling of Synchronous Data-
flow Programs for Digital Signal Processing,. In IEEE Transactions on Com-
puters,Vol. C-36, No.2, February, 1987.

[13] B. M. Maxiarz and V. K. Jain. Rapid Prototyping of Parallel Processing
Systems on TESH network. In Proceedings of Ninth International Workshop on
rapid System Prototyping, 1998.

[14] J. L. Pino and K. Kalbasi. Cosimulating synchronous DSP applications
with analog RF circuits. In Proceedings of the IEEE Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, Nov. 1998.

[15] C. B. Robbins. Autocoding toolset software tools for automatic generation
of parallel application software. Management Communications and Control,
Inc., Technical Report, 2002

[16] G. Steven, X. Tian, and Y. Chen. Efficient Multithreading Implementation
of M.264 Encoder on Intel Hyper-Threading Architectures. In Proceedings of
the Joint Conference on Information, Communication and Signal Processing
and the Fourth Pacific Rim Conference on Multimedia, 2003.

[17] X. Zhang, H. Deng. Distributed Image Edge Detection Methods and Per-
formance. In Sixth IEEE Symposium on Parallel and Distributed Processing,
1994.

