
Computation and Energy Efficient Image Processing in Wireless Sensor
Networks Based on Reconfigurable Computing

Tyrone Tai-On Kwok and Yu-Kwong Kwok
Department of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam Road, Hong Kong
Corresponding Author: Yu-Kwong Kwok (email: ykwok@hku.hk)

Abstract

In a wireless sensor network, each node is power-
constrained and may need to acquire some raw data of
large size (e.g., image data), on which some computation-
intensive tasks (e.g., edge detection) will be done. On the
other hand, in wireless communication, significant power
will be consumed on transferring a sequence of data of
large size. Thus, it is of high interest to carry out the sensor
nodes’ computation-intensive tasks efficiently while reduc-
ing the data size for wireless transfer. In this paper, we
propose a new design methodology for batch processing of
image data in a wireless sensor network, by employing re-
configurable computing using FPGAs.

1. Introduction

Field Programmable Gate Arrays (FPGAs) have long
been used in implementing various image processing al-
gorithms not only because of the computation-intensive
nature of such algorithms, but also because of the well-
matched between data type of image data and computation
type of FPGAs [9]. Specifically, image data usually consist
of a two-dimensional array of pixels, and FPGAs consist
of a two-dimensional array of Configurable Logic Blocks
(CLBs). If a set of CLBs (e.g., 4 CLBs) is responsible for
handling a pixel, and each set of CLBs directly commu-
nicates with its neighbor sets, then there is a high paral-
lelism in processing the image data, where the operations
are repetitive in nature. In this paper, we are not trying to
present a new FPGA implementation of image processing
algorithms. Rather, we would like to present a new design
methodology for batch processing of image data. We target
on image processing in wireless sensor networks using an
embedded reconfigurable computing system.

This research was supported by a HKU CRCG Small Project Research
Grant under project number 10205130.

A typical embedded reconfigurable computing system is
composed of an instruction set processor and some FPGA
fabric. By utilizing massively parallel circuit design in FP-
GAs, computation-intensive tasks in software applications,
which originally are executed in the instruction set proces-
sor, can be carried out by hardware and hence increase the
overall system efficiency. Moreover, the FPGA fabric can
be dynamically reconfigured for different tasks at run-time.
Just like a processor switches different executables at dif-
ferent times, different configurations are downloaded onto
an FPGA to reconfigure portions of the FPGA to implement
different hardware tasks. The idea is illustrated in Figure 1.
As can be seen, a complex task is partitioned into five sub-
tasks. Any three (but not all) of the five subtasks can be im-
plemented and executed on the FPGA chip. In order to exe-
cute the complex task, firstly the partial configurations (for
configuring the corresponding portions of the FPGA) of the
five subtasks are stored in some memory device. Then, ac-
cording to the execution order (assumed that it is defined be-
forehand), different partial configurations are downloaded
onto the FPGA for executing the subtasks.

Since executing computation-intensive tasks in hardware
can be more energy-efficient than executing in the proces-
sor [7], the above-mentioned platform is good for a mobile
sensor system which is battery-operated (i.e., having limited
energy) and needs to adapt to the changing environment and
user needs, so as to carry out some on-demand tasks (e.g.,
surveillance by taking some pictures with feature extrac-
tion). In essence, we need a reconfigurable computing sys-
tem that can be operated in a multitasking manner, with the
considerations of adaptability, computation efficiency and
energy efficiency. With reference to the illustrative exam-
ple shown in Figure 1 again, we would require the system
to finish executing the five subtasks as early as possible, yet
without consuming more power. In this paper, we present a
hardware task scheduling algorithm for this kind of FPGA
resource allocation problem.

The rest of this paper is organized as follows. In the
next section, we present the related work. A sensor network

ST_1 ST_2 ST_3 ST_4 ST_5

Partitioned into Various
Smaller Subtasks, STs

Memory for Storing FPGA
Partial Configurations

A Complex Task

Scheduling to
Execute on
the FPGA

Fabric Area

Figure 1. Dynamically partial reconfiguration.

application scenario is presented in Section 3. Section 4
describes the scheduling model. In Section 5, we present
our proposed hardware task scheduling algorithm. Evalua-
tion of the proposed algorithm is given in Section 6. Then,
we talk about a prototype design of a sensor node hardware
platform in Section 7. Finally, we conclude in Section 8.

2. Related Work

Figure 2 [12] shows the four commonly-used FPGA
resource placement models, which define how the two-
dimensional CLB (Configurable Logic Block) array of an
FPGA (i.e., the FPGA fabric area) can be partitioned to im-
plement different hardware tasks. Based on the four models,
a number of hardware task scheduling algorithms have been
designed [1, 4, 5, 11, 12].

SlottedVariable

1D

2D

The model used
in our study

Figure 2. FPGA resource placement models.

However, most of the work in the literature considers
scheduling algorithms which are unable or difficult to be
implemented using the design flows in current development

platform [14], such as 2D resource models [11] and merging
of partitioned blocks [5]. The reason is that current devel-
opment platform only allows the 1D-slotted resource model
for implementing different reconfigurable modules [14]. On
the other hand, little of the work takes energy consump-
tion into consideration. Khan et al. [4] designed a battery-
aware task scheduling algorithm for a battery-operated sys-
tem. However, they partitioned the FPGA area into a set
of fixed tiles, which cannot adapt efficiently to the tasks
of having different FPGA area requirements. In this paper,
we present the design of a hardware task scheduler that can
utilize the flexibility of FPGAs, provide a balance between
computation efficiency and energy efficiency, and more im-
portantly, can be readily implemented using current design
flows (based on the 1D-slotted resource model as shown in
Figure 2).

3. Image Processing in Wireless Sensor Net-
works

3.1. Target Application Scenario

Suppose in a wireless sensor network as shown in Fig-
ure 3, the leaf nodes continuously capture some images and
send to upper layers, and finally to the base station to the
user side. Suppose the application is simply a pattern recog-
nition application where the user wants to track the shape of
objects in the monitoring area. If all the images captured are
sent to the base station, then a large traffic volume and hence
a large transmission delay will be induced, because the size
of a typical image is in the order of 100KBytes. However,
in a wireless sensor node, energy consumed by the commu-
nication part dominates that by the computation part, and
more importantly a sensor node is energy-constrained. For
example, in a wireless sensor node produced by Rockwell
Inc. the energy expended in transmitting 1 bit is around
2000 times of that for executing one instruction [8, 13].
Therefore, it is beneficial to reduce the size of data sent from
the leaf nodes to the base station, so as to reduce bandwidth
requirement and hence energy consumption. Consequently,
it is advantageous to process data locally to extract inter-
ested information and then send to the base station.

To process image data locally, we can apply reconfig-
urable computing using FPGAs at a layer higher than the
leaf nodes, that is, the square nodes in Figure 3. Then,
the images captured from the leaf nodes can be processed
locally using FPGA hardware acceleration at the square
nodes. In this way, from the square nodes to the base sta-
tion, the traffic volume for an image is only in the order of
1KBytes or 10KBytes. This greatly reduces the bandwidth
burden on the sensor network, and reduces the computa-
tion burden at the user side. In this application scenario,
one major task that a square node needs to handle is—the

Base Station

Images

Leaf Nodes

Figure 3. Application scenario.

square node receives a batch of jobs (e.g., edge detection,
AES/DES encryption, etc.) from the leaf nodes and it needs
to decide when and how to process the jobs, since different
jobs have different execution times and need different re-
sources. Thus, a hardware task scheduler is needed to han-
dle the resource management problem. Figure 3 also shows
the picture of a prototype design of the square sensor node,
which is described in more detail in Section 7.

3.2. The Runtime System

Figure 4 depicts the block diagram of our target runtime
system. Specifically, a user’s application program is par-
titioned into two types of tasks, namely software task to
be executed by the instruction set processor and hardware
task to be executed by the reconfigurable device. After the
application program is submitted for execution, the corre-
sponding software and hardware tasks are diverted to the
respective queues of the software task and hardware task
schedulers. In our study, we focus on developing a schedul-
ing algorithm for the hardware task scheduler. The hard-
ware/software partitioning of an application is not the con-
cern in this paper. The long-term goals of the runtime sys-
tem are to minimize the total energy consumption and exe-
cution time of the set of hardware tasks.

Software
Task

Hardware
Task

Job QueueApplication Program Conventional Software
Task Scheduler

Hardware Task
Scheduler

OS Kernel
Software Task

 Queue

Hardware Task
 Queue

Figure 4. Runtime system.

4. Scheduling Model

4.1. Reconfigurable Architecture

In our study, we consider only reconfigurable architec-
ture that is feasible for implementation using current tech-

nology. Figure 5 shows the target reconfigurable architec-
ture. As can be seen from the figure, a host CPU is con-
nected to a reconfigurable device. The host CPU is used for
configuring the reconfigurable device and transferring data
to/from the device. The reconfigurable device is divided
into two areas, static area and dynamic area. The dynamic
area implements some reconfigurable modules (RMs) for
executing some hardware tasks, while the static area imple-
ments a static module which servers as a bridge between
the host CPU and the RMs. The function of the static area
is fixed after the whole reconfigurable device is configured.
On the other hand, each RM can be partially reconfigured,
without affecting the rest of the device.

CPU

R
M

 1

R
M

 2

R
M

 n

S
ta

tic
 M

od
ul

e

Reconfigurble Device

Static
Area Dynamic Area

Device
Configuration

Data
Communication

Figure 5. Reconfigurable architecture.

Logic circuits in an FPGA device are implemented in
the CLBs, which are arranged as a two-dimensional array
inside the FPGA. We suppose that the dynamic area com-
prises W ×H CLBs, where H is the height of the reconfig-
urable device and W , the width, is variant to the size of the
dynamic area. On the other hand, we assume that the size
of the smallest RM is of WMIN × H . In practical imple-
mentation, the height of each RM spans the full height of
the device [14], and WMIN depends on the hardware task
which requires the smallest number of CLBs. Then, the
maximum number of RMs is:

NMAX =
W

WMIN

(1)

Here, we assume that W is a multiple of WMIN . Fig-
ure 6 shows some of the possible partitioning strategies
of the dynamic area for the case where NMAX = 8. As
mentioned earlier, because we consider practical implemen-
tation of the reconfigurable architecture, we do not allow
merging/splitting of RMs, which is the reason why the par-
titioning of the dynamic area needs to be explicitly defined.
This also follows that, to change from one partitioning strat-
egy to another, the whole dynamic area needs to be recon-
figured.

Our view on allowing different partitioning strategies
at run-time, instead of a particular one after the system
starts, is that the system needs to adapt to the changing
workloads, which are characterized by different computa-
tional complexity of tasks. In general, a more complex task

8WMIN(W) 4WMIN(W/2) 2WMIN(W/4) WMIN(W/8)

4WMIN(2/4) 2WMIN(W/4) 4WMIN(W/2) 2WMIN(W/4) WMIN(W/8)
2WMIN(W/4) WMIN(W/8)

Figure 6. Some possible partitioning strate-
gies of the dynamic area for the case where
NMAX = 8.

needs more CLBs to implement, and hence needs an RM
of wider width. Analogous to a cluster computing environ-
ment where a number of parallel programs ask for different
number of machines for execution, in our target reconfig-
urable architecture, a number of tasks ask for execution in
the RMs of different widths.

On the other hand, it should be emphasized that Figure 6
only shows a particular subset of all the possible partition-
ing strategies for the case where NMAX = 8. For the sake
of practical implementation in an embedded system, only
a set of partitioning strategies as in Figure 6 would be im-
plemented. The reason is that it needs space in a memory
device (e.g., a flash memory chip) to store the FPGA de-
vice configuration files for each of the partitioning strategy,
whose size is typically in the order of 100 KBytes. In view
of the above reasons, the set of partitioning strategies to be
implemented should be designed to be as generic as possi-
ble, so as to cope with different workload patterns. For in-
stance, one design criterion is that, for every hardware task,
there must be a partitioning strategy implemented for the
execution of the hardware task. Another criterion is that,
if during a particular period of time the hardware tasks in
the system only require one kind of RM to execute on, then
there must be a partitioning strategy implemented such that
the dynamic area can accommodate the maximum number
of such RM.

4.2. Task Definition

We assume that the hardware tasks executing in the RMs
are independent to each other and cannot be preempted, i.e.,
cannot be stopped and resumed later on the same or differ-
ent RM. A hardware task Ti in our target reconfigurable
architecture is characterized by two parameters: 1.) fMAX

i ,
which specifies the maximum clock frequency, in MHz,
the hardware task can be executed at; and 2.) wi, which
specifies the width of the reconfigurable module needed (it
should be reminded that all the RMs share the same height).

In addition to the above two parameters, each hardware
task has execution time ti and energy consumption Ei when
it is working at fMAX

i MHz for a predefined amount of

work. ti can be found out by considering the amount of
work to be carried out by the task. Ei can be estimated by
adopting the energy model developed by Choi et al. [2].
Moreover, when a hardware task is scheduled to execute in
the system, the task has an arrival time Ai and completion
time Ci. All the above-mentioned attributes and parameters
of a task Ti are stored in a vector vi.

In our target system, a special type of hardware task
called NOP (no-operation) is defined for each RM of differ-
ent widths. When an RM is configured with an NOP task,
we assume that the RM will consume negligible energy.
The use of NOP tasks will be elaborated in Section 5.2.

4.3. Execution Time and Energy Consump-
tion of A Task

The following two functions are defined to extract the
estimated execution time and energy consumption informa-
tion, respectively, of each task Ti executing at different fre-
quency f :

gtime(vi, f) =
fMAX

i

f
· ti (2)

genergy(vi, f) =
f

fMAX
i

· Ei (3)

When applying the energy model developed by Choi et al.
[2], it is shown that the energy consumption is directly pro-
portional to the working frequency, which is the reason why
Equation 3 is such defined.

5. The Design of a Hardware Task Scheduling
Algorithm

5.1. Design Goals

Recall that in Section 3.2 we discussed the long-term
goals of the target runtime system. After we have talked
about the task definition, execution time and energy con-
sumption of a hardware task, the design goals of our pro-
posed hardware task scheduler (to minimize the total energy
consumption and total execution time of the set of hardware
tasks) are formulated as follows:

Minimize(
∑

genergy(vi, f)) (4)

Minimize(max
i

(Ci) − min
i

(Ai)) (5)

5.2. The Proposed Scheduling Algorithm

5.2.1 Overview

Algorithms 1, 2, and 3 describe our proposed hardware task
scheduling algorithm, namely ECfEE (Energy-Efficient

and Computation-Efficient algorithm with frequency adap-
tation). An overview of the algorithm is given as fol-
lows. The algorithm is divided into two parts. In the first
part, it starts by choosing a partitioning strategy with the
goal of executing a maximum number of hardware tasks
(SelectPS − T (), Algorithm 2). Then it finds a working
frequency for all the tasks selected to be executed in the cho-
sen partitioning strategy, with the goal of minimizing en-
ergy consumption (SelectWorkingFrequency(), Algo-
rithm 3). Using a working frequency as described in Algo-
rithm 3 is the key step of ECfEE for reducing energy con-
sumption, because the tasks will execute at a slower speed.
Moreover, as we will show later, it will also shorten the total
completion time of the set of tasks.

In the second part, it mainly deals with the case when a
task finishes execution. In this case, if not all the tasks have
finished execution, the scheduler needs to either find a new
task to execute on the unoccupied RM or schedule an NOP
task on the RM; otherwise, the reconfigurable device will
be reconfigured to execute another set of new tasks.

5.2.2 Details of The Proposed Scheduling Algorithm

By referring to Figure 4, our algorithm works on a hardware
task queue, Tqueue, whose size is changed dynamically,
i.e., hardware tasks are continuously being injected into the
queue. We assume that the queue is implemented using
some data structure such as a linked list, and hence the algo-
rithm takes as input the pointer pointing to the head of the
queue, Tqueue head. Our algorithm considers the first qrange

hardware tasks when it carries out the scheduling procedure.
To prevent some tasks from starving, we introduce another
parameter, si, to each task Ti. si is set to zero initially, and
it is incremented by one, if Ti ∈ Tqueue[1..qrange] was not
scheduled during a round of choosing candidate tasks for
scheduling, i.e., Steps 1–6 of Algorithm 2.

In Step 3 of Algorithm 1, F denotes the set of frequen-
cies that all the RMs in the reconfigurable device may be
clocked at. All RMs sharing the same working frequency
is a consideration for practical implementation, as recom-
mended by [14]. Moreover, the fact that the available fre-
quencies are stepped by 5 is also a practical consideration.
The primary reason is to reduce the memory space required
for storing the configuration files of the reconfigurable de-
vice. In SelectWorkingFrequency() of Algorithm 3, we
choose a working frequency for the scheduled tasks such
that all the tasks can finish execution all together, with the
minimal average difference of execution time. The reason
for doing so is that it can reduce the amount of executing
NOP tasks in Steps 14–25 of Algorithm 1. Since the exe-
cution of NOP tasks (instead of normal hardware tasks), is
considered a waste of resources, by reducing the amount of
executing NOP tasks, it can better use the resources of RMs,

and hence better use the energy of the system.
In Steps 14–25 of Algorithm 1, after a task has finished

execution, we do not choose any task that can fill the RM.
There are two reasons for that. Firstly, we want to avoid the
loop of scheduling NOP task when there is no task suitable
for execution under the current partitioning strategy but we
need to wait for the executing tasks to finish. Secondly, af-
ter all the tasks under the current partitioning strategy finish
their execution, the system can consider another partition-
ing strategy so as to schedule the maximum possible num-
ber of tasks for execution.

The dominating computation of the proposed scheduling
algorithm ECfEE is in the SelectPS−T () function, where
for each partitioning strategy, qrange tasks have to be looked
up so as to choose a suitable partitioning strategy. Thus,
the complexity of ECfEE is O(p · qrange) where p is the
maximum number of partitions in the dynamic area.

Algorithm 1 ECfEE
Schedule(Tqueue head)
1: qrange ← α ·NMAX /* α is a predefined constant */
2: sthreshold ← β ·NMAX /* β is a predefined constant */
3: F ← {fMIN , fMIN + 5, fMIN + 10, ..., fMAX}
4: P ← GeneratePartitioningStrategies(NMAX)
5: pcurrent ← null /* current partitioning strategy used */
6: Tscheduled ← null /* set of scheduled tasks */
7: Tnot scheduled ← null /* considered but not scheduled */
8: fworking ← null /* selected working frequency */
9: while (TRUE) do

10: (pcurrent, Tscheduled, Tnot scheduled)←
SelectPS−T (Tqueue head, qrange, sthreshold, P, Tnot scheduled)

11: fworking ← SelectWorkingFrequency(Tscheduled, F)
12: Reconfigure the dynamic area for execution of tasks.
13: while (not all the tasks have finished execution) do
14: if a task has finished execution in RMj then
15: if there is some other task still executing then
16: if ∃ task Ti ∈ Tqueue[1..qrange] and Ti will finish execu-

tion no later than any current executing task then
17: Schedule Ti to execute in RMj .
18: if Ti ∈ Tnot scheduled then
19: Tnot scheduled ← Tnot scheduled − Ti

20: end if
21: else
22: Schedule NOP task to execute in RMj .
23: end if
24: end if
25: end if
26: end while
27: end while

6. Simulation Results

6.1. Simulation Setting

Because currently there is no benchmark package for a
reconfigurable system, similar to [5, 11], the performance of
the proposed scheduling algorithm is studied through sim-
ulation. The simulation program is written in C. We con-

Algorithm 2 ECfEE—Selection of Partitioning Strategy
and Tasks for Scheduling
SelectPS-T(Tqueue head, qrange, sthreshold, P, Tnot scheduled)
1: if ∃ si ≥ sthreshold and Ti ∈ Tnot scheduled then
2: sj ← max(si|Ti ∈ Tnot scheduled)
3: Select pcurrent ∈ P which allows the task having sj and the max-

imum number of other tasks ∈ Tqueue[1..qrange] to execute in the
RMs.

4: else
5: Select pcurrent ∈ P which can accommodate the maximum num-

ber of tasks within Tqueue[1..qrange].
6: end if
7: Denote the set of tasks which contributes to the selection of pcurrent

as Tscheduled .
8: Tnot scheduled ← Tnot scheduled

⋃
(Tqueue[1..qrange] −

Tscheduled)
9: Tqueue ← Tqueue − Tscheduled

10: sj ← sj + 1, where Tj ∈ Tnot scheduled

Algorithm 3 ECfEE—Selection of Working Frequency for
the Tasks Selected for Scheduling
SelectWorkingFrequency(Tscheduled , F)
1: fMAX

scheduled
← min(fMAX

i |Ti ∈ Tscheduled)

2: For each f ∈ F and fMIN ≤ f ≤ fMAX
scheduled

, calculate:

• Gtime
average = 1

|Tscheduled|
·
∑

gtime(vi, f), where Ti ∈

Tscheduled

•
∑

(Gtime
average − gtime(vi, f))2, where Ti ∈ Tscheduled

3: Denote the f which gives the smallest value of
∑

(Gtime
average −

gtime(vi, f))2 in the previous step as fworking .

struct Tqueue by randomly generating a set of tasks of the
following parameters: 1.) NMAX = 8 and WMIN = 1,
and task width wi ∈ [1, 2, 4, 8]; 2.) FMIN = 20 and
FMAX = 50 such that fMAX

i ∈ [20..50] and fworking ∈

[20, 25, 30, 35, 40, 45, 50]; 3.) ti ∈ [500, 5000] ms; and 4.)
Ei ∈ [100, 1200] mJ, which is proportional to wi.

6.2. Tradeoff between Execution Time and
Energy Consumption

In our simulations, we set β = 2, which means that
sthreshold = 16. Figures 7(a) and 7(c) show, respec-
tively, the total execution time and total energy consumed
in executing 1000 randomly generated tasks. As can be
seen from the figures, for qrange smaller than 15, the to-
tal execution time and total energy consumed decrease with
qrange. The reason for this is that by using a larger qrange,
the scheduler can choose a better partitioning strategy to
schedule more tasks for better utilization of the RMs. This
also means that the tasks are likely to execute at a fre-
quency lower than fMAX

i and hence energy is saved. On
the other hand, for qrange larger than 15, an increase in
qrange causes the total execution time to increase and the
total energy consumed to decrease. The cause of this is due
to the fact that by further increasing qrange, the scheduler

can further schedule more tasks in a partitioning strategy.
However, by considering more tasks, the fMAX

scheduled chosen
(SelectWorkingFrequency(), Algorithm 3) will be of a
lower value. As a result, the fworking chosen will also be of
a lower value, causing the tasks take more time to finish, but
save more energy. Thus, from Figures 7(a) and 7(c), we can
see that qrange = 15 is a good tradeoff between the total
execution time and total energy consumed. The same value
of qrange = 15 is observed in the execution of 2000 tasks,
as shown in Figures 7(b) and 7(d).

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30 35

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

q_range

(a) execution time—1000 tasks

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5 10 15 20 25 30 35

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

q_range

(b) execution time—2000 tasks

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25 30 35

To
ta

l E
ne

rg
y

C
on

su
m

ed
 (J

)

q_range

(c) energy consumed—1000 tasks

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35

To
ta

l E
ne

rg
y

C
on

su
m

ed
 (J

)

q_range

(d) energy consumed—2000 tasks

Figure 7. Total execution time and en-
ergy consumption against different values of
qrange in ECfEE.

6.3. Comparison with An Existing Algo-
rithm

The problem of placing reconfigurable modules onto the
dynamic area of the 1D-slotted model as shown in Figure 2
is similar to the 1D bin-packing problem. Best-Fit and First-
Fit are two well-known online algorithms for the 1D bin-
packing problem, and they have been considered for hard-
ware task placement [1]. In our study, we have adapted
a variant of Best-Fit to compare the performance with our
proposed scheduling algorithm. We name this algorithm BF
and the algorithm is outlined in Algorithm 4. On the other
hand, it should be noted that BF is effectively ECfEE with
qrange = 1. To choose a suitable partitioning strategy, BF
only considers the head task of the task queue for each parti-
tioning strategy. Thus, the complexity of BF is O(p) where
p is the maximum number of partitions in the dynamic area.

In Figure 8, we compare our proposed scheduling algo-
rithm ECfEE with BF. For the comparison, 1000 tasks are

Algorithm 4 BF
Schedule(Tqueue head)

1: F ← {fMIN , fMIN + 5, fMIN + 10, ..., fMAX}

2: P = GeneratePartitioningStrategies(NMAX)

3: while (TRUE) do
4: Select pcurrent ∈ P where the partitioning strategy pcurrent al-

lows the head task of Tqueue to execute and contains the maximum
number of RMs.

5: With reference to the fMAX
i of the head task, select the largest

possible fworking ∈ F .
6: Schedule the head task to execute and remove it from Tqueue.
7: For any free RM in current partitioning strategy, if the head task

of Tqueue can execute on it, schedule the head task to execute and
remove the task from Tqueue . This step is repeated until no suitable
task is found.

8: Run Steps 4–7 when a task finishes execution.
9: end while

executed. From the figures, we can see that, when com-
pared to BF, ECfEE can significantly reduce the energy
consumption and execution time. Specifically, ECfEE can
reduce execution time and energy consumption by 26% and
14%, respectively. From these results, it is interesting to see
that by exploiting adaptive working frequency of hardware
tasks, we can not only reduce the total energy consumption,
but also reduce the total execution time of the tasks.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500

N
um

be
r o

f T
as

ks
 F

in
is

he
d

(%
)

Time (s)

ECfEE
BF

(a) task completion

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 500 1000 1500 2000 2500

E
ne

rg
y

C
on

su
m

ed
 (J

)

Time (s)

ECfEE
BF

(b) energy consumed

Figure 8. Performance comparison between
ECfEE and BF.

7. Prototype Design of the Square Sensor Node

7.1. Hardware Platform Design

Figure 9 shows the block diagram of a prototype design
of the square sensor node shown in Figure 3. The proto-
type consists of two FPGAs—the master FPGA is for im-
plementing a MicroBlaze based µClinux system [6] while
the slave FPGA is for carrying out some hardware tasks
(note that a leaf node consists of only the master FPGA
with a camera attached to it). A camera is attached to

the slave FPGA so that the square sensor node can also
take the job of environmental monitoring. Moreover, some
SDRAM memory is attached to the slave FPGA for storing
image data so that the image can be processed quickly. In
the system, there is an RFM DR3100-1 433.92 MHz/115.2
kbps transceiver module [10], which enables the square sen-
sor node to talk to other nodes, on which there is also a
transceiver module. On the other hand, the camera used in
our study is a COMedia C3038 camera module [3], which
can capture a color image of up to 356× 292 pixels.

MicroBlaze uClinux
System on Xilinx

Spart-II 200K

UART (for console/
file transfer)

RF Transceiver

MASTER FPGA

Xilinx
Spartan-II 200K

32-Bit GPIO
(for Input/Output)

SLAVE FPGA

Functions of GPIO:
1. RF mode (send/receive/sleep) selection
2. Configuration of SLAVE FPGA
3. Issuing of tasks on SLAVE FPGA:
 a. sending of control signals
 b. sending/receiving of data signals

SDRAM Camera

Other Peripherials

Figure 9. The block diagram of a square sen-
sor node.

7.2. The Application

Our target application in the wireless sensor network is
edge detection, a well-known image processing technique.
The edge detection process is a bottleneck in the application
scenario, and therefore the process is worth being carried
out in an FPGA so as to increase the system performance.
The square sensor node itself will constantly capture some
images to perform edge detection. In addition, it will also
receive images from leaf nodes to perform edge detection.
The resulted images after edge detection will then be sent
to upper layers and finally to the base station. To enhance
data security, the resulted images after edge detection can be
encrypted using the DES encryption algorithm before they
are sent out. Thus, the following hardware tasks are defined
for the square sensor node: 1.) capture an image and save it
to the SDRAM; 2.) perform edge detection; and 3.) perform
DES encryption.

The partitioning of the slave FPGA for executing the
above three hardware tasks is shown in Figure 10. Despite
that the chosen FPGA device can only allow us to execute
a quite limited number of hardware tasks at the same time,
which does not allow the full utilization of the proposed
scheduler, we would like to demonstrate the potential of us-
ing a such scheduler.

7.3. Implementation Results

Using the TIFF format and a resolution of 356 × 292
pixels, a captured image is of size 310KBytes while the

SDRAM

Camera

Edge Detection

(a) one partition

SDRAM

Camera

Image
CaptureDES Encryption

(b) two partitions

Figure 10. Partitioning of the slave FPGA for
executing different hardware tasks.

resulted edge detection image is of size 57KBytes. There
is about 82% reduction in file transfer size when we trans-
mit the resulted edge detection image instead of the original
image, which can greatly reduce the bandwidth and energy
consumption.

When executing the above-mentioned tasks using the
slave FPGA (instead of using the 48 MHz MicroBalze mi-
croprocessor), on which the DES engine runs at 33 MHz
while the edge detection algorithm runs at 20 MHz, the
speedup factors for image capture, DES encryption and
edge detection are 60, 40 and 22, respectively. The speedup
factor is defined as follows:

Speedup =
execution time(MicroBlaze)

execution time(FPGA)
(6)

We have also compared the execution of the above three
hardware tasks in an execution environment with and with-
out multitasking support. Without multitasking support, the
three tasks are executed alternately in the FPGA. With mul-
titasking support, DES encryption and image capture are
performed concurrently in the FPGA. It is found that, with
multitasking support, the total execution time of the three
tasks is reduced by about 15%.

8. Conclusions

In this paper, we have presented the design of a hardware
task scheduler in an embedded reconfigurable computing
platform for batch processing of image data in a wireless
sensor network. We have also presented a prototype design
of a sensor node which employs reconfigurable computing
for batch processing of image data. Implementation results
show performance gain in adopting such system design.

References

[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast
Template Placement for Reconfigurable Computing
Systems,” IEEE Design and Test of Computers, vol.
17, no. 1, pp. 68–83, Jan. 2000.

[2] S. Choi, J.-W. Jang, S. Mohanty, and V. K. Prasanna,
“Domain-Specific Modeling for Rapid System-Wide
Energy Estimation of Reconfigurable Architectures,”
Proc. Engineering of Reconfigurable Systems and Al-
gorithms (ERSA’02), June 2002.

[3] COMedia C3038 Camera Module Datasheet,
http://home.pacific.net.hk/
comedia/c3038.pdf, 2006.

[4] J. Khan and R. Vemuri, “An Efficient Battery-Aware
Task Scheduling Methodlogy for Portable RC Plat-
forms,” Proc. Field Programmable Logic and Appli-
cations (FPL’04), pp. 669–678, Sept. 2004.

[5] B. Krishnamoorthy, J. G. Wu, and T. Srikanthan,
“Hardware Partitioning Algorithm for Reconfigurable
Operating System in Embedded Systems,” Proc. Sixth
Real-Time Linux Workshop, pp. 117–123, Nov. 2004.

[6] MB µClinux, http://www.itee.uq.edu.au/
∼jwilliams/mblaze-uclinux/, 2006.

[7] J. M. Rabaey, “Silicon Platforms for the Next Gener-
ation Wireless Systems - What Role Does Reconfig-
urable Hardware Play?” Proc. Field-Programmable
Logic and Applications 2000, pp. 277–285, Sept.
2000.

[8] V. Raghunathan, S. Ganeriwal, and M. Srivastava,
“Energy Efficient Wireless Packet Scheduling and Fair
Queuing,” ACM Trans. Embedded Computing Sys-
tems, vol. 3, no. 1, pp. 3–23, Feb. 2004.

[9] N. K. Ratha and A. K. Jain, “Computer Vision Algo-
rithms on Reconfigurable Logic Arrays,” IEEE Trans.
Parallel and Distributed Systems, vol. 10, no. 1, pp.
29–43, Jan. 1999.

[10] RF Monolithics Inc., http://www.rfm.com/,
2006.

[11] C. Steiger, H. Walder, and M. Platzner, “Operat-
ing Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-Time Tasks,” IEEE Trans.
Computers, vol. 53, no. 11, pp. 1393–1407, Nov.
2004.

[12] H. Walder, “Operating System Design for Partially
Reconfigurable Logic Devices,” PhD Thesis, Swiss
Federal Institute of Technology (ETH), Apr. 2005.

[13] A. Woo and D. E. Culler, “A Transmission Control
Scheme for Media Access in Sensor Networks,” Proc.
MOBICOM 2001, pp. 221–235, July 2001.

[14] Xilinx Inc., “Xilinx Application Note XAPP290: Two
Flows for Partial Reconfiguration: Module-Based or
Difference-Based,” v1.2 edition, Sept. 2004.

