
A Mechanism for Creating Scientific Application Services On-demand from
Workflows

Gopi Kandaswamy Dennis Gannon
Department of Computer Science, Indiana University.

215 Lindley Hall, 150 S Woodlawn Avenue, Bloomington, IN 47405-7104
fgkandasw, gannong@cs.indiana.edu

Abstract

Service Oriented Computing is a paradigm for access-
ing, integrating and coordinating loosely coupled software
systems in a standardized way and has gained attention in
the recent years within the scientific community. It is in-
creasingly being employed by large scientific collaborations
to “wrap” applications as web services i.e. to create an
additional “web services layer” on top of existing scien-
tific applications. This enables scientists to easily compose,
monitor and run complex workflows consisting of scientific
applications that are not only developed and managed by a
distributed team of application developers but also run on a
distributed set of heterogeneous resources. However, one of
the biggest challenges for large scientific collaborations lies
in keeping all the web services persistent so that they can be
accessed from scientific workflows whenever needed. In this
paper we discuss the architecture and implementation of a
mechanism by which we can create the web services on-
demand, in the event that they are unavailable during the
execution of a scientific workflow and thus obviate the need
to keep them persistent.

Keywords: Web services, scientific workflows, wrap-
ping legacy code.

1. Introduction

Web services architecture is gaining popularity in the sci-
entific research community. It allows scientific applications
to be wrapped as web services so that they can be described,
discovered and consumed in a standard way. We will call
such web services as application services. Application ser-
vices also enable scientists to compose complex workflows
from these application, execute them on a distributed set of
resources on a grid and monitor their status as they run for
extended periods of time. When a user invokes an opera-
tion on an application service, the application service runs

the associated application, possibly on a distributed set of
resources, monitors its status and returns the output results
to the user. In a grid computing environment, application
services often become unavailable primarily due to the un-
reliable nature of a grid. Sometimes even though an applica-
tion service may be available, it may be unusable by a client
because it does not meet the client’s quality of service re-
quirements or security policy requirements. Under such cir-
cumstances, the workflow has to be stopped and can be re-
sumed only after the application service becomes available.
During the execution of complex workflows over a period
of several hours or even days, application service down-
times could result in a considerable waste of time and re-
sources. So fault tolerance is desirable and many workflow
systems like Taverna [22] , Trianna [8] and Kepler [20] can
be configured to run workflows with a set of backup appli-
cation services. However, these backup application services
must also be running at the time of workflow execution and
are not guaranteed to be available when they are actually
needed. Moreover, in large scientific collaborations, owing
to the large number of application services, it is unrealistic
to keep all of them persistent without a huge commitment in
the form of resources and support infrastructure. However,
we propose that it is possible to support a small number of
persistent generic application factory services that can cre-
ate instances of any application service on-demand (just-in-
time) during a workflow execution. The unique contribu-
tion of this paper is the design and implementation of our
generic application factory (called GFac) that can create
application services on-demand from workflows in a way
that is completely transparent to the user and thus provides
a high availability of application services without actually
requiring them to be persistent.

Let us look at an example where we have used GFac to
create application services on-demand. Figure 1 shows a
weather forecasting workflow. It consists of 11 application
services. For the sake of brevity, we will omit the applica-
tion services’ details. Let us assume that a scientist wants to
run the workflow and so uploads it to a Workflow Execution



ARPS-TRN

ARPS-SFC

EXT2ARPS

MCI2ARPS

NIDS2ARPS88D2ARPS

ADAS

ARPS2WRF

WRF

ARPS-PLOT

EXT2ARPS

Initial boundary 
conditions

Run for each 
forecast

and/or ADAS 
analysis

Decoded data from 
other programs (sfc, 

rwh etc.)

Level III data

Level II data

Satellite data

Run once per 
forecast region

Run once per day

Lateral 
boundary 
conditions

Figure 1. A weather forecasting workflow

Service (WES) and provides it with the required input data.
The WES executes the workflow by invoking its constituent
application services in the order specified in the workflow,
with the data provided by the scientist. Let us assume that
during the execution of the workflow, the WES finds that
the WRF [21] service is not available. Instead of stopping
the workflow execution, the WES sends a message to GFac
to create an instance of the WRF service. The WRF service
is an application service and is a web service interface to the
WRF application. We assume that the WRF application has
been already deployed on some host. This is because nei-
ther GFac nor the application services that it creates attempt
to deploy any application. So the assumption is that any
application that is to be wrapped as an application service
has already been deployed (along with its dependencies) on
some resource (machine or host) and is ready to run from
the command-line on that resource. GFac then creates an
instance of the WRF service and returns its WSDL [7] to the
WES. The WES uses WRF’s WSDL to invoke it and then
continues to execute the rest of the workflow. Thus, in the
above example even though the WRF service was not avail-
able during the execution of the workflow, we were able to
create it just-in-time using GFac, invoke it and continue ex-
ecuting the workflow.

The rest of the paper is organized as follows. We dis-
cuss the general architecture of GFac in section 2.1. We
highlight the salient features of the application services that
GFac can create in section 2.2. Details on how GFac can
create application services on-demand is described in sec-
tion 2.3. In section 3 we discuss the performance and scal-

ability of GFac. In section 4, we discuss related work and
we conclude in section 5.

2. The GFac

2.1 Overview of GFac

A factory service [12], is a persistent web service that
knows how to create instances (possibly transient) of a par-
ticular web service. Similarly, an application factory ser-
vice is a persistent web service that knows how to cre-
ate instances of a particular application service. However,
a generic application factory is a persistent web service
that can create instances of any application service on a
Grid. Our implementation of a generic application factory
is called GFac. Before we delve into the architecture of
GFac, let us briefly discuss the process of creating an appli-
cation service instance and the various problems associated
with it.

We can create an application service instance on a host
by executing its binary on that host. But there are some
problems in doing this just-in-time from scientific work-
flows. The first problem stems from the fact that scientific
workflows are usually data intensive and compute intensive
and the hosts on which the application services are to be
instantiated may be determined only at run-time. For ex-
ample, in weather forecasting, which involves identifying,
accessing, preparing and integrating disparate and high vol-
umes of meteorological data sets and streams, it is desirable
to choose resources for running application services for data
mining tasks, which are closer to the data sources. Since the
host on which the application service will be created is not
known before-hand, the problem is that we either need to in-
stall the application service binary on all the hosts on a Grid
or download it from some repository just-in-time. Owing
to the large number of application services in a scientific
community, the former may be a highly involved task and
depending on the size of the binary and the speed of the net-
work, the later may take anywhere from several seconds to a
few minutes. The second problem is that the application ser-
vice binary is not guaranteed to run on the target host. Even
for Java based web services, due to the many incompatibili-
ties that exist between the different versions and implemen-
tations of the Java Virtual Machine, unforeseen problems
can occur at run-time. We can overcome this problem by
compiling the application service’s source code just-in-time
on the target host. But this only increases the over-head of
creating the application service instance, which may be un-
desirable under many circumstances. The third problem lies
with the basic assumption in this approach; the assumption
that either the application service’s source code or binary is
available for us to begin with. In many situations we cannot
make this assumption. This is because most scientific appli-



cations are command line applications and although the task
of “wrapping” an application as an application service is not
difficult for a specialist trained in web services, for most ap-
plication developers it is a significantly high barrier to pass.
There are several tools that can help application developers
“wrap” their applications as application services, but owing
to the large number of applications in a scientific commu-
nity, maintaining different versions of the source code and
binaries for all the application services is a difficult task.

Our GFac adopts a new approach. When it receives a
request from a client to create an application service in-
stance on some host, it instantiates a generic service binary
that is pre-installed on that host. GFac then provides the
generic service instance with a configuration document that
“describes” the application service. We call this configura-
tion document the ServiceMap document. The ServiceMap
document is not a WSDL. It is a higher level language than
WSDL for describing the “WSDL portType”, the security
policies and soft-state lifetime management policies of an
application service. It is described in detail in [18]. It is
written by the application service provider (also known as
service provider or application provider in this context) and
registered with a well known Registry service so that it can
be retrieved by GFac for creating an instance of that applica-
tion service. Using the ServiceMap document, the generic
service instance configures itself to “become” the applica-
tion service instance. The application service instance then
generates its WSDL and registers it with a Registry service.
GFac then returns the application service’s WSDL in the
response message to the client. The client can then use the
application service’s WSDL to invoke it directly.

Using the above approach, GFac can create any applica-
tion service instance from the generic service binary. This
approach also significantly reduces the overhead of creating
an application service instance just-in-time. There are some
important things to note here.

� The generic service is a Java based web service. Its
binary has to be pre-installed on all the hosts on which
we might create application services. But this has to
be done just once.

� GFac is a secure factory service. It supports two secu-
rity mechanisms.

– Transport Level Security (TLS): X509 certifi-
cates are used for authentication. All authenti-
cated users are allowed access to all operations
on GFac i.e. no fine grained authorization is used
to decide which user has access to what opera-
tions on GFac. We will call this “service level”
authorization.

– Message signature with authorization tokens:
Authentication is using X509 certificates and au-

thorization is using XPOLA [11], which uses
SAML [2] tokens for authorization. Authoriza-
tion tokens are used to decide which user has ac-
cess to what operations on GFac. We call this
“operation level” authorization.

� GFac instantiates the generic service binary on the tar-
get host using GRAM. This requires a globus gate-
keeper service to be running on the target host. A ser-
vice container is not required to be installed or run-
ning on the target host because the generic service bi-
nary has a small embedded HTTP container provided
by XSUL [26].

� GFac supports both synchronous and asynchronous
modes of invocation through the use of WS-
Addressing [6].

� As mentioned before in section 1, GFac assumes that
the application that is to be wrapped as an application
service has already been deployed along with all its
dependencies on some resource (machine or host) and
is ready to run on that resource. This is because nei-
ther GFac nor the application services that it creates
attempt to deploy any application or its dependencies.

2.2 Overview of the application services
created by GFac

GFac can wrap any command-line application as an ap-
plication service. We list below some of the salient features
of the application services created by GFac. Details on the
architecture of the generic service , its security mechanisms
and how it has been used in the LEAD [10] [1] project for
wrapping data decoders, data mining tools, weather simu-
lations and graphical rendering engines for use in weather
forecasting workflows, can be found in [18], [23] and [13].

� The application services are secure. They support
the same security mechanisms that GFac supports viz.
TLS and message signature with authorization tokens.

� The application services do not attempt to deploy any
application. They assume that the command-line ap-
plication that the application service “wraps” has al-
ready been deployed on some resource and is ready-to-
run on that resource (host/machine). The deployment
of the application is usually done by the application
provider.

� The deployment of the application is described in an
XML document called the “ApplicationDeployment-
Description” document and has to be registered with
a well known Registry service so that it can be re-
trieved later by the application service to run the ap-
plication. The “ApplicationDeploymentDescription”



document apart from other details, contains the name
of the host on which the application is deployed, the
path to the application on that host and the environ-
mental variables that are needed to run the application
on that host.

� The application services can run their applications as
batch jobs using schedulers like PBS, LSF, Condor
and SGE through the use of GRAM. Schedulers like
SLURM [16] are also supported by built-in adapters in
the application services.

� The application services can stage the input data files
before running the application and the output data files
after running the application.

� The application services can send notifications about
their status and the status of their applications to a well
known Notification service using WS-Eventing [5] and
WS-Notification [14]. Interested clients can subscribe
to the Notification service to get these notifications.

� The application services automatically generate a
graphical user interface in the form of a HTML page.
The graphical user interface describes all the opera-
tions that the user can invoke, allows the user to choose
an operation, specify its input parameters and invoke
the operation on the application service.

� The application services provide soft-state lifetime
management. They renew their WSDL’s with a well
known Registry service.

� The application services have built-in “shutdown” and
“kill” operations that can be invoked to shutdown or
kill the service. The shutdown operation unregisters
the WSDL from the Registry service, waits for all the
jobs (application instances) started by the service to
finish and then stops the service. The kill operation
unregisters the WSDL from the Registry service, kills
all running jobs and stops the service.

� The application services support both synchronous and
asynchronous modes of invocation through the use of
WS-Addressing.

� Each application service instance can support upto 250
concurrent clients using synchronous request-response
model for invocation and upto a 1000 concurrent
clients using asynchronous request-response model for
invocation. This is based on performance and scalabil-
ity tests on the application services and is being pub-
lished in a separate paper.

2.3 Creating application services on-
demand from workows

As we mentioned in section 1, if an application service
that is part of a workflow is not available during a work-
flow execution, it can be created just-in-time using GFac. In
Figure 2, the Workflow Execution service (WES) wants to
create an instance of an application service. So it queries a
well known Registry service to obtain the WSDL for GFac.
It then sends a SOAP message to GFac in step 1. The SOAP
message contains the fully qualified name of the applica-
tion service whose instance it wants to create. After receiv-
ing the message, GFac verifies its authenticity and ensures
that the WES is an authorized user. In step 2, GFac queries
the Registry service to obtain the ServiceMap document for
the requested application service. If no ServiceMap doc-
ument is found, an application service instance cannot be
created and GFac returns a SOAP fault to the WES. If a Ser-
viceMap document is found, it is validated by GFac. Now,
GFac needs to know on which host it should create the ap-
plication service instance. Ideally, GFac should be able to
contact another service to get this information. Since we
do not have such a service in our current system, GFac can
be configured to choose any host from a grid or any host
from a specified group of hosts on a grid. After determining
the host on which to create the application service instance,
in step 3, GFac queries the Registry service to obtain the
”HostDescription” document for that host. It is an XML
document that apart from other details, contains the path
to the generic service binary on that host. In step 4, GFac
instantiates the generic service binary on the target host us-
ing GRAM and provides it with the “fully qualified name”
of the ServiceMap document. The generic service instance
then retrieves the ServiceMap document from the Registry
service and configures itself to become the application ser-
vice. After the configuration is done, the application ser-
vice generates its WSDL and registers it with the Registry
service in step 5. GFac then queries the Registry service to
obtain the WSDL for the application service in step 6. In
step 7, GFac returns the WSDL for the application service
in the response message to the WES. The WES can then use
the application service’s WSDL to invoke it in step 8.

There are a few important things to note here. First, as
mentioned in section 2.1, since the generic service binary
is pre-installed on the host, there is no need to download
it before instantiating it. This greatly reduces the overhead
of creating an application service instance. Second, no web
service container needs to be installed or running on the host
on which the application service is created. This avoids the
hassles of hot-deployment and hot-update of web services
in a container. Third, there is an overhead involved in dy-
namically configuring the generic service instance but as we
will see in section 3 this overhead is small. Fourth, the pro-



Factory

Application
Service

Workflow 
Execution 

Service

4. Create service

1. Service QName

7. Return WSDL

6. Get WSDL

2. Get ServiceMap

Registry

5. Register WSDL

3. Get host description 

8. Invoke service

Figure 2. Just-in-time creation of application
services using GFac

cess of creating the application service just-in-time is com-
pletely transparent to the user.

3. Performance and scalability tests on GFac

For performance and scalability tests, we used a cluster
of nodes for running the clients, GFac and the application
services. Each node in the cluster had two 64 bit AMD
Opteron processors running at 2 GHz and 8 GB of memory.
We used 32 bit Sun JDK 1.4.2 for the tests.

3.1 Performance tests

For performance tests, the client and GFac were running
on two different nodes in the cluster and GFac created the
application services on a different set of nodes in the clus-
ter. The client used synchronous request-response model to
send a request and receive a response. Three performance
tests were conducted. In Test-1, GFac was running in the
unsecure mode. In Test-2, GFac was running in the TLS
mode and in Test-3 GFac was running in the message signa-
ture with authorization tokens mode. In each test, the client
sent 1 request to GFac to create 1 application service. The
time elapsed between the moment the client started send-
ing the request and the moment the client finished receiving
the response (with the WSDL for the newly created appli-
cation service instance) was measured. The three tests were
repeated several times and the average time to create an ap-
plication service is shown in Table 1.

We see from Table 1, that the time to create 1 applica-
tion service using GFac (in unsecure mode) is just 2.221
seconds. There are a few important things that we would
like to mention here. First, most application services run
their applications on clusters as batch jobs. The overhead
introduced by batch queues is usually high. Second, many

Table 1. Performance of GFac in the three se-
curity modes
Test Security Time (millisecs)
Test-1 No security 2221
Test-2 TLS 2585
Test-3 Msg. sig w/ auth. tokens 2935

scientific applications take several minutes if not hours or
days to run. Third, once an application service is created,
we can use it to the run the application how many ever times
we want before shutting it down. So the overhead of 2.221
seconds for creating an application service just-in-time is
quite acceptable under most circumstances.

3.2 Scalability tests

As in the performance tests, for the scalability tests, the
client and GFac were running on two different nodes in
the cluster and GFac created the application services on a
different set of nodes in the cluster. We started 1 client
with several threads that accessed GFac concurrently. We
used a maximum of only 50 threads in the client because
we felt that in real situations it is unrealistic for GFac to
receive concurrent requests to create more than 50 differ-
ent application service instances (Note: Each application
service instance can support upto 250 concurrent clients
using synchronous request-response model of invocation
and 1000 concurrent clients using asynchronous request-
response model of invocation. This is based on perfor-
mance and scalaility tests that have been done on the ap-
plication services and are to be published in a separate pa-
per). Each client thread sent 1 request to GFac using syn-
chronous request-response model, over a separate HTTP
connection, to create 1 application service instance. So ef-
fectively, each client thread is a separate client. The time
elapsed between the moment a client started sending the re-
quest and the moment the client finished receiving the re-
sponse (with the WSDL for the newly created application
service instance) was measured. This is the response time
of GFac and is measured on the client side. We mentioned
in section 2.3 that GFac can be configured to create appli-
cation services on a specified group of hosts on a grid. For
our tests, we will call these hosts as “service nodes” i.e. the
nodes in our cluster on which GFac creates application ser-
vices.

Figure 3 shows the response time of GFac. There are 4
graphs; Test-1, Test-2, Test-3 and Test-4 where 4, 8, 16 and
25 service nodes were used respectively. We see from Test-
1 that the average response time of GFac when only 1 client
is accessing GFac is 2.1 seconds. This increases to 12 sec-
onds when 50 concurrent clients are accessing GFac. The



increase in response time is due to lack of enough resources
(service nodes) to create application services. By increas-
ing the number of service nodes, the response time can be
reduced. This can be seen from Test-2, Test-3 and Test-4.
In Test-4, we see that even with 50 concurrent clients, the
average response time is under 4 seconds.

It is important to note that the response time of GFac
shown in Figure 3 is the total time as seen by a client to
create an application service instance (using synchronous
request-response model of invocation). It includes the time
taken by the following steps.

1. Client sends request to GFac to create an application
service instance.

2. GFac gets the ServiceMap document for the applica-
tion service from the Registry service and validates it.

3. GFac instantiates the generic service binary on the re-
mote host.

4. The generic service instance gets the ServiceMap doc-
ument for the application service from the Registry ser-
vice.

5. The generic service instance “configures” itself using
the ServiceMap document to become the application
service instance.

6. Application service instance generates its WSDL.

7. Application service instance registers its WSDL with
the Registry service.

8. GFac obtains application service instance’s WSDL
from the Registry service.

9. GFac returns the application service instance’s WSDL
to the client.

To see how far GFac is scalable, we measured its thor-
oughput and saw how it varies with an increase in the num-
ber of concurrent clients accessing it. Here again, the con-
current clients used synchronous request-response model to
invoke GFac. The throughput of GFac is the number of
application service instances that it can create in one sec-
ond and is calculated at the service side i.e. in GFac and
is shown in Figure 4. The first graph (from the bottom of
the figure) shows the throughput of GFac when 1 service
node is used. The second graph is the throughput when 2
service nodes are used. We see that the throughput of GFac
depends on the number of service nodes used to create ap-
plication services. The more the number of service nodes,
the higher is the throughput. This is intuitive. But whatever
be the number of service nodes, we see that the throughput
of GFac increases with increase in the number of concurrent

0 5 10 15 20 25 30 35 40 45 50
2000

4000

6000

8000

10000

12000

14000

Number of concurrent clients

R
es

po
ns

e 
tim

e 
of

 G
F

ac
 (

m
ill

is
ec

s)

Test−1 (4 nodes)
Test−2 (8 nodes)
Test−3 (16 nodes)
Test−4 (25 nodes)

Figure 3. Response time of GFac

clients, reaches a maximum value and then either decreases
very slowly or remains constant.

Based on the results of the performance tests we can
conclude that the time taken by GFac to create an applica-
tion service instance is small enough to be used just-in-time
from workflows. Based on the results of the scalability tests,
we can conclude that a single instance of GFac is scalable
upto 200 concurrent requests (using synchronous request-
response model), although we feel that in real-applications
it is unrealistic for GFac to receive more than 50 concurrent
requests.

4. Related Work

Over the last few years there has been some progress in
designing and building generic tools that can wrap any sci-
entific application as an application service and instantiate
it on a Grid. But none of them can create an application
service instance just-in-time during a workflow execution.

Although the SoapLab [25] toolkit can be used to wrap
applications as application services, the process is not au-
tomated. Also, SoapLab uses Apache Axis to create Java
implementation classes for the application services which
incurs a significant overhead. Also, the services need to be
installed in a web services container like Tomcat. Although
Tomcat supports remote deployment of web services, there
is some overhead in doing the remote deployment. More-
over, this assumes that a Tomcat container is present on the
host on which we want to create the application service in-
stance.

GridDeploy [15] is a toolkit that provides a grid service
interface to applications. When a client request to run an
application is received by the GridDeploy factory, a grid



0 50 100 150 200 250
0

2

4

6

8

10

12

14

Number of concurrent clients

T
hr

ou
gh

pu
t o

f G
F

ac
 (

ap
pl

ic
at

io
n 

se
rv

ic
e 

in
st

an
ce

s 
cr

ea
te

d 
pe

r 
se

co
nd

)

1 service node
2 service nodes
4 service nodes
8 service nodes
16 service nodes
32 service nodes

Figure 4. Throughput of GFac

service is created within the same Grid services container
as the factory. The factory then redirects the client’s request
to the grid service. The user then invokes the grid service
to run the application. After executing the application, the
factory shuts down the service and cleans up the user envi-
ronment. The architecture of the GridDeploy factory is not
scalable enough for most applications. This is because the
GridDeploy factory can create the application service only
on the local host and within the same container as that of the
GridDeploy factory. This limits the number of application
services that can be created dynamically and hence affects
the scalability of the system.

Another system that provides a Web service interface
to legacy scientific applications is the Generic Application
Service (GAP) [24] which is a part of the In-Vigo [4] sys-
tem. A user executes an application, by sending a request
to the GAP service with the name of the application. The
GAP service retrieves a description of the application from
a repository and presents the user with a graphical user in-
terface for providing the command line arguments to the
application. GAP then submits the application as a job to
the In-Vigo system. Although GAP serves to provide a web
service interface to any application, it is important to note
that GAP is not an application specific service. It can be
considered to be a Generic Application service. Its WSDL
is not specific to any application service and cannot be used
to compose workflows.

GEMLCA [9] [17] is a system that can deploy any
legacy application as an OGSI [27] service without code re-
engineering. This system is similar to SoapLab in the sense
that the process of actually ’wrapping’ the application as a
grid service is not truly automated and the grid service can-
not be deployed on a remote host.

[19] describes an end-to-end system for integrating
multi-scale bio-medical applications using a service ori-
ented architecture. It uses Apache Axis [3] to wrap the ap-
plications as web services and uses Tomcat as the hosting
container for these web services.

5. Conclusions

GFac can create application service instances just-in-
time during workflow execution. It also overcomes the limi-
tations of currently available tools to “wrap” command-line
applications as application services as follows.

� GFac creates application service instances not by in-
stantiating the application service binary but by in-
stantiating a generic service binary and “configuring”
it just-in-time. This is a novel way of “wrapping”
a command-line application as an application service
and is done just-in-time and in a manner that is com-
pletely transparent to the user. There is no need to
download, generate or compile any application service
code. It is simple and cost-effective as it eliminates the
need to maintain and support the source code and bi-
naries for a large number of application services in a
scientific community.

� The total time to create an application service instance
is small and is acceptable for creating most application
services just-in-time during a workflow execution.

� GFac has the ability to create the application service
instance remotely on any host on a grid without the re-
quirement that the host must have a web or grid service
container. This avoids the hassles associated with hot-
deployment and hot-update of services in a web or grid
services container.

References

[1] Linked Environments for Atmospheric Discovery.
http://www.lead.ou.edu/.

[2] Security Assertion Markup Language (SAML) v1.1.
http://www.oasis-open.org/specs/index.php#samlv1.1.

[3] Web Services - Axis. http://ws.apache.org/axis.
[4] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes,

I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao,
L. Zhu, and X. Zhu. From virtualized resources to virtual
computing grids: the In-VIGO system. Future Generation
Computer Systems, 21(6), April 2005.

[5] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson,
A. Geller, S. Graham, D. Hull, G. Kakivaya, A. Lewis,
B. Lovering, M. Mihic, P. Niblett, D. Orchard, J. Saiyed,
S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk,
B. Smith, S. Weerawarana, and D. Wortendyke.
Web Services Eventing (WS-Eventing), august 2004.



ftp://www6.software.ibm.com/software/developer/library/ws-
eventing/WS-Eventing.pdf.

[6] D. Box, E. Christensen, F. Curbera, D. Ferguson,
J. Frey, M. Hadley, C. Kaler, D. Langworthy, F. Ley-
mann, B. Lovering, S. Lucco, S. Millet, N. Mukhi,
M. Nottingham, D. Orchard, J. Shewchuk, E. Sin-
dambiwe, T. Storey, S. Weerawarana, and S. Winkler.
Web Services Addressing (WS-Addressing), August 2004.
http://www.w3.org/Submission/ws-addressing/.

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL),
Version 1.1, March 2000. http://www.w3.org/TR/wsdl.

[8] D. Churches, G. Gombas, A. Harrison, J. Maassen,
C. Robinson, M. Shields, I. Taylor, and I. Wang. Program-
ming Scientific and Distributed Workflow with Triana Ser-
vices. Concurrency and Computation: Pract. and Exper.,
Special Issue: Scientific Workflows, 2006. To be published.

[9] T. Delaitre, A.Goyeneche, P. Kacsuk, T.Kiss, G. Terstyan-
szky, and S. Winter. GEMLCA: Grid Execution Manage-
ment for Legacy Code Architecture Design. In Proceedings
of 30th EUROMICRO Conference, August 2004.

[10] K. K. D. et al. Linked environments for atmospheric discov-
ery (LEAD): A cyberinfrastructure for mesoscale meteorol-
ogy research and education. In 20th Conf. on Interactive
Info. Processing Systems for Meteorology, Oceanography,
and Hydrology, January 2004.

[11] L. Fang, D. Gannon, and F. Siebenlist. XPOLA: An Extensi-
ble Capability-Based Authorization Infrastructure for Grids.
In Proceedings of the 4th Annual PKI R&D Workshop: Mul-
tiple Paths to Trust, 2005.

[12] D. Gannon, R. Ananthakrishnan, S. Krishnan, M. Govin-
daraju, L. Ramakrishnan, and A. Slominski. chapter 9, Grid
Web Services and Application Factories. John Wiley and
Sons, 2003.

[13] D. Gannon, B. Plale, M. Christie, L. Fang, Y. Huang,
S. Jensen, G. Kandaswamy, S. Marru, S. L. Pallickara,
S. Shirasuna, Y. Simmhan, A. Slominski, and Y. Sun. Ser-
vice Oriented Architectures for Science Gateways on Grid
Systems. In B. Benatallah, F. Casati, and P. Traverso, ed-
itors, Proceedings of International Conference on Service
Oriented Computing, pages 21–32. Springer-Verlag Berlin
Heidelberg, 2005.

[14] S. Graham, P. Niblett, D. Chappell, A. Lewis,
N. Nagaratnam, J. Parikh, S. Patil, S. Samdarshi,
I. Sedukhin, D. Snelling, S. Tuecke, W. Vam-
benepe, and B. Weihl. Web Services Base No-
tification (WS-Base Notification), Version 1.0.
ftp://www6.software.ibm.com/software/developer/library/ws-
notification/WS-BaseN.pdf.

[15] Z. Guan, V. Velusamy, and P. Bangalore. GridDeploy: A
Toolkit for Deploying Applications as Grid Services. In Pro-
ceedings of International Conference on Information Tech-
nology: Coding and Computing (ITCC’05), volume 2, pages
764–765, 2005.

[16] M. Jette and M. Grondona. SLURM: Simple Linux Utility
for Resource Management. In Proceedings of ClusterWorld
Conference and Expo, June 2003.

[17] P. Kacsuk, A. Goyeneche, T. Delaitre, T. Kiss, Z. Farkas,
and T. Boczko. High-level Grid Application Environment

to Use Legacy Codes as OGSA Grid Services. In Proceed-
ings of the 5th IEEE/ACM International Workshop on Grid
Computing, November 2004.

[18] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru,
and D. Gannon. Building web services for scientific grid
applications. IBM Journal of Research and Development,
50(2/3):249–260, 2006.

[19] S. Krishnan, K. Baldridge, J. Greenberg, B. Stearn, and
K. Bhatia. An End-to-End Web Services-Based Infrastruc-
ture for Biomedical Applications. In Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing,
2005.

[20] B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao. Scientific
Workflow Management and the Kepler System. Concur-
rency and Computation: Pract. and Exper., Special Issue:
Scientific Workflows, 2006. To be published.

[21] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp,
W. Skamarock, and W. Wang. The Weather Research and
Forecast Model: Software Architecture and Performance. In
Proceedings of the 11th ECMWF Workshop on the Use of
High Performance Computing in Meteorology, 2004.

[22] T. Oinn, M. Greenwood, M. Addis, J. Ferris, K. Glover,
C. Goble, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, A. Wipat, and C. Wroe. Taverna: Lessons in Cre-
ating a Workflow Environment for the Life Sciences. Con-
currency and Computation: Pract. and Exper., Special Is-
sue: Scientific Workflows, 2006. To be published.

[23] B. Plale, D. Gannon, Y. Huang, G. Kandaswamy, S. Pal-
lickara, and A. Slominski. Cooperating services for data
driven computational experimentation. Computing in sci-
ence and engineering, 7(5):34–43, 2005.

[24] V. Sanjeepan, A. Matsunaga, L. Zhu, H. Lam, and J. A.
Fortes. A Service-Oriented, Scalable Approach to Grid-
Enabling of Legacy Scientific Applications. In Proceedings
of 2005 International Conference on Web Services (ICWS-
2005), pages 553–560, July 2005.

[25] M. Senger, P. Rice, and T. Oinn. Soaplab: A Unified Sesame
Door to Analysis Tools. In Proceedings of the UK e-Science
All Hands Meeting, 2003.

[26] A. Slominsky and L. Fang. WS/XSUL2: Web
and XML Services Utility Library (Version 2).
http://www.extreme.indiana.edu/xgws/xsul/.

[27] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman, T. Maquire, T. Sandholm, D. Snelling, and
P. Vanderbilt. Open Grid Services Infrastructure (OGSI)
Version 1.0. http://www-unix.globus.org/toolkit/draft-ggf-
ogsi-gridservice-33 2003-06-27.pdf.


