
A Hybrid XML-Relational Grid Metadata Catalog

Scott Jensen, Beth Plale, Sangmi Lee Pallickara, and Yiming Sun
Department of Computer Science, Indiana University
{scjensen, plale, leesangm, yimsun} @cs.indiana.edu

Abstract

The ability to manage metadata is a critical
requirement of the grid, but scientists have not been
given the tools needed to catalog experimental data
based on complex metadata attributes. Our research
has shown that the specific characteristics of metadata
catalogs require a different approach than that used
for general queries over XML data. This paper
presents a hybrid approach to storing XML in a
relational database that exploits the specific
characteristics of a metadata catalog.

Index Terms — Metadata, Cyberinfrastructure,
Grid Computing, XML, Databases, LEAD.

1. Introduction

The scientific community has identified the need
to develop cross-domain data catalogs that can be
queried based on rich sets of metadata so research can
be leveraged to the greatest extent possible. The NSF’s
Blue-Ribbon Advisory Panel on Cyberinfrastructure
noted that “multidisciplinary, well-curated federated
collections of data” should be part of the
infrastructure, and that “A significant need exists in
many disciplines for long-term, distributed, and stable
data and metadata repositories that institutionalize
community data holdings”[1]. In the UK, the Central
Laboratory of Research Councils (CLRC) is bringing
together data from multiple science disciplines with an
aim of providing a single cross-discipline method for
browsing and searching metadata [2].

Back in 1992, the Federal Geographic Data
Committee (FGDC) started working on a cross-
discipline metadata standard for describing spatial data
products [3], with the eventual development of a
geospatial data clearinghouse as part of the National
Spatial Data Infrastructure (NSDI). While
clearinghouse networks such as the NSDI

 This work supported under NSF grants ATM-0331480 and

EIA-0202048.

Clearinghouse provide a means to catalog metadata for
sharing publicly available datasets, the opportunity to
gather the most detailed and accurate metadata to
describe both the source data and experimental results
is when the data or experiment results are first
generated or augmented with additional insights
generated during the scientific process. For this
metadata to be captured, the cyberinfrastructure must
include a personalized metadata catalog that can be
used to both capture the metadata as it is generated
and provide the ability to catalog and query on-going
experiments; while also being able to ensure the
privacy of unpublished data and results. As with
metadata catalogs such as the NSDI or CLRC, grid
environments capture and exchange metadata using
one or more XML schemas common to their
community [4][5].

Since metadata in a grid environment is
exchanged in an XML format, a metadata catalog must
be able to ingest metadata in an XML format and
respond to queries using the schema of its grid
community. Although a native XML database such as
Xindice [6] may seem to be an obvious choice for the
backend store, prior work by our group showed
Xindice to be far inferior to a relational database in
terms of throughput [7]. In a schema aware
environment such as a grid, current research on storing
XML in a relational database has focused on a lossless
shredding of XML into relational tables based on an
inlining approach. Our research on personal metadata
catalogs in the Linked Environments for Atmospheric
Discovery (LEAD) [9] project has identified
characteristics of a metadata catalog that suggest a
modified architecture for storing and querying
metadata as XML in a relational database.

Although scientists have a number of
requirements related to the ability to manage data in a
grid environment [8][9], not all of these directly
impact the approach used to store and query metadata.
In this paper, we show that the following three
characteristics are key to the architecture of a metadata
catalog and taken together suggest an alternate storage
approach:

• Queries Over Metadata Attributes: Since metadata
is “data about data”, a metadata catalog is used to
store properties of the data scientists have used in
experiments and the products generated. In
myLEAD these properties are referred to as
metadata attributes. When querying, scientists are
looking for objects (files or aggregations) that have
a certain range of values for specific metadata
attributes. This differs from the prior research that
has focused on being able to respond to arbitrary
queries over XML stored in a RDBMS.

• Unordered Queries Generating Ordered XML
Results: In the metadata catalog, scientists are not
particularly concerned with the order or structure of
the XML documents, but query responses require
reconstructing the original schema-based
documents.

• Validated Dynamic Metadata Attributes: When
XML is shredded for storage in relational tables, the
relevant schemas are usually used to define the
structure of the tables and the relations between
tables. However, one of the key requirements of a
metadata catalog is that scientists need the ability to
define new properties of the data products that will
be described by the metadata. For metadata queries
to be meaningful, scientists must be able to define
the structure of these properties and validate the
data – but without changing the XML schema used
to communicate in the grid environment. The
schema alone does not validate the metadata being
communicated in the XML documents being stored.

The contribution of this research is a new hybrid
XML/Relational approach to shredding, storing, and
querying scientific metadata in a grid environment that
leverages the distinct characteristics of metadata
storage. Due to the focus of a metadata catalog on
locating objects meeting specified criteria, the
shredding of XML data for querying can be separated
from the storage of metadata attributes as Character
Large Objects (CLOBs) for use in reconstructing
XML documents for query responses. This eliminates
the need for achieving lossless shredding from XML
since the shredded data is no longer needed to
construct the XML documents returned in query
responses. Although our research has been in the
context of the LEAD grid, this approach generalizes to
metadata in other scientific grid environments as well.

This paper is organized as follows. Section 2
provides an overview of the hybrid approach we
propose. Sections 3, 4, and 5 discuss shredding XML,
querying, and building the query response using a
hybrid approach. Section 6 discusses related work, and
we conclude with future research in Section 7.

2. A Hybrid Approach

When storing XML data in a relational database
there are two main approaches – storing as an XML
string in a CLOB, or extracting individual data items
by shredding the XML into relational tables
[10][14][16][17][25]. For metadata catalogs, we
advocate a hybrid approach. In a hybrid approach, the
metadata is shredded into both CLOBs and relational
tables as illustrated in Figure 1.

Schema-Based
XML Metadata

XML
Shredding

Shredded
Attributes

For Queries

Shredded
CLOBs

by Attribute

Query
on Attributes

Build Response

Object IDs

CLOBs

Schema
Structure

Ordering

XML
Response

Query on
Attributes

Metadata
Attribute
Defiitions

Fig. 1 Hybrid Approach

Under the hybrid approach, the XML schema
used to communicate the metadata is first partitioned
into metadata attributes based on the set of rules listed
below; with each metadata attribute representing a
single concept contained in the schema. To allow for
complex concepts, each metadata attribute can contain
multiple sub-attributes - without limit as to the nesting
of sub-attributes. Within both metadata attributes and
sub-attributes, metadata elements define the actual
data values contained within the attributes. The
metadata elements are always leaf nodes in the schema
and the metadata attributes and sub-attributes are
always interior nodes in the schema (except for those
nodes that are both a metadata attribute and a metadata
element). As an illustration of the hybrid approach,
Figure 2 shows a portion of the LEAD schema with
each metadata attribute or sub-attribute bolded and
each metadata element italicized.

The following rules apply in determining which
elements in the schema are defined as metadata
attributes:
• Metadata attributes should define a concept. As an

example, in Figure 2 the “status” metadata attribute
contains two metadata elements: progress and
update. Together these two elements define the
concept of document status.

• If a schema element allows for multiple instances,
then it must be contained within a metadata
attribute - it cannot have a metadata attribute start
below it (except for sub-attributes). If multiple
instances are allowed for an element in the schema,
then that element most likely defines a concept. In
the example schema, the “theme” element is a
metadata attribute that defines the concept of a
theme keyword (or set of related keywords).

• Any element in the schema that has attribute nodes
(XML attributes) must either be a metadata attribute
or be contained within a metadata attribute. The
LEAD schema does not contain any XML attribute
nodes, but attribute nodes can be defined as
metadata attribute/elements.

• Any recurrence in the schema must be contained
within a metadata attribute. In Figure 2, the “attr”
element allows for recursion in that it can contain
child attr elements. This recursion is contained
within the detailed element which is defined as a
metadata attribute.

• Every leaf element in the schema must be within a
metadata attribute, but each metadata attribute does
not need to be queryable. Those metadata attributes
that a scientist may want to use as criteria in a query
are known as queryable metadata attributes.

After the elements in the schema that are metadata
attributes have been identified, an ordering of the
schema nodes is created. As discussed in [19], a total
ordering of the nodes in each document is required for
reconstructing an ordered document in response to a
query. Three possibilities proposed in [19] are global
ordering (using a pre-order depth-first traversal), local
ordering (children of an element are numbered
independent of the children of other elements), and
Dewey ordering based on the Dewey decimal
classification approach. However, since the hybrid

approach stores a CLOB for each metadata attribute
during the shredding process, only those elements that
are metadata attributes or higher in the schema need to
be ordered – the elements within the CLOB are
inherently in their original order. Since all of the
elements in the schema that have recursion or a
potential cardinality greater than one are contained
within a metadata attribute, the ordering can be done
once for the schema instead of having to be created for
each document. In Figure 2, this node ordering is
displayed as circled numbers next to each node.

The most efficient ordering of nodes would be
same-sibling order as defined in [19], but as the
authors note, it does not provide a total ordering of the
nodes in the document. However, since the hybrid
approach uses a global ordering based on the schema,
this can be combined with a same-sibling ordering to
create a total ordering for those metadata attributes
which allow for multiple instances (such as the theme
element in Figure 2). A table in the catalog contains
this global ordering based on the schema – tracking
each node’s order, tag, and last child (which for
metadata attribute nodes is the same as the node
order). The catalog also contains tables with the
definition of each metadata attribute and metadata
element. For each metadata attribute the definition
includes a unique internal ID, the schema order, and
parent metadata attribute ID (in the case of sub-
attributes). Each metadata element is also assigned a
unique ID and the catalog tracks the associated
metadata attribute and data type. Each metadata
element definition is associated with a single metadata
attribute definition.

Metadata attributes such as the “status” element in
Figure 2 are defined based on the structure of the
schema and we refer to these as structural metadata
attributes. However, one of the three distinct

LEADresource

data

idinfo

status

citation

timeperd

keywords

update

progress

theme

place

themekt

themekey

placekt

placekey

stratum
stratkt

stratkey

temporal
tempkt

tempkey

origin

pubdate

title

geospatial

spdom
dsgpoly

vertdom

eainfo

detailed

enttyp

enttypl

enttypds

enttypd

attr
attrlabl

attrdef
attrdomv

attr

attrv

overview

overview
eaover

eadetcit

useconst

accconst

attrdefs

bounding
spattemp

Fig. 2 Partial LEAD Schema

1

2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

23

resourceID

characteristics of a metadata catalog is the need to
provide for validated dynamic metadata attributes.
Such attributes are not directly based on the structure
of the schema, and are the cause of recursion in the
schema used to communicate metadata in a grid
environment. In Figure 2, the subtree rooted at the
detailed element addresses the need for dynamic
metadata attributes.

3. Shredding Using the Hybrid Approach

Figure 3 contains an example XML fragment
based on the schema shown in Figure 2.
<Leadresource>
 <resourceID></resourceID>
 <data>
 <idinfo> . . .
 <keywords>
 <theme>
 <themekt>CF NetCDF</themekt>
 <themekey>convective_precipitation_amount</themekey>
 <themekey>convective_precipitation_flux</themekey>
 </theme>
 <theme>
 <themekt>CF NetCDF</themekt>
 <themekey>air_pressure_at_cloud_base</themekey>
 </theme>
 </keywords>
 </idinfo>
 <geospatial> . . .
 <eainfo>
 <detailed>
 <enttyp>
 <enttypl>grid</enttypl>
 <enttypds>ARPS</enttypds>
 </enttyp>
 <attr>
 <attrlabl>grid-stretching</attrlabl>
 <attrdefs>ARPS</attrdefs>
 <attr>
 <attrlabl>dzmin</attrlabl>
 <attrdefs>ARPS</attrdefs>
 <attrv>100.000</attrv>
 </attr>
 <attr>
 <attrlabl>reference-height</attrlabl>
 <attrdefs>ARPS</attrdefs>
 <attrv>0</attrv>
 </attr>
 </attr>
 <attr>
 <attrlabl>dx</attrlabl>
 <attrdefs>ARPS</attrdefs>
 <attrv>1000.000</attrv>
 </attr>
 </detailed>
 </eainfo>
 </geospatial>
 <data>
<Leadresource>

Fig. 3 Metadata Document

As illustrated in Figure 1, each element in the
document that represents a metadata attribute is stored
as a CLOB in the catalog and also shredded into
queryable metadata attributes and elements. For
example, the two theme elements in Figure 3 are
structural metadata attributes and each of the theme
metadata attributes (bolded) would be stored as a
CLOB along with their global node ordering (10) and
their sequence IDs based on same-sibling ordering (1
and 2). Each of the theme metadata attributes would
also be shredded, and the metadata attribute definition
is determined based on the tag for that element.
Likewise, the metadata element definitions are

determined based on their tag and their parent
metadata attribute. For each metadata attribute and
element the following data is stored:
Metadata Attribute:
• Object ID – the internal ID assigned to the object.
• Attribute ID – the internal ID assigned to the

definition of the metadata attribute.
• Sequence ID – same sibling ordering.
• CLOB Sequence – same sibling ordering for CLOB.
Metadata Element:
• Object ID, Attribute ID, and Sequence ID – Primary

key for parent metadata attribute.
• Element ID – the internal ID assigned to the

definition of the metadata element.
• Element Sequence – local order within the attribute.
• Element Value – string or other data type.

The theme metadata attributes are structural
attributes defined by the schema, whereas the detail
element in Figure 3 illustrates a dynamic metadata
attribute. Discussions early on in the LEAD project
identified the need for a metadata catalog to be able to
capture complex attributes that may evolve with the
continued refinement of the weather forecasting
models used in LEAD. For example, both the
Advanced Regional Prediction System (ARPS) [12]
and Weather Research & Forecasting (WRF) [13]
models use Fortran namelist files containing detailed
model parameters which cannot be built into the
structure of the schema because scientists must be able
to define new parameters as they continue to enhance
the models or create new models. In addition, the
schema would grow to an unmanageable size if it had
to accommodate all possible parameters. The need to
address model parameters, and the general need to
provide a means to define new complex metadata
attributes, requires metadata catalogs to accommodate
dynamic metadata attributes. The schema in Figure 2
addresses dynamic metadata attributes through the
detailed element.

When the detail element is shredded, the metadata
attribute definition is determined based on the name
and source of the metadata attribute, but in the case of
dynamic metadata attributes the name and source are
based not on the element tag but instead on the values
contained in the enttypl and enttypds elements, (which
contain “grid” and “ARPS” respectively). Within the
detailed element there are two attr child elements
which based on the schema in Figure 2 can contain
either attrv elements, (which indicates a metadata
element) or attr elements (which indicates a sub-
attribute). In Figure 3, the first attr element is a sub-
attribute and the second is a metadata element. In the
case of both sub-attributes and metadata elements, the
name and source are determined based on the attrlabl

and attrdefs elements. In shredding the structural
metadata attributes, the element tag was used for the
name, but the source was not necessary. Having both a
name and source allows different scientific models
such as the ARPS and WRF models to have metadata
attributes with the same name based on their
respective namelist files, but which may have different
meaning or content in their respective models. The
shredding validates the name and source of each
dynamic metadata attribute with the definitions stored
in the catalog. Any element in a document that does
not match a defined metadata attribute is still stored as
a CLOB, but the data is not shredded into the tables
used to support queries. By validating dynamic
metadata attributes on insert, the catalog provides a
consistent, but dynamic set of definitions for query
purposes that could also be connected to an ontology
for enhanced search capabilities. Additional metadata
attributes can be defined at both an administrator or
user level, with those defined at the user level kept
private.

In addition to shredding the metadata attributes
and elements into their respective tables, for any
metadata attribute that contains sub-attributes, (such as
the “grid stretching” sub-attribute within the dynamic
“grid” metadata attribute in Figure 3) the relationship
between the sub-attribute and attribute is stored in a
table which maintains an inverted list of the
relationship between a sub-attribute and any parent
metadata attribute as well as intervening sub-
attributes.

In contrast to handling recursion in general XML
documents, in a metadata catalog recursion is used to
define dynamic metadata attributes. Although the
structure would vary between schemas, the general
idea is to allow for the definition of metadata
properties not envisioned or captured in the schema
structure. The hybrid approach to cataloging metadata
benefits from this distinction because the recurrence
“disappears” by handling dynamic metadata attributes
based the name and source instead of the recursive
structure of the document. A more general XML-
Relational approach cannot take advantage of this
distinction.

4. Querying Using a Hybrid Approach

Research on storing XML in an RDBMS has
focused on converting queries written in XPath or
XQuery into SQL and running them against a
relational database. However, queries over a metadata
catalog are looking for objects in what we refer to as
unordered queries over metadata attributes. The
purpose of a metadata query is to return those
documents that contain metadata attributes meeting

the criteria specified. We use the term “unordered
queries” because only the values within the metadata
attributes are important to the query. As an example, a
scientist looking for all objects with horizontal grid
spacing = 1000 meters that also have grid stretching
with a minimum vertical spacing = 100 meters could
issue the following XQuery FLWOR expression
against the XML schema:
for $r in fn:doc("catalog.xml")/LEADresource
let $g :=
$r/data/geospatial/eainfo/detailed/enttyp
 [enttypl eq “grid” and enttypds eq “ARPS”]
let $d := $g/../attr[attrlabl eq “dx”
 and attrdefs eq “ARPS” and attrv eq 1000]
let $z := $g/../attr[attrlabl eq
 “grid-stretching”
 and attrdefs eq “ARPS”]/attr/[attrlabl eq
 “dzmin”
 and attrdefs eq “ARPS” and attrv eq 100]
return
 if (fn:exists($d) and fn:exists($z)) then
 $r
 else ()

In a metadata catalog, the path to the dynamic
metadata attribute contained in the detail element
(grid) is immaterial, the query is over metadata
attributes and the question the scientist wants
answered is “Which files contain the metadata
attributes of interest to me?” The myLEAD metadata
catalog has a simple Java API that allows users to
construct metadata attribute queries:
MyFile fileQry = new MyFile ();
MyAttr gridAttr = new MyAttr(“grid”, “ARPS”);
gridAttr.addElement(“dx”,“ARPS”,1000,MYEQUAL)
;
MyAttr stAttr =
 new MyAttr(“grid-stretching”, “ARPS”);
stAttr.addElement(“dzmin”,100, MYEQUAL);
gridAttr.addAttribute (stAttr);
fileQry.addAttribute (gridAttr);

The MyFile instance created in these few lines is
then sent as the criteria for the query method. From a
user’s perspective, they would not even see this since
there is a GUI query tool available that prompts the
user with the available attributes and elements and
allows them to build a query graphically.

Since queries over the catalog are searching for
items that contain certain metadata attributes, queries
are first shredded to determine the number of metadata
attribute criteria that must be met to satisfy the query.
In our simple example, there is only the metadata
attribute criteria named “grid”, which in turn has one
sub-attribute – “grid-stretching”. After determining the
required metadata attribute and element counts, the
metadata criteria are inserted into temporary tables.
Figure 4 illustrates the query process that is then used
to determine which objects in the metadata catalog
meet the query criteria.

This approach is based in part on inverted lists
that track the relationship of sub-attributes to parent
attributes, which allows the query to avoid recursion.
If the attributes specified in the query do not have
multiple instances within a single object in the data, or
if there are not sub-attributes in the query criteria, then
the query can be significantly simplified, so the
physical implementation may differ – including
possible partitioning of the data. The result of this
query process is the internal IDs of the set of objects
meeting the query criteria – the query response is then
built from these IDs as described in the next section.

5. Query Response - the Hybrid Approach

In a metadata catalog, the query result as
discussed above is the set of IDs for those objects in
the catalog that match the metadata attribute criteria
specified in the query. When the document was
originally shredded, and as additional metadata was
added later, CLOBs were stored for each metadata
attribute along with the object ID, the position in the
document based on the global ordering of the schema,
and a sequence ID for multiple instances of the same
metadata attribute. In order to build the query response
as shown earlier in Figure 1, the CLOBs are retrieved
based on the set of object IDs generated by the query.
The contents of the CLOBs for each metadata attribute
are inherently ordered, but to build the response, we

also need to add the element tags for all of the higher
nodes in the document.

An inverted list is maintained for all of the nodes
in the global ordering that maps each node in the
ordering to those higher level nodes in the schema
which are ancestors. This inverted list is joined with
the table of CLOBs to determine the distinct set of
ancestor nodes that are required for each object in the
response (since many of the metadata attributes are
optional, not all of the ancestor nodes are required).
The set of required ancestor order IDs is joined with
the table containing the global ordering to create all of
the opening and closing tags for the ancestor nodes.
Since the global order is built once and stored in a
table in the catalog, the order of the last child element
is also maintained in that table – allowing the opening
and closing tags to both be added using set-based
query operations instead of having to use an external
tagger. Although the inverted list must be joined with
the table containing the metadata CLOBs, (to
determine the required ancestors) the CLOBs
themselves are not needed at this point so the join can
utilize the index without accessing the CLOBs until
needed in the final join.

This approach is possible only because schema
elements with cardinality greater than one as well as
recursive elements are all contained within metadata
attributes – allowing us to define the global ordering at
the schema level. If the global ordering was done at
the document level as in [19], then the inverted list

JOIN
Element Data

Inv erted List of Sub-Attributes
Inv erted List of Query Sub-Attributes

SELECT
The distinct pairs of parent attributes in

the data and the query
by query element

JOIN
On Element and Attribute Def inition

WHERE
Element Meet Query Criteria

GROUP BY
Data Attribute & Query Element

Result - Object IDs To Build Response
Get the object IDs where the count f rom this last join has the

required number of attributes f or the object.

Query Attribute Criteria Includes:
1. a count of the number of direct child

elements each attribute must have.
(possibly none)

2. a count of the number of elements
required in the attribute's subtree.

3. for top attributes, The number of
attributes required.

Metadata Element Data

Query Element Criteria

Inv erted List of
Sub-Attributes in

the Data

Inv erted List of
Query Sub-Attributes

Query
Attribute
Criteria

SELECT
Data Attributes

WHERE
They contain the required

number of direct elements
that match the criteria

SELECT
Data Attributes

WHERE
They contain the required number of

direct and indirect
elements that match the query

conditions

Parent Elements Elements

JOIN
Inv erted List of Sub-Attributes

Attributes Meeting Direct Element Criteria
Attributes Meeting Indirect Element Criteria

SELECT
Top Attribute ID

Query Attribute ID
Query Parent Attribute ID

Direct Element Count * Distance in Hierarchy
GROUP BY

Attribute and Parent Attribute
f or Each Top Attirbute

Indirect

Required Element Counts

Fig. 4 Object Query Process

Elements

1
1

JOIN
Query Attributes
Inv erted List of

Query Sub-Attributes
SELECT

Query attribute and each parent with the number
of direct elements f or the attribute multiplied by

the number of lev els between them

JOIN
Query Attribute Def initions
(required attribute counts)

Query Attributes and Parent Attributes
(required element count adjusted by level)

Data Attributes and Parent Attributes
(available element count adjusted by level)

SELECT
Object ID and top query attribute ID

WHERE
Based on av ailable element counts, the top attribute in the

query has met the required query attribute criteria

Av ailable
Elements

B
ui

ld
 R

es
po

ns
e

Start Query

Direct

mapping CLOBs to their required ancestors would not
be possible since the mapping would be different for
every document.

The resulting set of required tags for higher level
nodes is joined with the CLOB table for the final
result returned to the myLEAD server. Since the
global ordering allows all of the tags to be determined
using set-based queries, no final tagging is needed at
the server as in [24] – the results returned by the
database are already tagged and can be returned to the
client.

6. Related Work

There has been considerable research regarding
storing XML data in an RDBMS with the aim of
allowing the data to be queried using XPath or
XQuery. Since prior work has not focused specifically
on cataloging metadata, it could not exploit any
characteristics specific to metadata catalogs. When an
XML schema is available, research has focused on
using an approach of shredding XML into relational
tables using variations of a technique know as inlining
[14][15][16][10]. Earlier research on shredding using a
schema-less approach had often used the edge-table
approach [10][17][16][18].

Under the inlining approach, elements are stored
in the same relational table to the extent that the
schema does not allow for cardinality greater than one.
Where multiple instances of an element are allowed,
the subtree for that element is split into a separate
table. In comparison to the edge-table approach where
all edges are stored in the same table, inlining reduces
the number of joins required [14]. However, this
benefit would be significantly diminished for metadata
catalogs since dynamic metadata attributes would be
split into numerous tables due to the cardinality issue.
The hybrid approach we present here would at first
seem to be more similar to the edge-table approach.
That approach views the XML document as a directed
graph, and each tuple in the edge table represents
either a connection between two nodes in the graph, or
in the case of a leaf node, either the node value [16] or
a pointer to separate value tables based on the data
type [17]. However, as shown earlier, since queries
over a metadata catalog focus on metadata attributes,
we do not need to consider the full path, and through
inverted lists can avoid the self-joins that hinder the
edge-table approach.

An issue raised in [20] regarding inlining is that it
is an unordered data model – so when reconstructing
XML documents the system cannot ensure that the
elements are in the original order. In a metadata
catalog this could be problematic – such as in the
LEAD schema where the lineage section tracks the

process steps used to create a product. In [19] this was
addressed through three approaches to creating a total
order. In the hybrid approach we also have a total
ordering of the elements, but through a global ordering
based on the schema we avoid the update costs of
maintaining a total ordering by document [19].

Other research has lead to systems that either
allow for a hybrid approach or allow for the option of
using either approach. IBM’s DB2 XML Extender
allows XML data to be saved as a CLOB in an “XML
Column” or shredded into a set of relational tables
known as an “XML Collection” [21]. As noted in [21],
a hybrid approach that uses a combination of both
storage methods may be desirable since the CLOB
approach allows the document to be retrieved in its
original form, while the shredded approach provides
faster results. The default storage approach in Oracle’s
implementation of SQL/XML in version 10g of their
product is to use a CLOB, but if a schema is available,
the document can be shredded using an object-
relational approach [11][22]. In both the IBM and
Oracle implementations, the entire document is saved
as a single CLOB. In contrast, the hybrid approach
used in myLEAD is closer to that used in [15] where
CLOBs are stored for the subtrees rooted at every
element in the XML document (except the root and
leaf elements). In myLEAD, CLOBs are stored for
each element identified as a metadata attribute, and
since there can only be a single metadata attribute on
any path from the root of a document to a leaf node,
our hybrid approach would not face the issue in [15]
of possibly having high space overhead due to storing
multiple CLOBs on the same path.

7. Conclusion and Future Work

Although our research in the LEAD project has
focused on the requirements of the meteorological
community, we believe many of these same issues
apply to other scientific domains that need to manage
significant volumes of data. Metadata management
continues to be a pressing issue in other scientific
domains, with a recent article mentioning metadata as
one of the big challenges facing the Large Hadron
Collider project [23]. Scientific metadata catalogs are
likely to use different schemas tailored to their
domain, but many of the issues in querying the catalog
as well as a structure based on metadata attributes will
be similar. The approach used in myLEAD can be
used to create a framework for metadata catalogs that
would be based on an annotated schema to indicate
which schema elements are structural or dynamic
metadata attributes and elements.

In this paper we have shown how the distinct
characteristics of metadata storage can be exploited

using the hybrid approach as an alternative to inlining.
Future work will focus on quantifying the benefit of
the hybrid approach as applied to managing metadata.

Although not discussed in detail due to space
limitations, one of the distinguishing features of
myLEAD is its ability to perform complex context
queries. However, challenges exist in presenting this
query capability to users in an interface that is intuitive
and easy to use. The current myLEAD GUI interface
addresses queries from a containment viewpoint, but it
does not address searching for objects based on a
broader context. Presenting this capability to users
remains a challenge.

References

[1] D. Atkins, K. Droegemeier, S. Feldman, H. Garcia-
Molina, M. Klein, D. Messerschmitt, P. Messina, J. Ostriker,
and M. Wright. “Revolutionizing Science and Engineering
Through Cyberinfrastructure,” Report of the National
Science Foundation Blue-Ribbon Advisory Panel on
Cyberinfrastructure, January 2003.
[2] B. Mathews and S. Sufi, (ed. K. Kleese van Dam) The
CLRC Scientific Metadata Model, Version 1, DL TR 02001,
February 2001.
[3] Federal Geographic Data Committee, Content Standard
for Digital Geospatial Metadata Workbook Version 2.0,
Federal Geographic Data Committee. (5/1/2000).
[4] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J.
Ferris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Marvin,
P. Li, P. Lord, M. Pocock, M. Senger, R. Stevens, A. Wipat,
and C. Wroe. “Taverna: Lessons in creating a workflow
environment for the life sciences,” in Concurrency and
Computation: Practice and Experience, Pub. John Wiley &
Sons, Ltd. Published Online 13 Dec 2005.
[5] L. Cinquini. “Metadata development for the Earth
System Grid,” NIEeS Workshop, Cambridge (UK), Sept.
2002.
[6]Apache Xindice. http://xml.apache.org/xindice/.
[7] B. Plale, C. Jacobs, S. Jensen, Y. Liu, C. Moad, R. Parab,
and P. Vaidya. “Understanding Grid Resource Information
Management through a Synthetic Database
Benchmark/Workload,” 4th IEEE/ACM International
Symposium on Cluster Computing and the Grid
(CCGrid2004), April 2004.
[8] S. Lee, B. Plale, S. Jensen, and Y. Sun, “Structure,
sharing, and preservation of scientific experiment data”,
IEEE 3rd International Workshop on Challenges of Large
Applications in Distributed Environments, July 2005.
[9] B. Plale, D. Gannon, J. Alameda, B. Wilhelmson, S.
Hampton, A. Rossi, and K. Droegemeier, "Active
Management of Scientific Data," in IEEE Internet
Computing special issue on Internet Access to Scientific
Data, Vol. 9, No. 1, Jan/Feb 2005, pp. 27-34.
[10] D. Draper, “Mapping Between XML And Relational
Data,” in XQuery from the Experts, Howard Katz, Ed.
Boston: Addison Wesley 2004, pp. 309-352.

[11] Oracle Database 10g Release 2 XML DB Technical
Whitepaper, May 2005.
[12] The Advanced Regional Prediction System.
http://www.caps.ou.edu/ARPS.
[13] The Weather Research & Forecasting Model.
http://www.wrf-model.org.
[14] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J.
DeWitt, and J. F. Naughton, “Relational Databases for
Querying XML Documents: Limitations and Opportunities,”
in Proceedings of the 25th VLDB Concference, Edinburgh,
Scotland, 1999.
[15] A. Balmin and Y. Papakonstantinou, “Storing and
querying XML data using denormalized relational
databases,” The VLDB Journal, Vol. 14, Issue 1, pp. 30-49,
March 2005.
[16] J. Shanmugasundaram, E. J. Shekita, J. Kiernan, R.
Krishnamurthy, S. Viglas, J. F. Naughton, and I. Tatarinov,
“A General Technique for Querying XML Documents using
a Relational Database System.,” SIGMOD Record, Vol. 30,
No. 3, pp. 20-26, 2001.
[17] D. Florescu and D. Kossman, “Storing and Querying
XML Data Using an RDBMS,” Bulletin of the IEEE
Technical Committee on Data Engineering, vol. 22, no. 3,
pp. 27-34, 1999.
[18] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang, “The
Design and Performance Evaluation of Alternative XML
Storage Strategies,” ACM SIGMOD Record, Vol. 31, Issue
1, pp. 5-10, 2002.
[19] I. Tatarinov, E. Viglas, K. Beyer, J.
Shanmugasundaram, and E. Shekita, "Storing and Querying
Ordered XML Using a Relational Database System",
SIGMOD Conference, June 2002.
[20] M. Rys, D. D. Chamberlin, D. Florescu, “XML and
relational database management systems: the inside story,”
SIGMOD Conference, June 2005.
[21] J. Funderburk, S. Malaika, and B. Reinwald, “XML
programming with SQL/XML and XQuery,” IBM Systems
Journal, Vol. 41, No. 4, pp. 642-665, 2002.
[22] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W.
Warner, and V. Arora, “Towards an industrial strength
SQL/XML Infrastructure,” in Proceedings of the 21st
International Conference on Data Engineering, 2005.
 [23] P. Thibodeau, “Planet-Scale grid,” ComputerWorld,
October 10, 2005.
[24] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald, “Efficiently
Publishing Relational Data as XML Documents,” The VLDB
Journal, vol. 10, nos. 2-3, pp.133-154, 2001.
[25] R. Krishnamurthy, R. Kaushik, and J. F. Naughton,
“XML-to-SQL Query Translation Literature: The State of
the Art and Open Problems,” XML Symposium (XSym),
2003.

