
Vishwa: A reconfigurable P2P middleware for Grid Computations

M. Venkateswara Reddy, A. Vijay Srinivas, Tarun Gopinath, and D. Janakiram
Distributed & Object Systems Lab,

Dept. of Computer Science & Engg.
Indian Institute of Technology Madras, Chennai, India
�venkatm,avs,tarun,d.janakiram�@cs.iitm.ernet.in

http://dos.iitm.ac.in

Abstract

The abundant computing resources available on the In-
ternet has made grid computing over the Internet a viable
solution, to scientific problems. The dynamic nature of the
Internet necessitates dynamic reconfigurability of applica-
tions to handle failures and varying loads. Most of the ex-
isting grid solutions handle reconfigurability to a limited
extent. These systems lack appropriate support to handle
the failure of key-components, like coordinators, essential
for the computational model. We propose a two layered
peer-to-peer middleware, Vishwa, to handle reconfiguration
of the application in the face of failure and system load.
The two-layers, task management layer and reconfiguration
layer, are used in conjunction by the applications to adapt
and mask node failures. We show that our system is able
to handle the failures of the key-components of a computa-
tion model. This is demonstrated in the case studies of two
computational models, namely bag of tasks and connected
problems, with an appropriate example for each.

1 Introduction

Advancements in networking and cheaper computing
technology have enabled the Internet to be used for sharing
computation[1], instead of just document sharing. The dy-
namic nature of the Internet in terms of node/network fail-
ures poses challenges for large scale computing. Further,
the nodes are autonomic, implying that they may join or
leave the system dynamically. Thus, solutions for Internet
scale computing requires the use of middleware that ensures
dependability of applications in spite of resource/network
dynamics. Further, the middleware components themselves
must adapt to these dynamics (middleware reconfigurabil-
ity).

Dependability and reconfigurability becomes more cru-
cial in the case of applications that involve inter-task com-

munication. Scientific problems like finite difference, finite
element and finite volume methods require intermediate re-
sults to be exchanged, after every iteration. In such con-
nected problems, even if a single node fails or slows down,
the entire computation could fail or be stalled. Failures as
well as load dynamics dictate that applications need to be
dynamically adapted to improve the overall throughput.

Grid computing has emerged as a technology for re-
source sharing across virtual organizations [5]. However, to
the best knowledge of the authors, existing grid technolo-
gies provide only limited reconfigurability and scalability.
This is mainly due to the presence of dedicated and central-
ized components, like GRAM and MDS in the Globus [4]
toolkit and, autonomic problem manager and T-space server
in Optimal Grid [8]. Peer-to-peer systems provide solutions
to reconfigure from failures and the techniques used in these
systems are useful in building scalable systems.

Peer-to-Peer (P2P) systems such as Gnutella [7], Freenet
(http://freenet.sourceforge.net), Pastry [11] etc. provide re-
configurability and scalability and are classified into struc-
tured and unstructured networks. In unstructured P2P sys-
tems such as Gnutella and Freenet, the overlay is built in
an uncontrolled fashion. Such systems support arbitrary
queries to locate files. In contrast, structured P2P systems
assign static identifiers to peers and impose a overlay struc-
ture based on the node identifier. The overlay forms a dis-
tributed hash table, as in Chord [14] and pastry [11], to pro-
vide bounds on query times.

However, these file sharing P2P systems may not be di-
rectly usable for sharing compute resources on the Internet.
This is because these systems only provide a routing mech-
anism without any additional support for handling compu-
tations. Efforts, like [1, 3, 13] make use of such peer-to-peer
routing techniques to support computation over the Internet.
These systems support only limited reconfiguration. In or-
der to provide reconfiguration even in the case of failures of
certain key functional components, like coordinators, which
are essential to the computational models used over grids,

we propose a two-layered P2P architecture, Vishwa.
The remainder of the paper is organized as follows.

Section 2 explains the the middleware and its compo-
nents. Section 3 evaluates the system interms of two grid-
computational class of applications. Section 4 provides our
analysis of the scalability of Vishwa. Section 5 compares
our model with other similar efforts. Section 6 provides our
concluding remarks on this system.

2 Vishwa: A Two Layered P2P Middleware
for Grid Computing

��� ��� ���	
	� �
���	��
	

The two layered architecture at the heart of our middle-
ware, provides applications with the ability to progress, in-
spite of failures to nodes and key components. This section
describes the functionality of the two layers.

The task management layer provides proximity based
clustering of resources. In other words, the task manage-
ment layer groups the nodes of the system into proximity
based zones or clusters. Within a zone, nodes maintain
neighbour lists. The nodes add other nodes with higher
Horse Power Factor (HPF) as neighbours. The HPF [12]
is a measure of the capability of a node, in terms of compu-
tation, memory and communication. The neighbour list of
a node is altered dynamically, since HPF is a dynamic fac-
tor and failures may occur in the system. The task manage-
ment layer implements a HPF propagation algorithm, which
propagates dynamic HPF values across nodes. It also imple-
ments a heart beat algorithm to detect node failures. Both
the above algorithms result in the neighbour lists being up-
dated across nodes. Details of the HPF propagation algo-
rithm and the heart beat algorithm will be discussed in later
sections.

The reconfiguration layer enables Vishwa to handle
node/network failures. The information required to recover
from failures, such as task details (task id, executing node
etc.) and intermediate results are stored in this layer. Each
piece of information gets a quasi-random identifier and is
replicated in � other nodes of the system. The structured
P2P layer ensures that if even one of the � nodes is alive,
the information can be recovered in O(log(n)). The � repli-
cas are maintained in the same cluster/zone. This makes it
easier to maintain consistency among the �-replicas1.

Figure 1 gives the block diagram of components in each
node of the Vishwa middleware. The following sections
will bring out the details of these components, with the
bootstrapping component being explained in the next sec-
tion.

1This is one reason why proximity based zones are maintained. The
other reason is that computing elements can be clustered closer, resulting
in faster communication between the computing elements.

��� �
�� ��������������� ������
������

When a node joins the grid, it contacts the closest avail-
able zonal server2. The zonal server, when contacted by a
grid node for joining, returns a list of neighbours based on
proximity. The metric used for proximity is the hop count.
The joinee can choose its neighbours from among this list
based on the network delay. The zonal server also returns
a list of proximally closer zonal servers to the joinee. This
is to ensure that the joinee gets some neighbours from other
zones, in order that zones are not completely isolated from
each other.

The Distributed Hash Table (DHT) used by the reconfig-
uration layer, is also constructed at grid initialization time.
The algorithm for routing state 3 initialization is explained
in [9].

��� ��	
 ��	��� �����	��� �������
���! "�#�������

The user daemon component of Vishwa is responsible
for interaction between the end user and grid. The end user
submits the task and gives the task configuration details.
The user daemon process generates a task identifier by us-
ing the Id Generator module of Vishwa4. The Task-Id is
used to route the task to the node with the closest matching
Node-Id. This node acts as a coordinator for this task.

��$ %
�#�	� &����	
 �����	��� ���!
"��������

The node which has been chosen as the coordinator for
a particular task runs the problem manager component of
Vishwa. The problem manager component requests the
scheduler for the required number of donors (based on the
user input) by supplying it with the task type. The sched-
uler returns the list of donors along with their HPF values.
Based on the number of donors available and their HPF val-
ues, the problem manager splits the problem into chunks. It
sends data and sub-tasks to the dispatcher for dispatching to
appropriate grid nodes.

The problem manager also stores information about
tasks, such as Task-Id, submitting node, donors and sub-
task information in the reconfiguration layer. This informa-
tion is useful for reconfiguration in the case of failures.

2Zonal server generates node identifiers and enables grid nodes to know
each other and form clusters.

3Routing state of a node contains a leaf set and a routing table
4The task identifier contains the zone identifier, as explained the Route

Manager component

Problem
Dispatcher Problem

Acceptor

Problem Builder

User

Scheduler

Ping

Route Manager

Pipe Daemon

User Daemon

Zonal Server

Routing
Comm

Unstructured
Routing
Comm

Structured

Com. Module Dispatch HPF

Local Monitor

Component

Total Component

Sub Component

Fault−tolerant
Component

Initialization
Grid

Interaction

Database

Database

Database

Figure 1. Vishwa: Node Level Block Diagram

��' "�#(���!)*	���
 �����	��

The sub-task executor component in each node is respon-
sible for executing the given sub-task locally. It stores in-
formation about the sub-task, including sub-task identifier,
coordinator for the sub-task and task identifier in the recon-
figuration layer with the sub-task identifier as the key. In the
case of unconnected problems, it also sends a message con-
taining sub-task id and coordinator details to the monitor-
ing component of neighbour nodes in the task management
layer. This enables the detection of node failures. In the
case of connected problems, it sends the same message to
the monitoring component of application level neighbours.
Application level neighbours are those that communicate
intermediate results after each iteration in connected prob-
lems. It also checkpoints the intermediate results and stores
them in the reconfiguration layer with sub-task-id as key. It
is also responsible for sending the final results of the sub-
task to the coordinator.

��+ "�	���	
 �����	��

Vishwa uses a fully decentralized scheduler. The sched-
uler looks at the neighbour list to obtain the list of nodes
available within k-hops. This gives the list of nodes to
which tasks can be migrated from this node.

��� is primarily used to select candidate nodes to
which tasks can be migrated (nodes with high ��� can be
choosen). Nodes advertise the ��� values to neighbours
using the task management layer. This advertising of ���

value of a node cannot be adhoc. An adhoc dissemination

of information may result in a node with high ��� never
being utilized. To prevent this from happening following
heuristic is used.

1. advertise ��� value within a logical hop radius of �;
where � is either a prespecified system parameter or a
parameter that is calculated based on initial configura-
tion or overlay topology.

2. For each node � that is its logical neighbor, node �

checks if ���� is greater than ���� and if so, then
the ���� value is propagated to node �. Node � might
propagate it further to its neighbours with ��� val-
ues lesser than ����.

3. The above process is carried out till a maximum of �
logical hops.

The scheduler uses both sender-initiated and receiver-
initiated schemes for task migration. Sender-initiated im-
plies that if ��� of a node increases above or below
a given threshold, the ��� propagation algorithm is in-
voked. Receiver-initiated scheme implies that whenever a
node needs to send sub-tasks to nodes and it does not have
sufficient number of nodes in its neighbour list, it can use
an expanding ring algorithm to get the donors.

��, &�����
��� �����	��

The monitoring component of Vishwa is used by the
middleware to keep track of resource dynamics of the grid
and is completely transparent to applications. The main

functionalities of this component include monitoring load
conditions in its grid node and keeping track of the failure
of other related grid nodes. If the ��� value crosses lower
or upper thresholds, it informs the scheduler which in turn
propagates the ��� value to other nodes.

The monitoring component also monitors the failure of
related grid nodes. By related, we mean three kinds of
nodes: neighbour set nodes of the task management layer,
leaf set nodes5 in the reconfiguration layer, application level
neighbours (in case of connected problems). The monitor-
ing component uses a heartbeat algorithm to monitor related
nodes. It sends an application level ping message to re-
lated nodes. The nodes respond with their ��� value.
The monitoring component calculates the delay based on
the response time. If a node does not respond for a prede-
fined number of ping messages, the monitoring component
assumes that the node has failed. It informs the same to the
fault-tolerance component.

��- .���	 &����	

The main functionalities of the route manager is to
store/retrieve information from the reconfiguration layer
and to route messages. In the task management layer, the
scheduler or dispatcher (to send messages to neighbours)
interacts with the route manager to get the neighbour list of
a node. This list is updated by the monitoring component, as
explained earlier. The route manager also routes messages
in the reconfiguration layer, details of which are explained
below.

The reconfiguration layer is designed as a structured P2P
layer. The intra-zonal routing is similar to Pastry [11], while
the inter-zonal routing imbibes concepts similar to Chord.
The reconfiguration layer guarantees that information can
be retrieved in ����	�
�� bound, for
 nodes in the sys-
tem. The node identifier generation process is different in
Vishwa compared to the purely random generation of Pas-
try. The zonal identifier, a logical number that represents
the zone, is appended to the hashed IP address of the node
to get the node identifier. The motivation behind this pro-
cess of ID generation is to ensure that replicas that store re-
configuration information are within the same zone in order
to make it easier to keep them consistent.

The inter-zonal routing can be explained as follows: To
route to a node across zones, the zone id is masked. The
message is routed to closest matching node within the same
zone. If the closest matching node already has an entry for
the destination zone, it directly forward the message to the
corresponding node in the destination zone. If the closest
matching node does not have an entry for the destination
zone, it routes the message to the zone at distance less than

5In Pastry, leaf set nodes refer to nodes that are closer in the Node-Id
space to a given node.

�� and is closer to the destination zone, whose entry exists.
The same steps are repeated at intermediate zones, till the
destination zone is reached. The complete inter-zonal and
intra-zonal routing algorithms can be found in [9].

��/ ����������� �����	��

The functionality of the communication component is to
provide support for inter-task communication. Inter-task
communication is essential for connected problems, such
as iterative grid/mesh computing, Pizo-electrical coupled
problems, Electro-magnetic coupled problems, Thermo-
Elastic problems, Active Vibration problems, etc. Vishwa
provides support for inter-task communication building on
the Distributed Pipes (DP) [6] abstraction. DP provides
the abstraction of pipes to facilitate connected problems.
Vishwa stores pipe information including pipe identifier and
read/write ends in the reconfiguration layer. This implies
that in case of failures, pipe information can be retrieved
within ����	�
�� even across zones, enabling connected
problems to be executed on grids.

3 Case Studies

We study two commonly occurring class of applications,
namely Bag of Tasks and Connected Problems[8] and the
support for their computational models over our middle-
ware. The computational models used by these classes of
applications are explained along with performance evalua-
tion for particular instances in the following subsections.

The computation in our grid middleware is initiated by
the user on the user-node, who submits a grid task to one
of the grid nodes along with the task configuration details.
The configuration details include, the number of donors re-
quired, type of task and a meta-file containing task input de-
scriptions. The middleware determines the coordinator for
the task based on the task-id and then sends the task along
with the configuration details to the coordinator, through the
reconfiguration layer. The coordinator utilizes this informa-
tion to split the tasks appropriately and distribute them over
available nodes. The model of computation to be used for
a given application is determined from the user-submitted
type information.

The instances of the computational model are studied
over an intranet and an Internet testbed. The intranet testbed
consists of 35 nodes within the institute, with nodes hav-
ing memory from 64MB to 1GB, processing speed from
350MHz to 2.4GHz. The Internet testbed consists of nodes
from MAM college of engineering and from University of
Melbourne, Australia.

��� ��	 "����� ��� �0 ���!�

3.1.1 Execution Model

The problem manager component of the coordinator, to
which the application is submitted, requests the scheduler
for the required number of donors. The scheduler returns
a list of donors along with their HPF values. Based on the
number of donors available and their HPF values, the prob-
lem manager splits the problem into subtasks. These sub-
tasks are dispatched to the appropriate grid nodes. Informa-
tion about the task, subtask and the nodes on which they are
executing is maintained in the reconfiguration layer.

The individual nodes on which the subtasks execute,
register with neighboring nodes (neighbor set) in the task
management layer. Intermediate results of the subtasks are
checkpointed and saved in the reconfiguration layer to en-
sure recovery from failures. If the load on the sub-task-
node increases beyond a threshold, the monitoring compo-
nent notifies the scheduler to initiate task migration.

The failure of the sub-task-node is detected by the neigh-
bor set, which inturn informs the coordinator through the
reconfiguration layer. The coordinator retrieves the check-
pointed state of the sub-task from the reconfiguration layer
and selects another node on which the sub-task is restored.
The coordinator updates the subtask information in the re-
configuration layer appropriately.

The coordinator failure can occur either, before the ini-
tial task is submitted to it, from the user-node or after sub-
tasks are dispatched. In the former case, the user-node re-
submits the task, while in the latter case the reconfiguration
layer ensures that information directed to the coordinator is
redirected to the node with the next closest id matching the
task-id (similar to Pastry[11]). This node then takes on the
role of the coordinator for the specified task-id.

An example application which uses the bag of task com-
putational model is the neutron shielding application. We
evaluate the performance of this application over our mid-
dleware.

3.1.2 Neutron Shielding Application

Neutron Shielding is a nuclear physics application, used
to determine the number of neutrons penetrating through
a given thickness of lead sheet. The experiment predicts
this number using Monte-Carlo simulation. In our experi-
ments we assume a lead sheet of 5 units thickness and vary
the number of neutrons in powers of 10. This is a compute
intensive application.

Figure 2 shows the execution time for increasing num-
ber of nodes for the neutron shielding application. The first
graph shows the results of the application execution under
no-load and heavily loaded conditions. The neutron shield-
ing application is able to adapt to the dynamic load fluctu-

ations, due to Vishwa. The graph shows that the overhead
of load balancing is small on the overall computation time.
The results show that Vishwa can achieve linear speedup in
a loaded cluster. Speedup is defined as the ratio of paral-
lel execution time of the problem to its sequential execution
time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 2 4 6 8 10 12 14 16 18 20

With Load
Without Load

Figure 2. Execution time VS number of
nodes: no load and loaded conditions

Executing the same application on loaded nodes without
task management shows that the performance degradation is
large compared to application execution over Vishwa. This
is evident in table 1.

Table 1. Performance of Neutron Shielding
Simulation on a Loaded Cluster

No. of Nodes Execution Time Execution Time
Without with Vishwa
Load Balancing Load Balancing

(Time in seconds)
4 8561 4345
15 1756 1129
20 2159 1074

The overhead of reconfigurability for this application in
the case of sub-task-node failure and coordinator failure is
presented in the tables 2 and table 3, respectively.

Table 2. Fault-tolerance Overheads: Node
Failure in Unconnected Problem
Registration Fault Detection Task Reconfiguration
Overhead Overhead Overhead

(Time in seconds)
0.525 0.212 11.131

The overhead of storing information in the reconfigura-
tion layer (� � �������) was measured and found to take
about ��� secs on average (it must be noted that the replicas
will be within the same cluster). This overhead was nearly
a constant and in the order of O(log(N)), here N is number
of machines, as shown in table 3. This implies that with
minimal overhead, the coordinator failure can be masked to
the user process.

Table 3. Overhead of Storing and Retrieving
in Reconfiguration Layer

No. of Nodes Overhead
(Time in seconds)

4 1.32
8 1.29
12 1.31

��� ��	 "����� ���	�	� %
�#�	�

3.2.1 Execution Model

Vishwa provides support for inter-task communication,
building on the distributed-pipes[6] abstraction. In this exe-
cution model, the problem manager on the coordinator, re-
quests the scheduler for a given number of donors. The split
tasks are dispatched to the nodes along with the end points
of the communicating tasks. The coordinator, then stores
pipe information and the task information in the reconfigu-
ration layer.

The sub-task-nodes begin the execution of their respec-
tive subtasks, after establishing pipes between themselves.
The sub-tasks register with the nodes with which pipes are
established, in order to handle failure. The sub-tasks check-
point intermediate results, similar to the bag of tasks com-
putational model, described in section 3.1.

Whenever a node running a sub-task, detects the fail-
ure of the other end of the pipe, it notifies the coordina-
tor through the reconfiguration layer. The coordinator, then
stops all the individual sub-tasks by sending appropriate
signals to the sub-task-nodes. The node which detected the
failure in the first place (failed-pipe-node), then chooses a
new node to restore the failed sub-task on. The new node is
selected from the task-management layer. The failed-pipe-
node, then informs the coordinator of the selected node. The
coordinator updates this information in its base and restores
the computation by sending a signal to each of the sub-task-
nodes.

Dynamic load balancing in these applications is handled
similar to the case of the sub-task failure. The only differ-
ence is that in this case the node which requires to balance
the load initiates the process instead of the failed-pipe-node.

Coordinator failures are handled similar to that described in
section 3.1.

Steady State Equilibrium Application is an example of
such a connected problem. The performance of this appli-
cation is evaluated in the following section.

3.2.2 Steady State Equilibrium Application

The Steady State Equilibrium Problem computes the tem-
perature distribution of a rod whose ends are kept at fixed
temperature baths. This is a fluid dynamics problem[6].
The problem iteratively computes the temperature values at
equally spaced grid points on the rod, at regular intervals of
time. Details of this application can be found in [6].

Super-linear computational speedup was achieved for
the Steady State problem, as depicted in the graph in figure
3. The speedup is attributed to the parallelism and reduced
memory requirements on individual nodes. These super lin-
ear speedups can be achieved as long as the problem runs on
optimal number of nodes with appropriate grain size. If the
grain size of the sub domain is small, the communication
overhead increases causing decrease in speedup.

The grain size of a subtask is the number of slice points
alloted to a subtask. Task time of a subtask is the time taken
for computation of the subtask which is the sum of actual
CPU time of the subtask and synchronization delay suffered
by subtask.

 12

 14

 16

 18

 20

 22

 24

 26

 0 5 10 15 20 25

S
pe

ed
up

Number Of Nodes

Speedup in the case of lightly loaded nodes without failures

Figure 3. Speed up in the case of lightly
loaded nodes without failures

The prototype results as shown in table 4 have shown
that the speedup increases super-linearly as we increase the
number of nodes. But this increase is limited up to some
extent. The speedup increased when the number of nodes
increased to 13. But the speedup decreased as the number of
nodes was increased above 13 and remained almost constant
showing a saturation point. This was observed when the
number of nodes was more than 18.

Table 4. Speed up in the case of lightly loaded
nodes with out failures

No. of Grain Size Total Task Speedup
Nodes Time (secs)

1 10,00,00,000 1489.621789 -
3 3,30,00,000 116.876431 12.745273
6 1,62,50,000 70.856432 21.023099
9 1,11,11,000 63.254592 23.549623

12 83,33,000 60.149577 24.765291
16 62,50,000 67.106057 22.198023
18 55,55,555 76.353495 19.509543
20 50,00,000 77.887006 19.125421
25 40,00,000 80.708851 18.456734

When the same computing problem with same grain size
was executed on the WAN test bed, more synchronization
delay between subtasks was observed. This is mainly due to
communication latencies. When the computation is run on
the Institute test bed, higher speedups are obtained. How-
ever, even in the wide area testbed, we were able to obtain
super linear speedup for sufficiently large problem sizes.
The graph in figure 4 shows this case.

 10

 11

 12

 13

 14

 15

 16

 17

 18

 3 3.5 4 4.5 5 5.5 6

S
pe

ed
up

Number Of Nodes

Comparison of Speedup of lightly loaded nodes in Wide area test bes with Institute test bed

Wide Area
Intranet

Figure 4. Comparison of Speedup in Intranet
and Internet Test-beds

Table 5 shows the overhead of grid initialization, with
increasing number of nodes. The fourth column also shows
the resource discovery overheads. It can be observed that
the grid initialization and resource discovery overheads are
nearly constant with increasing number of nodes, implying
that the middleware is expected to scale well. Moreover,
these overheads do not depend on the computational model.

Table 5. Overhead of Grid Initialization with
increasing nodes

Number Registration Neighbour HPF
of Nodes List Propagation

(secs) Updation (secs) (secs)
1 0.862 0.000032 0.000003
5 0.848 5.002 0.328
12 0.885 10.011 0.399
18 1.167 10.012 0.352
20 1.163 10.011 0.474
23 1.142 10.01 0.442

4 Related Work

In this section we compare Vishwa with the existing grid
middleware along different dimensions. The traditional grid
middlewares like Globus [4], gridbus (http://gridbus.org),
Optimalgrid [8] etc. have centralized components like ad-
ministration and management components. These compo-
nents could become bottlenecks, and single points of fail-
ure, as the scale increases. They use client server paradigm
to build the grid. Thus, the existing grid middlewares may
not scale. They do not support reconfigurability in the case
of failures.

$�� ����
���� ���� ���	
�	� "��	 ��(
������)1�
��

SETI[1], distributed.net (http://www.distributed.net/)
Folding@home (http://folding.stanford.edu) harness the
idle computing power on the Internet. These are desktop
grids which have been scaled up to the Internet. However,
these are restricted to a specific application. The underlying
architecture is more like a star. This implies that centralized
servers exist, leading to single points of failure.

Application dependability and middleware reconfigura-
bility are important issues if we aim for Internet scale com-
puting. Recently, an attempt for application reconfigurabil-
ity to balance the load among MPI processes of geographi-
cally distributed nodes has been made [10]. But they did not
provide any support for application reconfigurability in the
case of computational node failures. In contrast, Vishwa
supports application reconfigurability in the case of node
and even coordinator failures.

$�� �
��� ��� %�% ���	�
����� "���	��

P3 [13] is a P2P middleware to enable transfer and ag-
gregation of computing resources. It uses Juxtapose (JXTA)

as the base P2P library. It is important to note that P3 uses
only an unstructured P2P overlay. This implies that in the
case of failures, information retrieval (to allow reconfigu-
ration) cannot not be guaranteed nor bounded. In [13], the
authors do not handle failures of the controller or even com-
pute nodes. Ourgrid [3] is a Peer to Peer middleware to
share computing cycles across organizations. The main mo-
tivation of ourgrid project is to develop a middleware which
automatically collect the resources across several organiza-
tions and provide easy access to the resources. It also de-
veloped a network of favour economic model to avoid the
free riding problem among the peers. The middleware well
suited to solve Bag of Task applications in the failure free
environment. It doesn’t provide support for iterative class
of applications.

Self organizing flock of Condors[2] is a self organized
fault tolerant resource discovery mechanism, which uses
peer-to-peer mechanisms. It does not provide an execution
environment to run the applications. It aids to build the ex-
ecution environment.

5 Conclusions

We have proposed a unique two layered P2P middleware
for Internet distributed computing that is available for
download from http://dos.iitm.ac.in/Vishwa. The middle-
ware supports application and middleware reconfigurability
by utilizing the proposed two layered architecture. The two
layers leverage the utility of unstructured P2P and struc-
tured P2P in order to achieve this form of reconfigurability
in case of failures. The structured layer reconfigures the
application to mask failures, while the unstructured layer
reconfigures the application by adapting to the varying
loads. The results obtained encourage the use of such a two
layered architecture to build reconfigurable computational
models over the Internet. The case studies demonstrating
the use of the architecture for two different classes of
applications, provides a substantiative argument in favour
of the system’s use. Future research directions include
exploring the feasibility of using Vishwa for building a data
grid middleware.

Acknowledgments
The authors thank the members of the DOS Lab for their
useful comments. We also acknowledge the support of the
Department of Science & Technology (DST) for supporting
part of the research project.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@home: An Experiment in Public-

Resource Computing. Communications of the ACM,
45(11):56–61, November 2002.

[2] A. R. Butt, R. Zhang, and Y. C. Hu. A self-organizing flock
of condors. In SC, page 42. ACM, 2003.

[3] W. Cirne, D. P. da Silva, L. Costa, E. Santos-Neto, F. V.
Brasileiro, J. P. Sauvé, F. A. B. Silva, C. O. Barros, and
C. Silveira. Running bag-of-tasks applications on compu-
tational grids: The mygrid approach. In ICPP, pages 407–.
IEEE Computer Society, 2003.

[4] C. K. Foster. Globus: A metacomputing infrastructure
toolkit. Intl J. Supercomputer Applications, 11(2):115–128,
Fall 1997.

[5] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of
the Grid: Enabling Scalable Virtual Organizations. Interna-
tional Journal on Supercomputer Applications, 15(3), 2001.

[6] B. K. Johnson, R. Karthikeyan, and D. J. Ram. Dp: A
paradigm for anonymous remote computation and commu-
nication for cluster computing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1052–1065, 2001.

[7] P. Karbhari, M. Ammar, A. Dhamdhere, H. Raj, G. Riley,
and E. Zegura. Bootstrapping in Gnutella: A Measurement
Study. In Proceedings of Passive and Active Measurement
Workshop PAM 2004, Antibes Juan-les-Pins, France, April
2004. Springer in the Lecture Notes in Computer Science
(LNCS) series.

[8] T. J. Lehman and J. H. kaufman. Optimal Grid: Middle-
ware for Automatic Deployment of Distributed FEM Prob-
lems on an Internet-Based Computing Grid. In Proceedings
of the IEEE International Conference on Cluster Computing
(CLUSTER’03), 2003.

[9] M Venkateswara Reddy, A Vijay Srinivas, Tarun Gopinath,
and D. Janakiram. Vishwa: A Scalable Reconfigurable P2P
Middleware for Grid Computing. Technical Report IITM-
CSE-DOS-2005-12, DOS Lab, Department of CS&E, In-
dian Institute of Technology Madras, 2005. Available from
http://dos.iitm.ac.in.

[10] K. E. Maghraoui, T. Desell, B. K. Szymanski, J. D. Teresco,
and C. A. Varela. Towards a middleware framework
for dynamically reconfigurable scientific computing. In
L. Grandinetti, editor, Grid Computing and New Frontiers
of High Performance Processing. Elsevier, 2005. to appear.

[11] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed Systems Platforms (Midleware
2001), pages 329–350, Heidelberg, Germany, Nov 2001.

[12] D. J. Rushikesh K. Joshi. Anonymous remote computing: A
paradigm for parallel programming on interconnected work-
stations. IEEE Trans. on Software Engineering, 25(1):75–
90, Jan/Feb 1999.

[13] K. Shudo, Y. Tanaka, and S. Sekiguchi. P3: P2P-based
Middleware Enabling Transfer and Aggregation of Compu-
tational Resources. In Proceedings of the Fifth International
Workshop on Global and Peer-2-Peer Computing, Cardiff,
UK, 2005.

[14] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications. In Proceedings of ACM SIG-
COMM, San Diego, pages 160–177, Aug 2001.

