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Abstract

Due to resource scarcity, a paramount concern in ad hoc
networks is to utilize the limited resources efficiently. The
self-organized nature of ad hoc networks makes the social
welfare based approach an efficient way to allocate the lim-
ited resources. However, the effect of instability of wireless
links has not been adequately addressed in the literature. To
efficiently address the routing problem in ad hoc networks,
we introduce a new metric, maximum expected social wel-
fare, and integrate the cost and stability of nodes in a unified
model to evaluate the optimality of routes. The expected so-
cial welfare is defined in terms of expected benefit (of the
routing source) minus the expected costs incurred by for-
warding nodes. Based on our new metric, we design an op-
timal and efficient algorithm, and implement the algorithm
in both centralized (optimal) and distributed (near-optimal)
manners. We also extend our work to incorporate retrans-
mission and study the effect of local and global retransmis-
sion restrictions on the selection of routes.

Keywords: Ad hoc networks, distributed implementation,
retransmission, routing, social welfare, stability.

1 Introduction

Ad hoc networks suffer from the power shortage of the
network devices, thus a major concern in ad hoc networks
is to save energy. Existing energy-efficient routing proto-
cols save energy by selecting the lowest energy cost route.
However, energy saving is not equal to energy efficiency.
Consider a large number of packets to be delivered from
a source to a destination. If the lowest cost path is very
unstable, and hence most packets transmitted through this
path are lost, it is energy waste rather than energy sav-
ing compared to a stable but more costly path. Therefore,
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energy-efficient routing protocols should take both energy
consumption and link stability into account.

A major task of sensor networks is to monitor environ-
mental change and report unexpected events to an informa-
tion sink. With the improvement of sensor techniques, a
single sensor can monitor different events simultaneously.
These events may have different priorities to the sink be-
cause an event like a fire alarm is more emergent than the
increment of temperature. It is reasonable to send the higher
priority event through a more stable route even at the ex-
pense of more energy cost.

From the above observations, we realize that there is a
tradeoff between stability and energy cost in the selection of
an optimal route, and this tradeoff depends on the priority of
the data to be sent. To model the priority and the tradeoff,
we borrow the concept of benefit(value), cost, and social
welfare from economic theory.

The benefit is used to model a successful data delivery
from the event observer (information source) to the infor-
mation destination. If data is delivered from the information
source to the information sink successfully, the system will
achieve some benefit, whose value depends on the priority
of the data. The cost is used to model the energy cost of
links and routes. The social welfare is equal to the benefit
minus the cost. From the economic point of view, the higher
the social welfare, the better performance the system has.

Given the benefit of a successful data delivery, the trade-
off lies in the selection of the optimal route. To increase the
chance to obtain the benefit, it is better to select the more
stable route because the more stable a route, the higher the
expected benefit (= benefit × delivery ratio). But the incre-
ment of the expected benefit may be at the expense of the
increment of the energy cost because it is usually the case
that the more stable a route, the higher the cost of the route.

We adopt the expected social welfare (= expected benefit
− expected cost), which integrates link cost, link stability,
and the benefit, as the metric to evaluate the routing opti-
mality. Based on this metric, we design an efficient rout-
ing algorithm, which can identify the optimal route from
any source to a given destination for a given value of bene-



fit. Although our algorithm can find optimal routes from all
sources to a single destination, we consider a single source-
destination pair in our model in order to avoid intractable
analysis. We prove the optimality of our algorithm, and im-
plement it in both centralized and distributed manners.

Our distributed implementation only propagates the
summarized routing information (the expected social wel-
fare) from the destination to the source, instead of all the
routing information. Our scheme is easy to implement
based on existing reactive routing protocols, such as AODV
[1] or DSR [2], without introducing additional cost.

We also extend our model by incorporating a retransmis-
sion mechanism. Retransmission can increase the link sta-
bility, which in turn increases the stability of routes, but this
increase is at the expense of cost. In the extreme case of
unlimited retransmission, the packet delivery ratio is 100%
and the cost can be larger than the benefit, which causes
negative social welfare.

Intuitively, there exists a trade-off between stability and
cost in retransmission. But in terms of expectation, it can
be proved that the larger the upper bound of the number of
transmissions, the larger the expected social welfare. How-
ever, in reality, the number of retransmissions is constrained
by local and global restrictions. The intermediate nodes
have motivation to set a local quota (a local retransmission
restriction) because too many retransmissions is not benefi-
cial to them. The source has reason to set a global quota (a
global retransmission upper bound) over the routing path,
if it intends to control the number of transmissions and the
total transmission cost. Protocols like TCP have a constant
hop-by-hop (local) and end-to-end (global) retransmission
restriction. Because of the above arguments, we extend our
model to allow retransmission and study the effect of the
local quota and global quota on the route selection.

The following assumptions are used in this paper: 1)
Each node has a priori knowledge about its associated link
cost and link stability. Numerous works [14, 18] address
the issue on how to collect this information. 2) We allow
hop-to-hop retransmission and assume that each forwarding
attempt consumes the same cost.

2 Related work

The concept of the social welfare [10] is borrowed from
economics. There exist works that use social welfare as the
optimization objective. Li, Xue, and Nahrstedt [8] present a
price-based scheme to effectively allocate resources among
multiple multi-hop flows. Their approach maximizes the
aggregated utility of flows (the social welfare), while main-
taining basic fairness among multiple flows. Qiu and Mar-
bach [11] propose a market-based approach to efficiently
allocate bandwidth in wireless ad hoc networks. Although
there are numerous existing works applying social welfare

related approaches, as far as we know, none of them com-
bines stability and link cost and designs an optimization
model to maximize the expected social welfare.

In a market-based model, another concern is to deter-
mine the price of service, which is called payment in lit-
erature. Existing works use a first-price scheme [7] or a
second-price scheme [3, 18], which can be classified as an
auction-based scheme, to determine the payment. There ex-
ist many other payment methods like Nuglets [5] and Sprite
[17]. We do not address the implementation of payment be-
cause the expected social welfare does not depend on the
payment scheme.

Various existing routing protocols [4, 18] pursue the
minimum hop count or minimum cost. As has been dis-
cussed elsewhere [6, 15], these metrics are not necessary
ideal because they did not take link stability into account.

Another routing algorithm [13] models the link stabil-
ity as the longevity of the link and identifies the best route
as the route with the longest lifetime. One similar scheme
[16] adopts “best worst link”, which identifies the least sta-
ble link (the bottleneck link) over any route and selects the
route with the best “bottleneck”. Although these schemes
consider the link stability issue, they fail to differentiate be-
tween two routes with the same bottleneck link but different
link characteristic.

ETX [6] and MintRoute [15] adopt path delivery ratio
(PDR) by measuring hop-by-hop link delivery ratio (LDR)
along the path. ETX weights links with a metric called min-
imum expected transmission number, which is equal to the
link cost divided by LDR. However, this metric requires an
unrealistic assumption that retransmission is unlimited.

Wang, Martonosi, and Peh [14] propose a simple
method, called link quality indicator (LQI), to evaluate the
link stability. Through LQI, the link stability can be mea-
sured over the reception of a single packet in a realistic en-
vironment, which makes the collection of link stability in-
formation practical.

In ad hoc networks, retransmission schemes are applied
to increase the reliability in routing. Lou and Wu [9] dis-
cussed the trade-off between broadcast redundancy (includ-
ing retransmission) and delivery ratio. Scott and Yasinsac
[12] proposed a routing protocol that dynamically adjusts
retransmission probability according to the local topogra-
phy. In this paper, we adopt a hop-by-hop retransmission
scheme and integrate the retransmission scheme into our
maximum social welfare based model, and design an op-
timal algorithm for the introduction of the local quota and a
heuristic for the introduction of the global quota.



0.86

1

s d

2

25

25
40 35

30

0.7
0.8

0.9

0.85

route ud = v u1 u2 U
< s, 1, d > 200/250 140/182.5 87/121
< s, 2, d > 200/250 137/180 83.3/122
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Figure 1. The effects of the link stability and
the benefit on the selection of the optimal
route. The table shows the RESWs of nodes
on each route. In each cell, there are two
values separated by ‘/’. The left value is the
RESW under benefit of 200, while the right
one is the one corresponding to benefit 250.

3 The model

3.1 Basic definitions

We consider a source-destination pair (s,d), in which
the destination d expects to receive data from the source s.
The per packet benefit is denoted as v. That is, the sys-
tem will obtain v for each successfully delivered packet.
The network is modeled as a unit disk graph (N , E), where
N = {1, 2, · · · , N} is the set of nodes and E is the set of
links. For each link (i, j) ∈ E, there are two properties:
link cost and link stability. Link cost ci,j is the minimal en-
ergy level to connect i and j, while link stability pi,j (also
called link delivery ratio (LDR) [15]) is the ratio of received
packets by node j to transmitted packets by i.

To illustrate the basic idea of our new metric, we first
consider a single-link route from s to d with link stability
ps,d and link cost cs,d. Since d receives a packet with prob-
ability ps,d, the system has ps,d chance to obtain the benefit
v at the cost of cs,d. Note that the system obtains v if and
only if the packet is delivered to d. From the economic point
of view, the expected social welfare of this route is the ex-
pected benefit minus the route’s cost, i.e.,

U = v · ps,d − cs,d (1)

However, Formula (1) should be carefully investigated
before it can become a useful metric. In fact, Formula (1)
cannot be directly applied to a multi-hop route. Consider
the two-hop route < s, 1, d > shown in Fig. 1, where the
cost and the stability of a link are displayed above (left) and
below (right) the link, respectively. We cannot simply set

ps,d = ps,1 ·p1,d = 0.8×0.85, cs,d = cs,1+c1,d = 25+30,
and apply Formula (1). Actually, cs,d = cs,1 + c1,d · ps,1 =
25+30× 0.8 because the cost c1,d is consumed if and only
if a packet is delivered to 1.

Even if the link stability is taken into account in evaluat-
ing the link cost, it is still not easy to extend to the scenario
of multi-hop routes. For example, consider the multi-hop
route < s = 1, 2, · · · , k − 1, d = k >, the expected social
welfare should be calculated as:

U = v ·
k−1�

j=1

pj,j+1 −
k−1�

i=1

ci,i+1

i−1�

j=1

pj,j+1 (2)

To make Formula (2) scalable and easy to calculate in a dis-
tributed way, we design a better way in the next subsection
to calculate a route’s expected social welfare.

3.2 Metric for a multi-hop route

An important observation is that the implementation of
the benefit v depends on the successful delivery of a packet
to the destination node. Thus, from the destination’s point
of view, we can view any intermediate node as the vir-
tual source and calculate the corresponding expected social
welfare from the virtual source to the destination. For ex-
ample, in Fig. 1, we can view intermediate node 1 as the
virtual source and the related expected social welfare is:
u1 = v · p1,d − c1,d by Formula (1). Because u1 is not
the real expected social welfare, we call u1 the residual ex-
pected social welfare (RESW) of node 1.

On the other hand, from the source’s point of view, we
can view any intermediate node as the virtual destination
and equate the benefit to the intermediate node’s RESW as
if the system would obtain that amount of benefit if a packet
is delivered to the intermediate node. For example, in Fig. 1,
source s will get benefit u1 if the packet is delivered to 1.
Thus, the expected social welfare can be calculated as: U =
u1 · ps,1 − cs,1, where u1 can be calculated from u1 =
v · p1,d − c1,d.

The above method can be extended to the calculation of
multi-hop routes. We can recursively apply Formula (1)
starting from destination d to obtain the expected social wel-
fare. For example, consider the 3-hop route < s, 1, 2, d > in
Fig. 1. For link (2, d), we have u2 = ud ·p2,d− c2,d. By re-
cursively applying Formula (1), we have u1 = u2·p1,2−c1,2

and then U = u1 · ps,1 − cs,1, which is the expected social
welfare of the 3-hop route.

The correctness of the above recursive method can be
verified by comparing the results with Formula (2). An im-
portant property of our metric is that the selection of the
optimal route not only depends on the network properties,
such as link stability and link cost, but also depends on the
value of the benefit. Consider the example in Fig. 1, there
are four routes: < s, 1, d >, < s, 2, d >, < s, 1, 2, d >, and



< s, 2, 1, d >. If the benefit v = 200, the optimal route is
< s, 1, d >, but if v = 250, the optimal route is < s, 2, d >.

4 The solution

4.1 The algorithm and its complexity

In our algorithm, the calculation of the expected social
welfare starts from the destination with the initial expected
social welfare equal to the per packet benefit. The RESW
will be reduced at each intermediate node backward from
the destination to the source according to the cost and stabil-
ity of the links, where the node is an endpoint. Algorithm 1
(MaxUtility) iteratively finds the node that will reduce the
expected social welfare the least. A few additional notations
are used in MaxUtility:

• Q, the set of nodes whose RESWs have been maxi-
mized.

• ui, which maintains node i’s current RESW.

• Ni, the set of i’s neighbors.

The input to MaxUtility is the node setN , source s, des-
tination d, and the per packet benefit v. Each node i ∈ N
has its neighbor set Ni. The link cost ci,j and link stability
pi,j for each link (i, j) are also given.

Algorithm 1 MaxUtility(N , s, d, v)

1: Initialize, Q← ∅;
2: while s �∈ Q do
3: Find node i with the largest ui in N , delete i from

N ;
4: Terminate if ui ≤ 0;
5: Q← Q ∪ {i};
6: For each node j ∈ Ni and j ∈ N , Relax(i, j);
7: end while

Relax(i, j)
1: uj ← ui · pi,j − ci,j if uj < ui · pi,j − ci,j ;

Initially, the RESWs of all nodes except d are set to−∞.
d’s RESW is set to v. In the beginning, d’s RESW is the
highest, thus, d is fetched. d will relax the RESWs of its
neighbors and then be put into Q. The relaxation consists of
two steps: first, node i calculates the RESW of each neigh-
bor according to Formula (1); second, node i compares a
neighbor’s calculated RESW with its original RESW and
saves the larger value as the neighbor’s new RESW.

MaxUtility repeatedly removes the node with the highest
RESW from N , inserts it into Q, and relaxes its neighbors
until node s is inserted into Q or no path with positive ex-
pected social welfare can be found. In the later case, the

algorithm terminates because negative or zero expected so-
cial welfare means that on average the system wastes its
resource.
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Figure 2. An example to illustrate the MaxU-
tility algorithm(The RESWs of nodes of each
route are enumerated in the table).

To illustrate our idea, we give an example in Fig. 2, in
which the integer number above a link and the float num-
ber below the link are the cost and the stability of the link,
respectively. Besides s and d, there are five other nodes
(nodes 1, 2, 3, 4, and 5). If the per packet benefit is 200,
the optimal route is < s, 3, 4, d >. Note that in Fig. 2, the
lowest cost path is < s, 1, 2, d >.

If N is implemented with a binary heap, the total exe-
cution time of step 3 is O(n log n), where n is the number
of nodes. Each Relax(i, j) takes also O(log n)time, since
fetching or storing ui costs time O(log n). Relax(i, j) ex-
ecutes at most time of e, where e is the number of links.
So Relax(i, j, C) has a total time of O(e log n). Therefore,
MaxUtility can be implemented in O((e + n) log n). Due
to space limitation, the proof of optimality of our algorithm
is omitted.

4.2 Implementation

We consider two implementations: the centralized one
which is relatively costly for collecting global link state in-
formation and the decentralized one which can be grace-
fully integrated into reactive routing protocols, such as
AODV [1] and DSR [2].

4.2.1 Centralized implementation

We adopt link-state-based protocols in the centralized im-
plementation. In traditional link-state-based protocols, in-
formation is spread through flooding techniques. Initially,
every node broadcasts its local network view (link cost and
link stability associated with the node) to every other node.



At the end of this, every node has a global view of the net-
work (consistent, up-to-date routing information). Here we
adopt a reactive version of the link state approach, assuming
(i, j) exists if and only if (j, i) exists.

1. Destination sends out a flooding message.

2. Each intermediate node responds to the first request by
replying to the message.

3. The global directed flooding tree is formed rooted at
the destination. The first requester becomes the parent
of the corresponding node.

4. Each node sends out its link state (the cost and stability
of each link) to its parent node.

5. The destination collects all link state information
through the reversed spanning tree and then applies the
algorithms.

Our centralized implementation spreads local link state
information in a distributed manner, but computes RESWs
at the destination in a centralized way. It requires each node
to maintain local link state information.

Although the above centralized implementation can find
the optimal route, it requires global link state information,
which in turn requires broadcasting and information collec-
tion. It is too expensive and thus not a good implementation
in practice. In the following, we present a distributed imple-
mentation, which requires much less message transmission.

4.2.2 Distributed implementation

The distributed implementation, unlike the above central-
ized implementation, computes RESW in a distributed man-
ner. RESW could be treated as the summary of local
link state information. Each node need not propagate all
available local link state information to its upstream node.
Instead, it propagates a summarized routing information
(RESW) to its upstream nodes.

The distributed implementation can be gracefully inte-
grated in a reactive routing protocol, such as AODV [1] and
DSR [2], where two phases are used. In the route discovery
phase, the source broadcasts a RREQ (route request) to its
neighbors. The RREQ is propagated in the network until it
gets to the destination, which then initiates a RREP (route
reply) containing relevant information following the reverse
link leading to the source.

1. The destination broadcasts its RESW to initialize a
route discovery phase that will form a global directed
flooding tree rooted at the destination.

2. Each node, including the source, sets a timer wj =
v−uj on receiving the first RESWs. Before timeout it

(s, 1) (s, 5) (s, 3) (1, 2) (5, d) (3, 4) (2, d) (4, d)

32.4 54 42.6 33.6 77 51.5 30.24 43.2
.84 .99 .91 .91 .88 .96 .96 .99

Table 1. The new link cost and link stability of
Fig. 2 with θl = 2 (The second and third rows
are link cost and link stability, respectively. )

improves its RESW based on the received RESWs of
its neighbors and adjusts its timer.

3. After timeout, each intermediate node computes and
sends out its RESW to all neighbors.

If there is no transmission delay, the node with maximum
RESW will always broadcast RREP first, which includes
its RESW. This will enable the distributed implementation
to find the optimal route. However, due to transmission de-
lay, the node with larger RESW is not necessarily the node
that broadcasts RREP earlier. If the backoff time for a
node is up, but the RREP that can increase its relay set
and improve its RESW is still on the way, the RESW of the
node is not maximized.

The distributed implementation is an approximation, us-
ing a timeout mechanism. Thus, the RESW of a node is not
always optimal. But it has two desirable features: First, the
calculation is distributed, each node decides its own trans-
mission cost and relay set; Second, it greatly reduced the
transmission overhead, as only the RESW, which summa-
rizes the link state information, will be propagated.

5 The extension

In this section, we extend our model to incorporate the
hop-by-hop retransmission. The retransmission can in-
crease a link’s stability, but it also introduces additional cost
for the link. For each link, whether the retransmission is
beneficial (in terms of increasing the expected social wel-
fare) or not is an interesting problem. Moreover, if a re-
transmission attempt of a packet fails over a link, should
we retransmit the packet over the link again? How many
retransmission is appropriate?

To answer these questions, we adopt two transmission
upper bounds, local quota and global quota. The local quota
of an intermediate node is the maximum number of allowed
transmissions for the intermediate node, while the global
quota of a route is the number of total allowed transmissions
over the route. For simplicity, we consider homogenous lo-
cal quotas for all intermediate nodes, homogenous global
quotas for all available routes, and assume each transmis-
sion cost is the same.

We first consider the local quota. The local quota can
be finite or infinite. The original problem (the case without



retransmission) is a special case (the local quota = 1). Let
θl denote the local quota. The new stability of link (i, j) is
1 − (1 − pi,j)θl , because the packet will lose if and only
if all θl transmission attempts fail. The probability for i
transmitting the packet exactly l times is (1 − pi,j)l−1pi,j .
The expected number of transmission from node i to node
j is

∑θl

l=1 l(1 − pi,j)l−1pi,j . Thus, the expected cost of
link (i, j) is ci,j

∑θl

l=1 l(1 − pi,j)l−1pi,j . By replacing the
link stability and link cost in Formula (1) with the new link
stability and link cost, we can directly apply MaxUtility al-
gorithm to solve the problem. Note that if the local quota
θl is unlimited, i.e., θl → ∞, the problem is reduced to the
lowest cost path problem [6, 18].

We use the same example in Fig. 2 to illustrate the
change of link stability, link cost, and the optimal route.
The new link stability and link cost in case of θl = 2 are
given in Table 1. The new optimal route is < s, 1, 2, d >.

The transmission upper bound can also be controlled by
the global quota. The recurrence described by Formula (1)
does not hold with the existence of the global quota, be-
cause an intermediate node’s expected cost will depend on
the number of transmissions of previous nodes on the route.

We design a heuristic algorithm that addresses the case
with the existence of both local quota and global quota. Our
heuristic uses θl rounds to select the objective route. In each
round, the heuristic sets the local quota to i and uses a mod-
ified MaxUtility algorithm to find the optimal route with the
local quota i. The route with the maximum expected social
welfare and the sum of local quotas (path length multiplied
by the local quota) less than or equal to the global quota will
be selected as the routing path. Our heuristic algorithm is
shown in Algorithm 2.

Algorithm 2 ExtMaxUtility

1: U(R∗)← −∞; R∗ ← ∅;
2: for i = 1 to θl do
3: Ri ←MaxUtility(G, s, d, v, i);
4: R∗ ← Ri if |Ri| · i ≤ θg and U(Ri) > U(R∗);
5: end for
6: return R∗;

We use the same example shown in Fig. 2 to illustrate
that the restriction of global quota does affect the selection
of the routing path. In Fig. 2, if the global quota θg = 4
and the local quota θl = 2, the optimal route is < s, 5, d >
instead of < s, 1, 2, d > because the sum of the local quota
on path < s, 5, d > is equal to the global quota, while the
sum of the local quota on path < s, 1, 2, d > is larger than
the global quota.

6 Simulation

In this section, we evaluate our metric and our distributed
implementation in NS2. Without loss of generality, the link
cost is modeled as the energy consumption. We compare
different metrics for determining the priority of the nodes in
the relay set under the framework of our distributed imple-
mentation. The metrics include: (1) minimum hop count,
(2) highest path stability, (3) maximum expected social wel-
fare, and (4) minimum cost.

6.1 Simulation environment

All approaches are simulated on NS-2.29. We set up
the simulation in a 900m × 900m area, which is the tar-
get field. We assume nodes are homogeneous and can be
deployed in this area arbitrarily. We fix the position of the
source s and the destination d at locations (50m, 450m)
and (850m, 450m) respectively and randomly deploy the
intermediate nodes. In our experiments, the energy cost be-
tween any two nodes is proportional to their distance. More
specifically, for any two nodes i and j with distance distij ,
the energy cost of i sending a message to j is defined as the
function ci,j = distγij + cons, where γ = 2 and cons is
the energy constant. The stability of each link is randomly
generated (uniform distribution) in the range [α, β], where
0 ≤ α ≤ β ≤ 1.

For each set of specified parameters, we run each algo-
rithm 100 times and use the average value of the results to
evaluate the performance. In the simulation, we consider n,
the number of nodes (in our experiments we vary n between
30 and 100) as the tunable parameter.

6.2 Simulation results

To illustrate that expected social welfare (ESW) can be
used to efficiently allocate energy cost over networks, we
compare it with other three metrics (minimum hop count,
lowest cost, and highest stability). For each metric, we com-
pute the corresponding optimal path. The four optimal paths
are compared using different metrics. In Fig. 3, the optimal
routes under maximum ESW, minimum hop count, lowest
cost, and highest stability are abbreviated as maxESW, min-
Hop, lowCost, highSTA, respectively. Fig. 3 (a), (b), (c),
and (d) compare the four optimal paths under ESW met-
ric, cost metric, path stability metric, and hop count metric,
respectively.

Fig. 3 (a) shows that the maxESW path computed by our
MaxUtility algorithm has the best performance in terms of
expected social welfare. From Fig. 3 (b) and (c), we can
see that the maxESW path’s performance is second to best
in terms of cost, and path stability, respectively. The re-
sults show that our ESW metric is a good metric to evaluate
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Figure 3. Simulation results.

routing performance in wireless ad hoc network. Our Max-
ESW algorithm can achieve a good trade-off between cost
and stability.

In Fig. 3 (a)-(d), the minimal hop count path has similar
performance to the most reliable path. The stability of a
path is equal to the product of the stability of links on the
path. Because the link stability is uniformly distributed, the
lower the hop count, the higher the path stability. Fig. 3 (c)
and (d) verify the relation between the hop count and the
path stability.

In Fig. 3 (a), in terms of ESW, the highSTA path has bet-
ter performance than the lowest cost path. The reason is
that the stability has more effect on ESW than the cost. In
Formula 1, if the benefit v is large enough, the ESW will de-
crease by half with the stability ps,d decreasing by half, but
the ESW will not decrease too much with the cost cs,d dou-
bled. Fig. 3 (a) also shows that the ESWs of the max ESW
path, the most reliable path, and the minimal hop count path
increase with the increment of the number of nodes, but the
ESW of the lowest cost path decreases instead. With more
nodes, more paths are available. With the increment of node
number, although the lowest cost path algorithm has more
choices, the selected path will have more hop counts and
hence have lower stability. The effect of cost decrement
cannot make up the effect of the stability decrement.

In Fig. 3 (b), both the maxESW path and the lowest cost

path decrease with the increment of the number of nodes,
but the most reliable path and the minimal hop count path do
not. As we have argued in Fig. 3 (a), with the increment of
node number, the available paths increase and hence lower
cost paths will be available. However, the cost of the most
reliable path and the minimal hop count path do not neces-
sarily decrease. Our maximum ESW balances the trade-off
between stability and cost well. It has the advantages of
both stability metric and cost metric.

In Fig. 3 (c), except for the lowest cost path, the path sta-
bility of the paths increases with the increment of the num-
ber of nodes. We have discuss the reason in the argument
for Fig. 3 (a). The desirable result is that the maxESW path
shows a good path stability. The lowest cost path is the
worst of the four algorithms in terms of ESW. The results
are not surprising because the path stability is equal to the
multiplication of the link stability and hence the link sta-
bility has a great influence on ESW. The above experiment
illustrates that ESW is an efficient metric to assess the uti-
lization of network resource.

We also evaluate the effect of the value of benefit on
the computation of the optimal route. Roughly speaking,
a source with higher benefit is more likely to avoid taking
risks by selecting a less stable but low cost path. If the
value of v reflects the priority of a routing task, a higher
priority routing task should select more stable but probably



the most costly routing path. Fig. 3 (e) and (f) verify our
analysis. Fig. 3 (e) compares the cost of the selected routes
under three different values of v (the bottom line is the low-
est cost path), while Fig. ?? (f) compares the path delivery
ratio of the selected routes (the bottom line is the most reli-
able path).

7 Conclusion

In this paper, we study the routing problem in ad hoc
networks. Considering resource scarcity and the unstable
nature of mobile nodes in ad hoc networks, we use a model
different from existing resource efficient routing and adopt
a new metric called maximum expected social welfare to
assess the optimality of a potential route from a source to
a destination. By studying the relationship between energy
cost and stability, we successfully combine these two dif-
ferent metrics and design an optimal algorithm to find the
optimal route. We also extend our model to incorporate re-
transmission and study the effect of the local quota and the
global quota on the selection of the routing path. In the fu-
ture, we will explore the effect of signal strength on stabil-
ity, study the effects of the global quota theoretically, and
analyze the effect of the node stability on the selection of
the routing path.
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