
Solving Energy-Latency Dilemma: Task Allocation for Parallel Applications
in Heterogeneous Embedded Systems

 Tao Xie Xiao Qin, Mais Nijim
 Department of Computer Science Department of Computer Science

 San Diego State University New Mexico Institute of Mining and Technology
 San Diego, California 92182 Socorro, New Mexico 87801

 xie@cs.sdsu.edu {xqin,mais@cs.nmt.edu}

Abstract

Parallel applications with energy and low-latency

constraints are emerging in various networked
embedded systems like digital signal processing,
vehicle tracking, and infrastructure monitoring.
However, conventional energy-driven task allocation
schemes for a cluster of embedded nodes only
concentrate on energy-saving when making allocation
decisions. Consequently, the length of the schedules
could be very long, which is unfavorable or in some
situations even not tolerated. In this paper, we address
the issue of allocating a group of parallel tasks on a
heterogeneous embedded system with an objective of
energy-saving and short-latency. A novel task
allocation strategy, or BEATA (Balanced Energy-
Aware Task Allocation), is developed to find an
optimal allocation that minimizes overall energy
consumption while confining the length of schedule to
an ideal range. Experimental results show that BEATA
significantly improves the performance of embedded
systems in terms of energy-saving and schedule length
over an existing allocation scheme.

1. Introduction

All A parallel application consists of a number of
tasks that cooperate with each other through
communications to fulfill a common mission [5][10].
In the last decade, networked embedded systems have
become increasingly popular as platforms for
executing parallel applications such as target tracking
and infrastructure monitoring [1][4]. Much of this
trend can be attributed to rapid advances in processing
energy, network bandwidth, and storage capacity.
However, embedded systems usually have low energy
capacities operating in distributed mobile or wired

environments [8][9][15]. Therefore, energy-saving
became a critical issue for these systems.

To address this challenge, extensive researches
have been conducted to reduce overall energy
consumption for a variety of embedded systems using
diverse techniques [6][8][9][11][12][15][16]. Source
code optimization and profiling were exploited in [12]
to minimize energy consumption in embedded
systems. Zhu et al. devised a mechanism to increase
reliability and reduce energy consumption of real-time
embedded systems by slack time reclamation [16].
Park et al. tried to make a balance between energy
efficiency and fairness in multi-resource for multi-
tasks in embedded system [9]. A hierarchical approach
for energy efficient application design using
heterogeneous embedded systems was proposed by
Mohanty et al.[8]. In [15], Yu et al. proposed an
energy-balanced task allocation scheme for parallel
processing in homogeneous wireless sensor networks
with a goal to maximize the lifetime of the entire
system. In particular, most of recent researches in
energy-saving for embedded systems share two
common features (1) applications considered are real-
time in nature with hard deadlines; and (2) energy-
saving is achieved by employing DVS (Dynamic
Voltage Scaling). Our work is fundamentally different
from the above approaches as we focus on reducing
both energy consumption and response time for soft
real-time parallel applications running on
heterogeneous embedded systems with no DVS
available. Without loss of generality, we assume that
different processing nodes have distinct fixed energy
consumption rates. Similarly, different communication
channels also have various energy assumption rates.
The goal of this work is to develop a task allocation
strategy that not only conserves energy but also
generates a short schedule, which is favorable or even
necessary in some scenarios. For example, in a soft

real-time embedded system such as a cellular phone
[7], it must be able to encode outgoing voice and
decode incoming signal during a conversation in a
timely manner. Occasional glitches in conversations
due to tardy response are not desired. When the
response time becomes longer frequent glitches could
happen, which are not tolerated at all.

Energy-saving and low-latency, however, are two
conflicting objectives in the context of allocating a
parallel application represented by a task graph onto a
set of connected heterogeneous processing nodes in an
embedded system. The dilemma arises from a
multidimensional heterogeneity bearing by a
heterogeneous embedded system (see Section 2.1).
Specifically speaking, a processing node that provides
a task with earliest finish time may not be an ideal
candidate in terms of energy-saving. This is because
the execution time of a task allocated on an embedded
node is irrelative to the energy consumption rate
offered by the node. Moreover, the computational
energy consumption of a task allocated on a node is a
product of energy consumption rate of the node and
execution time of the task. The motivation of this work
is to solve the energy-latency dilemma existed in
networked heterogeneous embedded system where
both energy-saving and low-latency need to be
achieved. In this paper, we address the issue by
minimizing energy consumption while confining
schedule lengths. To this end, we devised a energy-
adaptive window to control the trade-off between
energy consumption and response time. Experimental
results demonstrate that our scheme is effective in a
heterogeneous embedded system.

The main contributions of this paper are: (1) an
energy-latency driven task allocation scheme BEATA
for parallel applications on heterogeneous embedded
systems; (2) an energy consumption model for
quantitatively measuring energy cost introduced by
both computation and communications; and (3) a
simulated heterogeneous embedded system where the
BEATA strategy is implemented and evaluated. The
rest of the paper is organized as follows. In the next
section we describe the system model, the task model
and energy consumption model. In Section 3, we
propose the BEATA scheme for parallel applications
running on heterogeneous embedded systems. We
present in Section 4 experimental results based on
synthetic benchmarks and a real world application.
Section 5 concludes the paper with summary and
future directions.

2. System models

We describe in this section mathematical models,
which were built to represent a task allocation
framework, parallel applications with precedence
constraint, and energy consumption model.

2.1. The networked embedded system

A networked embedded system in the most general
form consists of a set, e.g., P = {p1, p2, ..., pm}, of
heterogeneous embedded computing nodes (hereinafter
referred to as nodes or embedded nodes) connected by
a single-hop wired or wireless network. The network
embedded system can be represented as a graph of
nodes along with their point-to-point links. In the
system, an embedded node is modelled as a vertex.
There exists a weighted edge between two vertices if
they can communicate with each other. Each node in
the system has an energy consumption rate measured
by Joule per unit time. With respect to energy
conservation, each network link is characterized by its
energy consumption rate that heavily relies on the
link’s transmission rate, which is modelled by weight
wij of the edge between node pi and pj. An allocation
matrix X is an n×m binary matrix used to reflect a
mapping of n tasks to m embedded nodes. Element xij
in X is “1” if task ti is assigned to node pj and is “0”,
otherwise. Heterogeneity investigated in this study
embrace multiple meanings. First, execution times of a
task on different embedded nodes may various, since
the nodes may have different processing capabilities.
Second, a node offering task ti a shorter execution time
does not necessarily provide another task tj with a
shortened execution time, because different nodes may
have distinct processor architectures. This implies that
different nodes in a system are suitable for different
kinds of tasks. Third, the transmission rates of links
may be distinct. Last, energy consumption rates of the
nodes may not necessarily be identical. For sake of
simplicity and without any loss of generality, we
assume that all nodes are fully connected with a
dedicated communication system. Each node
communicates with other nodes through message
passing, and the communication time between two
tasks assigned to the same node is negligible.

2.2. The task model

Applications with dependent tasks can be modelled

by Directed Acyclic Graphs (DAGs) [14]. Throughout
this paper, a parallel application is specified as a pair,
i.e, (T, E), where T = {t1, t2, ..., tn} represents a set of
non-preemptable tasks, E is a set of weighted and
directed edges representing communications among

t1

tasks, e.g., (ti, tj)∈ E is a message transmitted from task
ti to tj. Precedence constraints of the parallel
application are represented by all edges in E.
Communication time spent in delivering a message (ti,
tj) ∈ E from task ti on node pu to tj on pv is determined
by sij/buv, where sij is the data size of the message and
buv is the transmission rate of a link connecting pu and
pv. The execution time of task ti is modelled by a
vector, i.e., ()m

iiii cccc ,,, 21 L= , where
represents the execution time ti on the jth embedded
node.

j
ic

Example 1. Figure 1 illustrates an example task graph
and an example networked embedded system. The task
graph has eleven tasks and the processor graph has
three processors. The transmission rate and energy
consumption rate of the channel between processor p1
and p2 are 2 and 0.8, respectively. The energy
consumption rate of processor p1 is 12.6. The matrix of
execution times for each task on the three processors is
illustrated as below. For example, task t1 has execution
time 3.1 second, 4.3 second, and 1.9 second on
processor p1, p2, and p3, respectively.

2.3. Energy consumption model

Let be an energy dissipation caused by task ti
running on node pj. We denote the energy
consumption rate of the jth node when it is active
by , and the energy dissipation can be

written as below

j
ie

active
jECN

j
ie

 . (1) j
i

active
j

j
i cECNe ⋅=

The energy consumption rate of a networked
embedded system is represented by a vector. Given a
parallel application with task set T and allocation
matrix X, we obtain the total energy consumed by all
tasks of the application from Eq. (2).

 (2)

()

.

,,

1 1

1 1

1 1

∑ ∑

∑∑

∑∑

= =

= =

= =

⋅⋅=

⋅⋅=

⋅=

m

j

n

i

j
iij

active
j

n

i

m

j

j
i

active
jij

n

i

m

j

j
iij

activeactive

cxECN

cECNx

exECNXTen

We assume in Eq. (2) that no energy consumption is
incurred when nodes are sitting idle. However, this
assumption is not valid for real-world embedded
systems. Before removing this assumption, we
introduce a vector of energy consumption rates for the
nodes when their energy states are idle,
i.e., ()idle

m
idleidleidle ECNECNECNECN ,,, 21 L= ,

where as an energy consumption rate of

node j when it is inactive. Additionally, we define fi as
the complete time of task ti. Then, we obtain the
analytical formula for the energy consumed by the
embedded nodes when they are idle:

idle
jECN

Figure 1. Example task and networked embedded system. ECNi is the energy consumption
rate of node i, and ECLij is the energy consumption of a link between node i and j.

e2

t4

t9

t8

t3

t2

t11

t5 t6

t10

t7

ECN1=12.6 e1
p1

e3 e4 e5

e7 e6 e10

e8 e9

ECL12 = 0.8
tr12 = tr21= 2

 ECL13 = 1.5
 tr13 = tr31= 3

ECL23 = 1.2
tr23 = tr32= 1

ECN3=9.4 ECN2=4.5

 p1 p2 p3
3.1 4.3 1.9 T1
2.5 3.3 1.8 T2
9.6 4.2 5.5 T3
0.8 4.3 1.9 T4
3.4 7.5 1.0 T5
2.8 1.3 9.9 T6
3.8 4.5 7.4 T7
6.6 4.1 10.2 T8
5.1 0.3 1.7 T9
14.5 4.2 10.9 T10
1.1 2.3 3.8 T11

p3p2

() ())3(,max,,
1 11∑ ∑
= ==

⎟
⎠

⎞
⎜
⎝

⎛
⋅−⋅=

m

j

n

i

j
iiji

n

i

idle
j

idleidle cxfECNECNXTen

where is the schedule length (also referred

to as makespan time), and is

the total idle time on node j. Eq. (3) is valid because
the energy consumed by an idle node is a product of
the corresponding consumption rate and the idle
period.

()i

n

i
f

1
max

=

() ∑
==

⋅−
n

i

j
iiji

n

i
cxf

11
max

Thus, the total energy consumption of the
embedded nodes is derived from Eqs. (2) and (3) as

()

),,,(),,(
,,,

idleidleactiveactive

idleactive

ECNXTenECNXTen
ECNECNXTen

+

= (4)

Similarly, let denote the energy consumption of

a message (ti, tj)∈ E. Suppose ti and tj are respectively
allocated to node u and v, we can express the energy
consumption as

ijê

ijê

 () ,ˆ
uv

ij
uv

active
uvij b

s
bECLe ⋅= (5)

where is the energy consumption rate of
the link between node u and v, and sij/buv is the data
transmission time. Note that the energy consumption
rate of a network link depends on the transmission rate
of the link. In our model, we used the same energy-
latency tradeoffs function presented in [1].

()uvuv bECL

The energy consumption rate of the network links
can be modelled by an m×m matrix

() where, active
uv

active
uv

active ECLECLECL = is the
energy consumption rate function of the link between
pu and pv. The energy consumption in a link between
pu and pv, denoted by , is calculated as a
cumulative energy consumption of all messages
transmitted on the link. The link’s energy consumption

 can be derived from Eq. (5). Then, we have

active
uvel

active
uvel

()

()

() ,

 ˆ,,

1 ,1

),(

),(

uv

ij
uv

n

i

n

ijj

active
uvjviu

Lee uv

ij
uv

active
uv

Lee
ij

activeactive
uv

b
s

bECLxx

b
s

bECL

eECLXTel

uvji

uvji

⋅⋅=

⋅=

=

∑ ∑

∑

∑

= ≠=

∈

∈

 (6)

where Luv is a set of messages transmitted over the link
between pu and pv, and Luv can be defined as

{ }.110,1,),(=∧=∧>≤≤∈∀= jviuijjiuv xxsmvuEttL

It is assumed in Eq. (6) that all the messages are
transmitted over the link at the same transmission rate,
which may not be true for realistic traffic patterns.
Hence, we relax the assumption by allowing different
message to be transmitted at various rates, depending
on an underlying energy-aware message scheduling
mechanism, which we recently developed [1]. Let
denote the transmission rate at which the message (ti,
tj) is delivered along the link between pu and pv. Then,

is modified as

ij
uvb

active
uvel

()

() .

 ,,

1 ,1
ij
uv

ijij
uv

n

i

n

ijj

active
uvjviu

active
uv

b
s

bECLxx

ECLXTel

⋅⋅⋅

=

∑ ∑
= ≠=

 (7)

The energy consumption of links, i.e,

, in the networked
embedded system is derived from Eq. (7). Specifically,

 is equivalent to the
summation of all the links energy consumption. Thus,

can be expressed as

),,(activeactive ECLXTel

),,(activeactive ECLXTel

),,(activeactive ECLXTel

()

()

() ij
uv

ijij
uv

active
uv

n

i

n

ijj

m

u

m

uvv
jviu

m

u

m

uvv

active
uv

active
uv

activeactive

b
s

bECLxx

ECLXTel

ECLXTel

⋅⋅⋅=

=

∑ ∑ ∑ ∑

∑ ∑

= ≠= = ≠=

= ≠=

1 ,1 1 ,1

1 ,1

,,

,,
 (8)

Again, we assume in Eq. (8) that no energy

consumption is incurred when a link has no message to
transmit. We relax this assumption by considering
energy consumption when a link is idle during the
cause of an application’s execution. An energy
consumption rate of a link sitting idle is denoted
by , and we obtain the energy consumed by the

link when it is inactive as:

idle
jECL

()

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅−⋅

=

∑ ∑
= ≠=

ij
uv

ij
n

i

n

ijj
jviui

n

i

idle
uv

idleidle
uv

b
s

xxfECL

ECLXTel

1 ,1
max

,,
 (9)

where () ij
uv

ij
n

i

n

ijj
jviui

n

i b
s

xxf ∑ ∑
= ≠=

⋅⋅−
1 ,1

max is the total

idle time over the link, and is computed as a
product of the consumption rate and idle period of the
link.

idle
uvel

The energy consumption of all the links during their
idle periods is expressed as

()

()∑ ∑ ∑ ∑
= ≠= = ≠=

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅−

=
m

u

m

uvv
ij
uv

ij
n

i

n

ijj
jviui

n

i

idle
uv

idle

b
s

xxfECL

ECLXTel

1 ,1 1 ,1
 max

,,
 (10)

The total energy consumption of the network links

is derived from Eqs. (8) and (10) as follows

()

),,,(),,(
,,,

idleidleactiveactive

idleactive

ECLXTelECLXTel
ECLECLXTel

+

= (11)

Based on Eqs.(4) and (11), we can calculate the

energy dissipation experienced by a parallel
application with task set T and allocation matrix X.
Given the energy consumption rate vectors

, the energy
consumption of the networked embedded system can
be expressed as

idleactiveidleactive ECLECLECNECN ,,,

 (12)

),,,(
),,,(

),,,,,(

idleactive

idleactive

idleactiveidleactive

ECLECLXTel
ECNECNXTen

ECLECLECNECNXTe
+

=

3. The BEATA algorithm

In an effort to reduce an overall energy
consumption of the heterogeneous system, we
designed the BEATA algorithm, which aims at
blending an energy conservation scheme with task
allocation for networked embedded systems that are
heterogeneous in nature. To make the best trade-off
between energy-saving and schedule lengths, we
employ an energy-adaptive window, within which a
node is chosen for each task in a way to offer lower
energy consumption and earlier finish time of the task.

Now we present the BEATA algorithm in Figure 2
BEATA is conducive to increasing heterogeneous
nodes’ lifetime while maintaining high performance in
terms of makespan time for parallel applications
running on networked embedded systems. In other
words, BEATA can increase processing nodes’
lifetimes by dramatically reducing energy dissipation
(see Step 14). Before minimizing the energy

consumption of task ti, BEATA organizes all the nodes
in a non-decreasing order in terms of ti’s earliest finish
time (see Eq. 16). Step 8 determines the energy
consumption incurred by the task on a node, whereas
Steps 9-10 calculate the energy consumed by all the
messages received by the task from its predecessors.
Among all the candidate nodes listed in the energy-
adaptive window, Step 14 chooses the most
appropriate node that yields the minimal energy
dissipation for the task and its corresponding
messages, thereby conserving energy without
excessive performance deterioration. Then, Step 15
allocates the task to the best candidate node. After the
allocation of the task is accomplished, Step 16 updates
the schedule of the node to which the task is allocated.

1.for each task ti ∈ T do
2. for each node pu ∈ P in the system do
3. Compute estu(ti)
4. Compute fu (ti) (see Eq. 15)
5. end for
6. Sort all nodes in finish time of ti
7. for each node in energy-adaptive window do
8. Compute energy consumption of ti
9. for each ti’s predecessor tj, do
10. Compute the energy consumption
 cause by message (tj, ti)
11. Compute the total energy consumed
 by ti and the messages sent from
 the predecessors
12. end for
13. end for
14. Select pv in energy-adaptive window that
 offers the smallest energy consumption for ti
 and messages sent from ti‘s predecessors
15. Assign ti to pv
16. Update the schedule on node pv
17. Compute the energy consumed by ti on pv
 and the messages received by ti
18. Record start time and finish time for task ti
19.end for

Figure 2. The BEATA algorithm.

Two important parameters, the earliest start time
and finish time on a node, are used in the above
algorithm. We denote the earliest start time and finish
time of task ti on node pu by estu(ti) and fu(ti),
respectively. In what follows we present derivations
leading to the final expressions for these two
parameters. Suppose task ti has only one predecessor
task tj, the earliest available time eatu(tj, ti) of ti relies
on (a) the finish time fj of tj, (b) the message start time,
mst(tj, ti), and (c) the transmission time, sji/bvu, for the
message sent from tj to ti, where pv is the processor to
which task tj has been allocated. It is assumed that if

both the tasks are allocated to the same embedded
node, the transmission time is negligible. Thus, eatu(vj,
vi) is expressed as

⎩
⎨
⎧

+
=

=
otherwise ,),(

 if ,
),(

vujiij

vuj
iju bsttmst

ppf
vveat (13)

The earliest available time of ti, which is denoted by
eatu(ti), is the maximum of eatu(vj, vi) among all its
predecessors. Considering all predecessors of ti, we
can obtain eatu(ti) as

 { }.),(max)(

),(ijuEttiu tteatteat
ij ∈

= (14)

Now we are positioned to derive the earliest start
time estu(ti), which is computed based on eatu(ti). More
specifically, estu(ti) is calculated by checking the
schedule on pu to identify an idle time slot that starts
later than the task’s eatu(ti) and is large enough to
accommodate the task. With the value of estu(ti) in
place, we can obtain the finish time of ti on pu using
Eq. (15). The finish time equals to the summation of
the earliest start time estu(ti) and ti’s execution time on
pu.

 (15) .)()(u
iiuiu ctesttf +=

The following theorem gives the time complexity of
the proposed BEATA algorithm.
Theorem 1. Given a networked embedded system and
a parallel application represented as a task graph. The
time complexity of BEATA is O(nmlgm+nkq), where n
is the number of tasks, m is the number of nodes, k is
the energy-adaptive window size, and q is the
maximum in-degrees of the task graph.
Proof. It takes O(m) time to compute the earliest start
times and earliest finish times for a task on all the
nodes (see Steps 3 and 4). The time complexity of
sorting the earliest finish times is O(mlgm), since we
only have m nodes (see Step 6). To determine the most
appropriate node that offers the minimal energy
consumption of a task, the time complexity is O(kq)
(see Steps 7-13). Other steps simply take O(1) time.
Hence, the time complexity of the BEATA algorithm
is given as follows: O(n)(O(m) + O(mlgm)+ O(kq)) =
O(nmlgm+nkq).

4. Performance evaluation

Now we are in a position to evaluate the
effectiveness of the proposed energy-latency driven
task allocation scheme. To demonstrate the strength of
BEATA, we compare it with the list scheduling
scheme, which is a well-known scheduler for parallel

applications. The LIST algorithm is briefly described

below.

Parameter Value (Fixed) - (Varied)

Number of tasks (300) – (50, 100, 200, 300,
400, 500)

Energy-adaptive
window

(4) – (2, 4, 6, 8, 10, 12, 14,
16)

Number of nodes (64)
Energy consumption
rate heterogeneity 1.2 (see Eq. 16)

Standard node energy
consumption rate 200 mW

Communication energy
consumption rate

The energy-transmission
time model in [1].

Table 1. System parameters.

 LIST: The most common heuristic for DAG
scheduling in a heterogeneous system. For each task
allocation, it chooses the computing node that can
offer the task earliest finish time considering both
computation time and communication time. Its goal is
to generate a schedule for a DAG with the shortest
length.

4.1. Simulation setup

Before presenting empirical results, we present the
simulation model as follows. Table 1 summarizes the
configuration parameters of simulated networked
embedded systems used in our experiments. The
parameters of computing nodes in the networked
embedded systems are chosen to resemble real-world
processors like Intel StrongARM 1100. The
relationship between energy rate and transmission rate
is 100 mW at 100 Kbps, which means the time and
energy cost for transmitting one bit are around 10 µsec
and 1 µJoule [1]. All synthetic parallel jobs used from
Section 4.2 to Section 4.3 were created by TGFF [3], a
randomized task graph generator [13].

Although number of tasks, number of computing
nodes, out degree, and task execution time are
synthetically generated, we examined impacts of these
important workload parameters on system performance
by controlling the parameters. The performance
metrics by which we evaluate system performance
include:
� Makespan (the latest task completion time in the

task set represented by a DAG).
� Energy consumption: total energy consumed by

the task set including computation energy
consumption and communication energy
consumption (see Eq. 12).

� Utilization standard deviation (USD): standard
deviation of computing nodes utilization in the
simulated networked embedded systems.

� Energy standard deviation (PSD): standard
deviation of computing nodes energy
consumption in the simulated networked
embedded systems.

4.2. Overall performance comparisons

The goal of this experiment is to compare the
proposed BEATA algorithm against the conventional
list scheduling scheme to understand the sensitivity of
the two heuristics to the number of tasks in a DAG.
We tested 6 task graphs with the number of tasks
varying from 50 to 500 with precedence constraints.

Figure 3. Performance impact of
number of tasks.

We observe from Figure 3 (a) that BEATA and

LIST exhibit very similar performance in terms of
makespan. An interesting observation is that BEATA
even generates a shorter schedule than LIST when the

number of tasks is 300. The “anomaly” can be
explained by the fact that the LIST algorithm cannot
guarantee the shortest schedule in a heterogeneous
system due to lack of the information about tasks not
yet scheduled and the varying execution times for each
task on different computing nodes. Compared with
LIST, BEATA on average only increases makespan by
2.9% but saves energy by 12.1%. Figure 3 (b) reveals
that BEATA consistently performs better than LIST in
terms of energy consumption.

4.3 Sensitivity to energy-adaptive windows

To verify the performance impact of energy-

adaptive window, we evaluate the performance as
functions of size of energy-adaptive window. Since
LIST does not have an energy-adaptive window, its
performance in all metrics keeps constant.

 (a)

(a)

(b)

(b)
 Figure 4. Performance impact of

size of energy-adaptive window.

The results from Figure 4 validate the relationships
between the two algorithms described in Section 3.

When energy-adaptive window was set to 1, BEATA
degraded to LIST. We observe from Figure 4 that
BEATA achieves an excellent trade-off between
makespan and energy consumption when the size of
energy-adaptive window falls in the range [3, 5].
Within this range, BEATA in terms of makespan
achieves almost the same performance as LIST (on
average merely 0.42% longer), while it can save
energy up to 10.4%.

5. Conclusions

In this paper, we address the issue of allocating
tasks of parallel applications in heterogeneous
embedded systems with an objective of energy-saving
and latency-reducing. BEATA (Balanced Energy-
Aware Task Allocation), a task allocation scheme
considering both energy consumption and schedule
length, is developed to solve the energy-latency
dilemma. To facilitate the presentation of BEATA, we
also proposed mathematical models to describe a
system framework, parallel applications with
precedence constraints, and energy consumption
model. We conducted extensive experiments using a
real world application as well as synthetic benchmarks.
The experimental results show that BEATA
significantly improves the performance in terms of
energy dissipation and makespan time over an existing
allocation scheme. Compared with LIST, BEATA
achieves improvement in energy-saving on averages of
12.1% with only 2.9% increase in makespan.

Future studies in this research can be performed in
the following directions. First, we will extend our
scheme to multi-dimensional computing resources
from which energy-saving can be achieved. For now,
we simply consider CPU time and network
communication time. Memory access and I/O activities
will be considered in the future. Second, we intend to
enable the BEATA scheme to deal with real-time
parallel applications, where the hard deadlines must be
guaranteed.

Acknowledgements

The work reported in this paper was supported in

part by the New Mexico Institute of Mining and
Technology under Grant 103295 and by Intel
Corporation under Grant 2005-04-070.sible.

References
[1] M. Alghamdi, T. Xie, X. Qin, “PARM: A Power-Aware

Message Scheduling Algorithm for Real-Time Wireless
Networks,” ACM Workshop Wireless Multimedia

Networking and Performance Modeling, Canada, 2005.
[2] W.S. Conner, L. Krishnamurty, R. Want, “Making

Everyday Life Easier Using Dense Sensor Networks,”
Ubicomp, pp. 49-55, 2001.

[3] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF:Task
graphs for free,” Proc. Int’l Workshop. Hard-
ware/Software Codesign, pp. 97-101, Mar. 1998.

[4] D. Estrin, L. Girod, G. Pottie, M. Srivastava,
“Instrumenting the world with wireless sensor
networks,” Proc. Int’l Conf. Acoustics, Speech, and
Signal Processing, Salt Lake City, Utah, May 2001.

[5] L. He, A. Jatvis, and D. P. Spooner, “Dynamic
scheduling of parallel real-time jobs by modelling spare
capabilities in heterogeneous clusters,” Proc. Int’l Conf.
Cluster Computing, pp. 2-10, Dec. 2003.

[6] J. Luo, N.K. Jha, “Energy-conscious joint scheduling of
periodic task graphs and aperiodic tasks in distributed
real-time embedded systems”, IEEE/ACM Int’l Conf.
Computer Aided Design, 2000.

[7] S. Malik,M. Martonosi, Y.S. Li, "Static Timing
Analysis of Embedded Software", Design Automation
Conference", pp.147-152, 1997.

[8] S. Mohanty, V.K. Prasanna, “A hierarchical approach
for energy efficient application design using
heterogeneous embedded systems,” CASES, pp. 243-
254, 2003.

[9] S. Park, V. Raghunathan, M. B. Srivastava, "Energy
Efficiency and Fairness Tradeoffs in Multi-Resource
Multi-Tasking Embedded Systems", ACM Int’l Symp.
Low Energy Electronics and Design, August 2003.

[10] X. Qin and H. Jiang, “Dynamic, Reliability-driven
Scheduling of Parallel Real-time Jobs in Heterogeneous
Systems,” Proc. 30th Int’l Conf. Parallel Processing,
pp.113-122, 2001.

[11] Z. Shao, "High performance, low energy and secure
embedded systems", Ph.D. Dissertation, Department of
Computer Science, University of Texas at Dallas, 2005.

[12] T. Simunic, L. Benini, G. D. Micheli, M. Hans, “Source
code optimization and profiling of energy consumption
in embedded systems,” Int’l Symp. System Synthesis,
2000.

[13] C.M. Woodside and G.G. Monforton, "Fast Allocation
of Processes in Distributed and Parallel Systems", IEEE
Trans. on Parallel and Distributed Systems, Vol. 4, No.
2, pp. 164-174, Feb. 1993.

[14] T. Xie and X. Qin, “A New Allocation Scheme for
Parallel Applications with Deadline and Security
Constraints on Clusters,” Proc. 7th IEEE Int’l Conf.
Cluster Computing, Boston, USA, 2005.

[15] Y. Yu, V. K. Prasanna, "Energy-balanced task
allocation for parallel processing in wireless sensor
networks," Mobile Networks and Applications, Vol. 10,
pp. 115-131, 2005.

[16] D. Zhu, R. Melhem, D. Mossé, “The Effects of Energy
Management on Reliability in Real-Time Embedded
Systems,” Int’l Conf. Computer Aidded Design, San
Jose, Nov. 2004.

	1. Introduction
	2. System models
	2.1. The networked embedded system
	2.2. The task model
	2.3. Energy consumption model

	3. The BEATA algorithm
	4. Performance evaluation
	4.1. Simulation setup
	4.2. Overall performance comparisons
	4.3 Sensitivity to energy-adaptive windows

	5. Conclusions
	Acknowledgements
	References

