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ABSTRACT 

We present efficient algorithms for real-time rendering of 

ocean using the newest features of programmable graphics 

processors (GPU). It differs from previous works in three 

aspects: adaptive GPU-based ocean surface tessellation, 

sophisticated optical effects for shallow water, and spray 

dynamics for oscillating waves. Our tessellation scheme not 

only offers easier level-of-detail (LOD) control but also 

avoids the loading of vertex attributes from CPU to GPU at 

each frame. The object-space wave sampling approach 

allows us to produce sophisticated optical effects for 

shallow water and implement a state-preserving particle 

system for simulating spray motions interactively. 

1. INTRODUCTION 

Interactive rendering of oceanic scenes has become more 

and more important nowadays, especially for computer 

games. Although a number of works present ready-to-use 

simulations, those techniques cover only a few possible 

ways of water interacting with the environment. With the 

advance of programmable features, many algorithms 

previously limited to offline processing have become 

feasible for real-time usage. For examples, vertex shaders 

can be used to create the moving water surfaces and to 

simulate spray motions. Pixel shaders are commonly used 

to produce the sophisticated light effects such as sky 

reflection, sunlight glare, refraction, and the blue-to-

greenish water color.  

In this work, we present a real-time method for 

rendering ocean scenes with the following features: 

(1) A GPU-based surface tessellation scheme, which 

allows viewers to interactively fly over an unbounded 

animated ocean, as our scheme does not require the 

ocean surface mesh to be predetermined.  It not only 

offers an intuitive way of level-of-detail (LOD) control 

for any viewpoint but also avoids the loading of vertex 

attributes from CPU to GPU at each frame.  

(2) Interactive spray motion simulation for oscillating 

waves. 

(3) Object-space wave sampling approach allows us to clip 

those objects across the water surface accurately for 

sophisticated optical behaviors. 

By utilizing the flexibility in programmable shader 

hardware, we are able to develop practical methods to 

render realistic-looking water surfaces at the speed of about 

10 frames per second on a PC (with a 2.8GHz Pentium 4 

processor, 512 MB RAM, PCI Express, and an NVIDIA 

GeForce 6600 GPU). 

2. RELATED WORK 

The classic work in ocean wave generation is well 

described in [3]. Tessendorf [16] presented several offline 

approaches including spectral wave modeling and 

sophisticated light effects for realistic simulation, animation, 

and rendering of ocean water environment. 

Premože and Ashikhmin [13] introduced a method for 

wave generation on water surfaces using a physically-based 

approach and described a non-real-time light transport 

approach for computing complex lighting effects of ocean.  

Nishita and Nakamae [11] presented a method for 

rendering under-water optical effects such as caustics and 

shafts of light. They calculated the caustics on a scan-line 

basis, which took several minutes to create each image. 

A good overview of deep water animation and 

hardware-accelerated rendering is given in [7]. They 

presented a texture-based method for rendering foam and 

used a CPU-based particle system to generate spray for 

oscillating waves. Jeschke et al. [8] presented a procedural 

model for breaking waves. 

The optical behavior is also well simulated in real time 

in [4]. However their method is limited to calm ocean 

waves only, due to the use of planar mirrors for local 

reflection and refraction. Belyaev [1] proposed a real-time 

rendering method for the correct colors of water and 

refracted water bottom surfaces.  

In [4], the wave geometry is represented view-

dependently as a dynamic displacement map for near-view 

area and a bump map for a more distant region. The closed 

area is embedded an extra binary tree to determine the 

refinement level basing on the height of view point. The 

more distant region is decided by two conic curves, which 

cover all ocean waves with visible height variation for all 

viewing heights and directions.

Kryachko [9] used a static radial grid, centered at the 

camera position, to tessellate the water surface. However 
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the number of tessellated vertices that end up within the 

view frustum is about 25%. 

Johanson [5] used a CPU-based tessellation scheme to 

tessellate the visible region of the water surface according 

to the current viewpoint. However, the computation for 

those positions and normals of the visible mesh burdens the 

CPU heavily.  Besides, the loading of these vertices from 

CPU to GPU on-the-fly stalls the parallelism of the CPU 

and the GPU. 

Demers [2] tessellated in eye space and mapped a 

regular grid to the ocean plane within the view frustum. 

This allows users to render only the visible geometry and 

tessellate more finely in the foreground than the 

background. However, further implementation detail is not 

currently available. 

3. OCEAN WATER SIMULATION 

3.1. Water surface representation 

A pre-defined grid is a straightforward way to represent the 

water surface, but it suffers from a static resolution. So, we 

use GPU to tessellate the visible region of the water surface 

according to the current viewpoint.  First, we determine a 

rectangle of the water surface that is big enough to cover 

the maximum height variations in waves according to the 

current viewpoint. Then, this minimum visible region of the 

water surface represented as a vertex texture is discretized 

in screen space to a regular grid with a set of coordinates 

which span across the [0,1]×[0,1] range in homogeneous 

coordinates in the same fashion as interpolating texture 

coordinates. Finally, we project these screen-space grid 

points to object space, and the resulting grid points provide 

the positions where the height field of waves is evaluated. 

Using this scheme, the viewer’s motion induces a 

continuous movement of the mesh over the ocean surface, 

and an adequate resolution is maintained everywhere in the 

computed image (See Fig. 1).  

3.2. Ocean waves modeling 

The spectral-like waves as described in [16] are suitable for 

the creation of a height field that spans over a large area. It 

is tiled in both space and time, so it can be stored to 

textures. These textures are height maps where each value 

represents the elevation for the corresponding point of the 

horizontal plane (See Fig. 2). More detail of GPU-based 

approach is in [6].  

3.3. Object-space wave sampling 

As described in Section 3.1, the resulting grid points of the 

visible water surface provide the positions where the height 

field of wave is evaluated. So, we subsequently sample a 

set of height maps at different scale to get a different spatial 

resolution of waves as follows:  

                     (2) 

                                                                                          (1) 

where tex2D() is an intrinsic sampling function of GPU, 

Vpos is the grid point of water surface, and scalei controls 

the filtering that is done during sampling.  

Although the tessellation changes in each frame, we 

always use the object-space position from the resulting grid 

points to sampling the height field of the waves. In this 

manner, we can avoid the flickering artifact across 

successive frames. 

3.4. Spray simulation 

A state-preserving particle system [10, 14] is applied for 

spray simulation. First, we store the active tag, velocity, 

emit direction, and position in floating point textures and 

the index in vertex buffer for those vertices of objects (for 

example terrain or whales) between the lower bound and 

the upper bound of ocean wave (See Fig. 3).  All particles 

are initially invisible by setting the w-component of 

position to zero. Then, we perform one time step to update 

those attributes (e.g., active tag, velocity, emit direction, 

and position) from previous values on GPU. This scheme 

can avoid uploading the data of attributes for all particles 

from CPU to GPU per frame, which is critical for rendering 
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Fig. 1. The left is the visible ocean region in object space. 

The middle is the corresponding screen-space rectangle 

discretized to a regular grid which is represented as a 

vertex texture. The right is the corresponding region with 

applying waves on it. 
Fig. 2. The left are the random Fourier amplitudes of ocean 

waves and the corresponding height map. The right is a 

height map spanning over an unbounded water surface. 
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the spray motion at interactive frame rate. Finally, those 

active particles are rendered as additive-alpha point sprites. 

3.5. Optical effects 

The optical properties can be decomposed into a reflection 

component and a refraction component, modulated by a 

Fresnel function as follows: 

Cresult = F( )*Creflect + (1-F( ))*Crefract                   (2) 

where Cresult is the resulting color of the water surface, 

Creflect is the color coming from above-water environment 

along the reflection vector, Crefract is the color coming from 

the underwater scene along the refraction vector, F( ) is the 

Fresnel term, and  is the angle of the viewer to the water 

surface. 

3.5.1. Refelection 

The reflection color caused by the environment can be 

further divided into three parts: sky reflection, sun light and 

local reflection. 

Creflect = Cskylight + Csunlight + Clocalreflect                    (3)

Sky reflection is based on environment mapping which 

stores the cloud thickness in the alpha channel (Ccloud. ) for 

sky rendering and Preetham’s spectral radiance model [12] 

to approximate full spectrum daylight for various 

atmospheric conditions.  

Cskylight = Cskycolor*(1-Ccloud. )+ Ccloud.rgb*Ccloud. (4) 

where Cskycolor is Preetham’s spectral radiance. 

Water is an excellent specular reflector at grazing 

angles. We use per-pixel Phong lighting model with a large 

specular exponent to calculate the specular highlight term 

for sun light and multiply the depth value to the shininess 

term to adjust the shape of sun light on the water surface. 

Csunlight=Csuncolor*(Vreflect,•Vsun)
shininess*VhPos.z              (5) 

While the environment mapping is ideal for reflecting 

environment in distance, it is not suitable for local 

reflection as described in [1, 7]. The reflection color caused 

by the local environment can be generated as regarding the 

water surface to be a mirror, and all objects above the water 

surface are rendered into a reflection map. This method 

works well for clam water surface only. For oscillating 

water, it needs to take into account the per-pixel height of 

ocean waves instead of roughly using the plane y = 0 to clip 

those objects across the water surface accurately (See Fig. 

4). 

In order to simulate high-frequency waves, the local 

reflection map is sampled by projective texture 

computations with perturbed texture coordinates from the 

bump map. We also divide the distortion with the post-

perspective z-coordinate to make the distortion distance-

dependant and to make its post-perspective space 

magnitude lessen with the distance. 

Clocalrefectl = tex2D(Treflmap,Vscr.xy+ *Vnor.xz/Vscr.z)         (6) 

where Treflmap is the local refection map. Vnor is the texel 

fetched from the bump map. Vscr is the screen coordinates 

of the water surface. is the user-defined scale factor for 

the perturbed texture coordinate . 

3.5.2. Refraction 

The refraction color is decided by the scattering object 

color (Cobjcolor) inside the water and the color of water 

(Cwatcolor) which is influenced by scattering and absorption 

effects of water molecules and suspensions. 

Crefract=(e-atten*dist)*Cobjcolor+(1- e-atten*dist)*Cwatcolor          (7)

where dist is the distance from the water surface to the 

object and atten is the attenuation coefficient of water.

Cobjcolor is generated by the same consideration as described 

in Section 3.5.1 with two differences – all objects under the 

water surface are rendered into a refraction map and 

perceptually, the refraction distorts the image of all objects 

under water with the scaling factor 1/1.33 along the y-axis. 

Cwatcolor is based on the experiment performed in [15] with 

the depth y and can be written as:

Cwatcolor.rgb = (0.30 kd*y, 0.73 kd*y,0.63 kd*y)               (8) 

Upper bound

Terrain

Water surface

Lower bound

Spray candidates on 

the terrain

Terrain

Water surface

Maximum wave amplitude

                    (a)                                     (b) 

Fig. 3. (a) The blue particles are those candidates to 

simulate spray. (b) The green particles are set to active due 

to their positions are under water and emitted along the 

predefined directions. 
                    (a)                                             (b) 

Fig. 4. (a) Scenes that shows artifacts caused by using 

static height y=0 to clip across objects. (b) Clip those 

pixels that are under the water accurately by using the 

exact height of ocean waves.
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4. IMPLEMENTATION AND RESLUTS 

Our water simulation system is divided into five stages (See 

Fig. 5): wave generation, surface tessellation, optical 

simulation, spray simulation, and water surface rendering. 

Except the first stage (wave generation), they are all 

implemented as shader programs in graphics hardware. 

Fig. 6 demonstrates six screenshots captured from our 

real-time rendering system, with the performance of about 

10 frames per second on a PC (with a 2.8GHz Pentium 4 

processor, 512 MB RAM, PCI Express, and an NVIDIA 

GeForce 6600 GPU).  
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Fig. 5. System overview. The green region is executed by 

CPU and the others are done by GPU. 

                    (a)                                           (b) 

                    (c)                                           (d) 

                     (e)                                           (f)

Fig. 6. The results captured from our real-time rendering 

system. (a) The sunset and sky light illumination. (b) The 

spray dynamics around rocks. (c) Local reflection and

depth-dependent water color. (d) The underwater scattering 

effect. (e) Spray dynamics around the whale which is 

falling into water. (f) Refraction and Fresnel effects. 
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