
GPU-based Ocean Rendering

Yung-Feng Chiu Chun-Fa Chang

National Tsing Hua University
{yfchiu, chang}@ibr.cs.nthu.edu.tw

ABSTRACT

We present efficient algorithms for real-time rendering of

ocean using the newest features of programmable graphics

processors (GPU). It differs from previous works in three

aspects: adaptive GPU-based ocean surface tessellation,

sophisticated optical effects for shallow water, and spray

dynamics for oscillating waves. Our tessellation scheme not

only offers easier level-of-detail (LOD) control but also

avoids the loading of vertex attributes from CPU to GPU at

each frame. The object-space wave sampling approach

allows us to produce sophisticated optical effects for

shallow water and implement a state-preserving particle

system for simulating spray motions interactively.

1. INTRODUCTION

Interactive rendering of oceanic scenes has become more

and more important nowadays, especially for computer

games. Although a number of works present ready-to-use

simulations, those techniques cover only a few possible

ways of water interacting with the environment. With the

advance of programmable features, many algorithms

previously limited to offline processing have become

feasible for real-time usage. For examples, vertex shaders

can be used to create the moving water surfaces and to

simulate spray motions. Pixel shaders are commonly used

to produce the sophisticated light effects such as sky

reflection, sunlight glare, refraction, and the blue-to-

greenish water color.

In this work, we present a real-time method for

rendering ocean scenes with the following features:

(1) A GPU-based surface tessellation scheme, which

allows viewers to interactively fly over an unbounded

animated ocean, as our scheme does not require the

ocean surface mesh to be predetermined. It not only

offers an intuitive way of level-of-detail (LOD) control

for any viewpoint but also avoids the loading of vertex

attributes from CPU to GPU at each frame.

(2) Interactive spray motion simulation for oscillating

waves.

(3) Object-space wave sampling approach allows us to clip

those objects across the water surface accurately for

sophisticated optical behaviors.

By utilizing the flexibility in programmable shader

hardware, we are able to develop practical methods to

render realistic-looking water surfaces at the speed of about

10 frames per second on a PC (with a 2.8GHz Pentium 4

processor, 512 MB RAM, PCI Express, and an NVIDIA

GeForce 6600 GPU).

2. RELATED WORK

The classic work in ocean wave generation is well

described in [3]. Tessendorf [16] presented several offline

approaches including spectral wave modeling and

sophisticated light effects for realistic simulation, animation,

and rendering of ocean water environment.

Premože and Ashikhmin [13] introduced a method for

wave generation on water surfaces using a physically-based

approach and described a non-real-time light transport

approach for computing complex lighting effects of ocean.

Nishita and Nakamae [11] presented a method for

rendering under-water optical effects such as caustics and

shafts of light. They calculated the caustics on a scan-line

basis, which took several minutes to create each image.

A good overview of deep water animation and

hardware-accelerated rendering is given in [7]. They

presented a texture-based method for rendering foam and

used a CPU-based particle system to generate spray for

oscillating waves. Jeschke et al. [8] presented a procedural

model for breaking waves.

The optical behavior is also well simulated in real time

in [4]. However their method is limited to calm ocean

waves only, due to the use of planar mirrors for local

reflection and refraction. Belyaev [1] proposed a real-time

rendering method for the correct colors of water and

refracted water bottom surfaces.

In [4], the wave geometry is represented view-

dependently as a dynamic displacement map for near-view

area and a bump map for a more distant region. The closed

area is embedded an extra binary tree to determine the

refinement level basing on the height of view point. The

more distant region is decided by two conic curves, which

cover all ocean waves with visible height variation for all

viewing heights and directions.

Kryachko [9] used a static radial grid, centered at the

camera position, to tessellate the water surface. However

21251­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

the number of tessellated vertices that end up within the

view frustum is about 25%.

Johanson [5] used a CPU-based tessellation scheme to

tessellate the visible region of the water surface according

to the current viewpoint. However, the computation for

those positions and normals of the visible mesh burdens the

CPU heavily. Besides, the loading of these vertices from

CPU to GPU on-the-fly stalls the parallelism of the CPU

and the GPU.

Demers [2] tessellated in eye space and mapped a

regular grid to the ocean plane within the view frustum.

This allows users to render only the visible geometry and

tessellate more finely in the foreground than the

background. However, further implementation detail is not

currently available.

3. OCEAN WATER SIMULATION

3.1. Water surface representation

A pre-defined grid is a straightforward way to represent the

water surface, but it suffers from a static resolution. So, we

use GPU to tessellate the visible region of the water surface

according to the current viewpoint. First, we determine a

rectangle of the water surface that is big enough to cover

the maximum height variations in waves according to the

current viewpoint. Then, this minimum visible region of the

water surface represented as a vertex texture is discretized

in screen space to a regular grid with a set of coordinates

which span across the [0,1]×[0,1] range in homogeneous

coordinates in the same fashion as interpolating texture

coordinates. Finally, we project these screen-space grid

points to object space, and the resulting grid points provide

the positions where the height field of waves is evaluated.

Using this scheme, the viewer’s motion induces a

continuous movement of the mesh over the ocean surface,

and an adequate resolution is maintained everywhere in the

computed image (See Fig. 1).

3.2. Ocean waves modeling

The spectral-like waves as described in [16] are suitable for

the creation of a height field that spans over a large area. It

is tiled in both space and time, so it can be stored to

textures. These textures are height maps where each value

represents the elevation for the corresponding point of the

horizontal plane (See Fig. 2). More detail of GPU-based

approach is in [6].

3.3. Object-space wave sampling

As described in Section 3.1, the resulting grid points of the

visible water surface provide the positions where the height

field of wave is evaluated. So, we subsequently sample a

set of height maps at different scale to get a different spatial

resolution of waves as follows:

 (2)

 (1)

where tex2D() is an intrinsic sampling function of GPU,

Vpos is the grid point of water surface, and scalei controls

the filtering that is done during sampling.

Although the tessellation changes in each frame, we

always use the object-space position from the resulting grid

points to sampling the height field of the waves. In this

manner, we can avoid the flickering artifact across

successive frames.

3.4. Spray simulation

A state-preserving particle system [10, 14] is applied for

spray simulation. First, we store the active tag, velocity,

emit direction, and position in floating point textures and

the index in vertex buffer for those vertices of objects (for

example terrain or whales) between the lower bound and

the upper bound of ocean wave (See Fig. 3). All particles

are initially invisible by setting the w-component of

position to zero. Then, we perform one time step to update

those attributes (e.g., active tag, velocity, emit direction,

and position) from previous values on GPU. This scheme

can avoid uploading the data of attributes for all particles

from CPU to GPU per frame, which is critical for rendering

n

i

iposiw scalexzVwaveDtexH
0

)/.,(2

Fig. 1. The left is the visible ocean region in object space.

The middle is the corresponding screen-space rectangle

discretized to a regular grid which is represented as a

vertex texture. The right is the corresponding region with

applying waves on it.
Fig. 2. The left are the random Fourier amplitudes of ocean

waves and the corresponding height map. The right is a

height map spanning over an unbounded water surface.

2126

the spray motion at interactive frame rate. Finally, those

active particles are rendered as additive-alpha point sprites.

3.5. Optical effects

The optical properties can be decomposed into a reflection

component and a refraction component, modulated by a

Fresnel function as follows:

Cresult = F()*Creflect + (1-F())*Crefract (2)

where Cresult is the resulting color of the water surface,

Creflect is the color coming from above-water environment

along the reflection vector, Crefract is the color coming from

the underwater scene along the refraction vector, F() is the

Fresnel term, and is the angle of the viewer to the water

surface.

3.5.1. Refelection

The reflection color caused by the environment can be

further divided into three parts: sky reflection, sun light and

local reflection.

Creflect = Cskylight + Csunlight + Clocalreflect (3)

Sky reflection is based on environment mapping which

stores the cloud thickness in the alpha channel (Ccloud.) for

sky rendering and Preetham’s spectral radiance model [12]

to approximate full spectrum daylight for various

atmospheric conditions.

Cskylight = Cskycolor*(1-Ccloud.)+ Ccloud.rgb*Ccloud. (4)

where Cskycolor is Preetham’s spectral radiance.

Water is an excellent specular reflector at grazing

angles. We use per-pixel Phong lighting model with a large

specular exponent to calculate the specular highlight term

for sun light and multiply the depth value to the shininess

term to adjust the shape of sun light on the water surface.

Csunlight=Csuncolor*(Vreflect,•Vsun)
shininess*VhPos.z (5)

While the environment mapping is ideal for reflecting

environment in distance, it is not suitable for local

reflection as described in [1, 7]. The reflection color caused

by the local environment can be generated as regarding the

water surface to be a mirror, and all objects above the water

surface are rendered into a reflection map. This method

works well for clam water surface only. For oscillating

water, it needs to take into account the per-pixel height of

ocean waves instead of roughly using the plane y = 0 to clip

those objects across the water surface accurately (See Fig.

4).

In order to simulate high-frequency waves, the local

reflection map is sampled by projective texture

computations with perturbed texture coordinates from the

bump map. We also divide the distortion with the post-

perspective z-coordinate to make the distortion distance-

dependant and to make its post-perspective space

magnitude lessen with the distance.

Clocalrefectl = tex2D(Treflmap,Vscr.xy+ *Vnor.xz/Vscr.z) (6)

where Treflmap is the local refection map. Vnor is the texel

fetched from the bump map. Vscr is the screen coordinates

of the water surface. is the user-defined scale factor for

the perturbed texture coordinate .

3.5.2. Refraction

The refraction color is decided by the scattering object

color (Cobjcolor) inside the water and the color of water

(Cwatcolor) which is influenced by scattering and absorption

effects of water molecules and suspensions.

Crefract=(e-atten*dist)*Cobjcolor+(1- e-atten*dist)*Cwatcolor (7)

where dist is the distance from the water surface to the

object and atten is the attenuation coefficient of water.

Cobjcolor is generated by the same consideration as described

in Section 3.5.1 with two differences – all objects under the

water surface are rendered into a refraction map and

perceptually, the refraction distorts the image of all objects

under water with the scaling factor 1/1.33 along the y-axis.

Cwatcolor is based on the experiment performed in [15] with

the depth y and can be written as:

Cwatcolor.rgb = (0.30 kd*y, 0.73 kd*y,0.63 kd*y) (8)

Upper bound

Terrain

Water surface

Lower bound

Spray candidates on

the terrain

Terrain

Water surface

Maximum wave amplitude

 (a) (b)

Fig. 3. (a) The blue particles are those candidates to

simulate spray. (b) The green particles are set to active due

to their positions are under water and emitted along the

predefined directions.
 (a) (b)

Fig. 4. (a) Scenes that shows artifacts caused by using

static height y=0 to clip across objects. (b) Clip those

pixels that are under the water accurately by using the

exact height of ocean waves.

2127

4. IMPLEMENTATION AND RESLUTS

Our water simulation system is divided into five stages (See

Fig. 5): wave generation, surface tessellation, optical

simulation, spray simulation, and water surface rendering.

Except the first stage (wave generation), they are all

implemented as shader programs in graphics hardware.

Fig. 6 demonstrates six screenshots captured from our

real-time rendering system, with the performance of about

10 frames per second on a PC (with a 2.8GHz Pentium 4

processor, 512 MB RAM, PCI Express, and an NVIDIA

GeForce 6600 GPU).

5. REFERENCES

[1] Belyaev, V., “Real-time rendering of shallow water,”

GraphiCon’2004 , Conference Proceedings, 2004.

[2] Demers, J., “The Making of ‘Clear Sailing,” Secrets of the

NVIDIA Demo Team, CEDEC 2004.

[3] Fournier, A., and Reeves, W.T., “A simple model of ocean

waves,” In Computer Graphics (Proceedings of SIGGRAPH 86),

vol.20, pp. 75-84, 1986.

[4] Hu, Y., Velho, L., Tong, X., Guo, B., and Shum, H., “Realistic,

real-time rendering of ocean waves,” Computer Animation and

Virtual Worlds, Special Issue on Game Technologies, 2004.

[5] Johanson, C., “Real-time water rendering,” Master of science

thesis, Lund University, March, 2004.

[6] Jason L. Mitchell, "Real-Time Synthesis and Rendering of

Ocean Water," ATI Technical Report, April 2005.

[7] Jensen, L. S. and Goliáš, R., “Deep-water animation and

rendering,” Gamasutra article on realtime water, Sept.,

http://www.gamasutra.com/gdce/jensen/jensen_01.htm, 2001.

[8] Jeschke, S., Birkholz, H., and Schmann, H., “A procedural

model for interactive animation of breaking ocean waves,”

WSCG’2003, Plzen, February 3-7, 2003.

[9] Kryachko, Y., “Using vertex texture displacement for realistic

water rendering,” GPU Gems 2, Chapter 18, 2005.

[10] Latta, L., “Building a million particle systems,” Massive

Development GmbH, http://www.2ld.de/gdc2004/, 2004.

[11] Nishita, T. and Nakamae, E., “Method of displaying optical

effects within water using accumulation-buffer,” Proc. of ACM

SIGGRAPH 1994, August, pp. 373–380, 1994.

[12] Preetham, A. J., Shirley P., and Smits, B., “A practical

analytic model for daylight,” Proc. of ACM SIGGRAPH 1999,

August, pp.91–100, 1999.

[13] Premože, S. and Ashikhmin, M., “Rendering natural waters,”

Computer Graphics Forum 20, 4, pp. 189–200, 2001.

[14] Reeves, W. T., “Particle Systems - A Technique for

Modeling a Class of Fuzzy Objects,” ACM SIGGRAPH

Proceedings, 1983.

[15] Seafriends marine conservation and education centre, “Under

water photography: water and light,”

http://www.seafriends.org.nz/phgraph/water.htm

[16] Tessendorf, J., “Simulating ocean water,” ACM SIGGRAPH

2001 course notes, http://home1.get.net/tssndrf/, 2001

Fig. 5. System overview. The green region is executed by

CPU and the others are done by GPU.

 (a) (b)

 (c) (d)

 (e) (f)

Fig. 6. The results captured from our real-time rendering

system. (a) The sunset and sky light illumination. (b) The

spray dynamics around rocks. (c) Local reflection and

depth-dependent water color. (d) The underwater scattering

effect. (e) Spray dynamics around the whale which is

falling into water. (f) Refraction and Fresnel effects.

2128

