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ABSTRACT

Several standardized video coding algorithms use a well 

known discrete cosine transform (DCT) at the encoder to 

remove redundancy from video random processes. Its 

inverse, the IDCT is present at the decoder as well as at the 

encoder loop. The accuracy of this inverse transform, 

required to avoid large drift between the encoder and 

decoder, is defined in an IEEE standard which will be 

withdrawn from MPEG and ITU standardized codecs. Due 

to the huge number of computations required to compute the 

FDCT/IDCT (Forward/Inverse DCT) pair, reduction of their 

complexity is essential to speed up the video processing. In 

this paper, we propose a fast integer IDCT calculation 

method. Additionally, we insert it into the H.263 reference 

software in order to validate our proposed method.  The 

testing results using two different video sequences, at QCIF 

and CIF resolutions, show similar PSNR average values 

between the reference H.263 and the proposed H.263 codec. 

1. INTRODUCTION 

The H.263 [1] algorithm was designed as a low bitrate 

solution for video-conferencing and video-telephony 

applications. It is an hybrid motion compensated algorithm 

where the DCT is used to remove spatial redundancy. 

Surely, all DCT based image and video algorithms or 

standards will benefit from a fast DCT computation. Several 

floating-point DCT calculation algorithms have been 

proposed and usually can be classified into two classes: 

indirect and direct methods. The former computes the DCT 

through a FFT or other transforms and the latter through 

matrix factorization or recursive computation. 

When direct methods are chosen to calculate (NxN)-

point 2-D DCTs, the conventional approach follows the 

row-column method which requires 2N sets of N-point 1-D 

DCTs. In [2] and [3], the authors propose two 2-D DCT 

recursive algorithms based on fast 1-D DCT algorithms of 

[4] and [5]. However, true 2-D techniques are faster than the 

conventional row-column approach but demand more 

hardware resources. A direct 2-D method for the 2-D DCT 

based on polynomial transform techniques was provided by 

Duhamel and Guillemot [6]. Feig and Winograd [7] present 

a matrix factorization algorithm of the 2-D DCT matrix. In 

[8], Vetterli proposes an indirect method to calculate 2-D 

DCT by mapping it into a 2-D DFT plus a number of 

rotations. The 2-D DFT was computed through polynomial 

transform techniques.  In coding applications, the DCT is 

followed by scaling and quantization, instead of computing 

the full DCT, we have the advantage in computing a scaled 

version of it [9]. In this paper, we propose a new H.263 

codec where the decoder is multiplierless making it 

adequate for silicon implementation resulting in power 

saving and chip area reduction. The integer IDCT proposed 

in this paper and included in H.263 codec follows the same 

factorization structure as the DCT proposed in [10] which is 

based on a floating-point DCT algorithm developed by Feig 

and Winograd [7] with a complexity close to the theoretical 

lower bound on the multiplicative complexity presented in 

[11]. 

The paper is organized as follows. In Section 2, we 

briefly present the algorithm described in [7]. In Section 3 

we describe our integer IDCT algorithm. Section 4 presents 

some results in terms of computational complexity and 

accuracy. Finally conclusion remarks are presented in 

Section 5. 

2. THE FEIG AND WINOGRAD’S 2-D IDCT 

As described in the last section, we use one of two 

algorithms proposed in [7], the scaled version of the IDCT, 

with a computational complexity of 54 multiplications, 464 

additions and 6 shifts. 

In [7], Feig and Winograd proposed an algorithm for 

the factorization of the DCT matrix, which can be 

represented as a matricial product given by, 

82881888 RMRDPC    (1) 

where D8 is a diagonal matrix whose diagonal elements are 

{1; 0.3536; 0.1913; 0.4619; 0.2778; 0.4904; 0.4157; 

0.0975}. M8 is also composed of real values 

k/32)cos(2(k) , k=2,4,6. R82=B1B2B3 and P8 is a 

permutation matrix. 

The computation of the 2-D DCT on 8x8 points 

involves the product of the matrix, 

)RMRDP()RMRDP( 82881888288188  (2) 
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with a 64-pixel vector X. 

Since matrix C is orthogonal its inverse is equal to its 

transpose. Furthermore, as D is diagonal and M is 

symmetric, we have, 
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The 2-D IDCT can be calculated as 
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and since P is a permutation matrix, (4) can be transformed 

into 
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where X64 is the 64-point vector with DCT coefficients. 

The above equation yields an algorithm for the inverse 

scaled-DCT computation. Multiplication by DD  is a 

simple pointwise multiplication (which can be incorporated 

in pre-processing stages), TT PP  is a matrix permutation 

and multiplication of T
1

T
1 BB , T

2
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2 BB , T

1
T
1 AA ,

T
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T
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T
3 AA  by 64X  involves only additions, 

altogether requires 416 additions. Multiplication by MM

demands for 54 multiplications, 6 shifts and 46 additions. In 

total, the algorithm requires 54 multiplications, 462 

additions and 6 shifts. A more detailed explanation about 

the computation of the IDCT can be found in [7] and [10]. 

3. INTEGER 2-D IDCT 

Efficient implementation of the IDCT, in terms of 

computational complexity and power consumption, requires 

fixed-point (integer) implementations. However, in fixed-

point implementation, there is an inherent accuracy problem 

due to finite word length. Therefore, as the elements of 

matrix M are real numbers an approximation error will 

occur.

The multiplications between MM  and 
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The precision of the approximations (6) satisfy the 

conditions imposed in [12]. To preserve accurate 

calculations, we have to perform a scaling operation 

(multiplication by 215) to increase the internal precision. 

According to (5), DD  is the first operation in the 

calculation chain and our approach is to combine both 

operations, scaling and multiplication by  DD , into one 

operation denoted as SDSD . Furthermore SDSD  was 

also approximated by a sequence of additions and shifts. 

Since multiplication of a 64-point vector by SDSD  is 

simply a pointwise multiplication, (5) can be transformed 

into, 
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where .* and  || denote, respectively, a pointwise 

multiplication and interlacing operation whereby the 

columns of the 8x8 matrix are converted into a 64-point 

vector.

Our algorithm is therefore as follows. Firstly, input data 

go through a scaling operation which performs the 

multiplication by SD increasing the internal precision up to 

27 bits. Once this operation is performed, data is sent to the 

pre-addition stage which deals with the multiplication of the 

64-point scaled input vector by matrices )B(B T
2

T
2 and

)PBP(B TT
1

TT
1 . Then, the following operation is the IDCT 

core which performs the multiplication of a 64-point vector 

by matrix MM . The final stage is the post-addition, 

performing the multiplication by )A(A T
1

T
1 , )A(A T

2
T
2

and )A(A T
3

T
3 as well as the de-scaling operation that 

manages the rounding of the resulting numbers in order to 

match with the output dynamic range (9 bits). The de-

scaling operation consists of a right shift of 15 bits, together 

with a rounding operation, as follows, 

15)16384()( xxdescaling   (8) 

The matrix SD is given by, 
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with the elements in matrix SD are approximated following 

the same procedure as in (6), and are given by, 

sd0=212+1;

sd1=211+210-27+23+1;

sd2=211+210+26-1;

sd3=212-29-27+25-22;

sd4=212+210+27-25-21;

sd5=213-29-27+24+21;

sd6=214-210-29;

sd7=211+26+24+1;

sd8=211+27+26+24+22;

sd9=211+29-26+24;

sd10=212-28-26-24-1;

sd11=212+210+28+26+24+1;

sd12=213+211+29-26+24;

sd13=211+28+26+25-1;

sd14=211+29+26+25+23+21;       (10) 

sd15=212-27+24+22+21;

sd16=212+211-28-26-25+1;

sd17=213+211+210+26+25+21+1;

sd18=211+210-27+24+21+1;

sd19=212+28+26+24+21;

sd20=212+211+28+25+22+1;

sd21=213+212+28+26+24+21+1;

sd22=212+211+29-25+23+22;

sd23=213+210+28+27+25+1;

sd24=214+211+29-26+24;

sd25=214-211-28-26-25+1;

sd26=215-212-210-28+25+23+1;

sd27=215+214+212+29+25+24+22+1.

All operations are done with 32-bit integer arithmetic. 

4. TESTING RESULTS 

The computational complexity of the algorithm described in 

Section 2 is remarkable low, 54 multiplications, 464 

additions and 6 shifts making it competitive with other fast 

IDCTs available in the literature like [13] and [14] with 192 

multiplications + 512 additions and 176 multiplications + 

464 additions, respectively. 

Table 1.  Precision results for the proposed IDCT. 

Precision Interval Error type 

Sign=+1 Sign=-1 

 ppe 1 1 

 pme(0.015) 7.00e-004 5.00e-004 

[-5 ,+5]  omse(0.02) 4.17e-004 4.06e-004 

 pmse(0.06) 9.00e-004 1.00e-003 

 me(0.0015) 7.81e-006 2.50e-005 

 ppe 1 1 

 pme(0.015) 4.70e-003 3.80e-003 

[-256, +255]  omse(0.02) 1.73e-002 1.73e-002 

 pmse(0.06) 2.27e-002 2.27e-002 

 me(0.0015) 2.05e-004 1.67e-004 

 ppe 1 1 

 pme(0.015) 4.80e-003 5.20e-003 

[-300, +300]   omse(0.02) 1.70e-002 1.69e-002 

 pmse(0.06) 2.16e-002 2.17e-002 

 me(0.0015) 1.75e-004 2.23e-004 

 ppe 1 1 

 pme(0.015) 3.70e-003 3.60e-003 

[-384, +383]   omse(0.02) 1.62e-002 1.62e-002 

 pmse(0.06) 2.17e-002 2.18e-002 

 me(0.0015) 2.19e-005 7.81e-005 

 ppe 1 1 

 pme(0.015) 2.50e-003 2.60e-003 

[-512, +511]   omse(0.02) 1.63e-002 1.62e-002 

 pmse(0.06) 2.21e-002 2.20e-002 

 me(0.0015) 2.34e-005 5.00e-005 

The main purpose is actually to convert those 

multiplications into additions as described in Section 3. 

Thus, concerning our proposed multiplierless algorithm, the 

accuracy parameters are shown in Table 1, where ppe, pme, 

omse, pmse and me are mean peak error, peak mean error, 

overall mean square error, peak mean square error and mean 

error, respectively. The proposed integer IDCT fulfills thus 

all precisions defined in IEEE 1180 [12] and in the Call for 

Proposals recently issued by MPEG [15]. 

The following step is the replacement of IDCT at the 

H.263 encoder and decoder. Four different combinations of 

float and integer IDCT were tested as shown in Tables 2-5. 

In our setup, the H.263 encoder does not use any optional 

annexes neither B frames. The simulations were conducted 

using two test video sequences of 300 frames each, 

Foreman and Silent, at QCIF and CIF resolutions. The 

bitrates used were 32, 64, 128 and 256 kbps for QCIF and 

128, 256, 512 and 1000 kbps for CIF. Only the first frame 

was INTRA coded in order to observe the drifting effect. 

However, it is not recommended to use long refresh periods 

especially in error prone environments. At the decoder, the 

mean PSNR for all three color components was measured. 

For instance, the first row in Table 2 shows the PSNR (dB) 

results of reference FDCT and IDCT implementations with 

float values. The second table row presents the PSNR when 

the decoder reference IDCT is replaced by our IDCT 

whereas the third line presents the same metric but now 
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when the encoder reference IDCT is replaced by the 

proposed integer IDCT. Finally, the table bottom row shows 

the PSNR for the proposed integer implementation of the 

IDCT at the encoder and at the decoder. 

Table 2. Average PSNR obtained for all combinations. 

Video sequence Foreman QCIF. 

 32 

kbps

64

kbps

128

kbps

256

kbps

All Float 31.0068 33.0917 35.2959 37.5070 

Dec Int_IDCT 31.0064 33.0915 35.2943 37.5041 

Enc Int_IDCT 30.9768 33.0751 35.3025 37.5113 

Enc+Dec

Int_IDCT

30.9771 33.0753 35.3034 37.5133 

Table 3. Average PSNR obtained for all combinations. 

Video sequence Silent QCIF. 

 32 

kbps

64

kbps

128

kbps

256

kbps

All Float 34.0589 36.4157 39.4628 43.5960 

Dec Int_IDCT 34.0558 36.4130 39.4536 43.5655 

Enc Int_IDCT 33.9323 36.3541 39.4626 43.1094 

Enc+Dec

Int_IDCT

33.9314 36.3522 39.4705 43.1369 

Table 4. Average PSNR obtained for all combinations. 

Video sequence Foreman CIF. 

 128 

kbps

256

kbps

512

kbps

1000

kbps

All Float 32.1251 34.7484 36.9485 39.1405 

Dec Int_IDCT 32.1244 34.7466 36.9406 39.1255 

Enc Int_IDCT 32.1411 34.7386 36.9646 39.0531 

Enc+Dec

Int_IDCT

32.1407 34.7381 36.9643 39.0547 

Table 5. Average PSNR obtained for all combinations. 

Video sequence Silent CIF. 

 128 

kbps

256

kbps

512

kbps

1000

kbps

All Float 35.8330 38.0305 40.7261 44.1824 

Dec Int_IDCT 35.8307 38.0249 40.7148 44.1587 

Enc Int_IDCT 35.7831 38.0021 40.7657 44.1648 

Enc+Dec

Int_IDCT

35.7828 38.0013 40.7723 44.1852 

By observing Tables 2-5, we realized that the value 

differences are very small. Therefore, the performance of 

our modified H.263 is comparable to the original float 

IDCT based H.263. We also calculated the average PSNR 

per row using all four tables and the results are respectively, 

37.0106, 37.0031, 36.9586 and 36.9625 dB. The lowest 

PSNR occurred when our proposed algorithm is only placed 

at the encoder. The maximum drift is 1.3 dB and occurred 

for Foreman QCIF when the quantization parameter, QP=1. 

5. CONCLUSIONS 

This paper proposes a fast integer 2D-IDCT algorithm. The 

computational complexity is remarkable low, 979 additions 

and 674 shifts making it a very competitive integer IDCT 

satisfying the IEEE 1180 standard requirements. The PSNR 

results in H.263 codec are quite comparable in every 

situation when the IDCT is either the reference or the 

proposed integer one. The drifting effect is very small on 

average, 0.05 dB using video sequences with 300 frames. 

We should mention that the standard forces each 

macroblock to be coded in INTRA mode at least once every 

132 times. The results were obtained by using two video 

sequences, Foreman and Silent, both at QCIF and CIF 

resolutions. All decoding operations are calculated in the 

integer domain. The next step in our research will be the 

inclusion of an integer version of the FDCT and find out a 

tradeoff between the FDCT/IDCT precision and the 

reconstructed video quality. 
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