
H.263 VIDEO CODEC PERFORMANCE WITH A FAST 8X8 INTEGER IDCT

Joao Tavares, Antonio Silva and Antonio Navarro

Telecommunications Institute - Aveiro University, 3810 Aveiro, Portugal, navarro@av.it.pt

ABSTRACT

Several standardized video coding algorithms use a well

known discrete cosine transform (DCT) at the encoder to

remove redundancy from video random processes. Its

inverse, the IDCT is present at the decoder as well as at the

encoder loop. The accuracy of this inverse transform,

required to avoid large drift between the encoder and

decoder, is defined in an IEEE standard which will be

withdrawn from MPEG and ITU standardized codecs. Due

to the huge number of computations required to compute the

FDCT/IDCT (Forward/Inverse DCT) pair, reduction of their

complexity is essential to speed up the video processing. In

this paper, we propose a fast integer IDCT calculation

method. Additionally, we insert it into the H.263 reference

software in order to validate our proposed method. The

testing results using two different video sequences, at QCIF

and CIF resolutions, show similar PSNR average values

between the reference H.263 and the proposed H.263 codec.

1. INTRODUCTION

The H.263 [1] algorithm was designed as a low bitrate

solution for video-conferencing and video-telephony

applications. It is an hybrid motion compensated algorithm

where the DCT is used to remove spatial redundancy.

Surely, all DCT based image and video algorithms or

standards will benefit from a fast DCT computation. Several

floating-point DCT calculation algorithms have been

proposed and usually can be classified into two classes:

indirect and direct methods. The former computes the DCT

through a FFT or other transforms and the latter through

matrix factorization or recursive computation.

When direct methods are chosen to calculate (NxN)-

point 2-D DCTs, the conventional approach follows the

row-column method which requires 2N sets of N-point 1-D

DCTs. In [2] and [3], the authors propose two 2-D DCT

recursive algorithms based on fast 1-D DCT algorithms of

[4] and [5]. However, true 2-D techniques are faster than the

conventional row-column approach but demand more

hardware resources. A direct 2-D method for the 2-D DCT

based on polynomial transform techniques was provided by

Duhamel and Guillemot [6]. Feig and Winograd [7] present

a matrix factorization algorithm of the 2-D DCT matrix. In

[8], Vetterli proposes an indirect method to calculate 2-D

DCT by mapping it into a 2-D DFT plus a number of

rotations. The 2-D DFT was computed through polynomial

transform techniques. In coding applications, the DCT is

followed by scaling and quantization, instead of computing

the full DCT, we have the advantage in computing a scaled

version of it [9]. In this paper, we propose a new H.263

codec where the decoder is multiplierless making it

adequate for silicon implementation resulting in power

saving and chip area reduction. The integer IDCT proposed

in this paper and included in H.263 codec follows the same

factorization structure as the DCT proposed in [10] which is

based on a floating-point DCT algorithm developed by Feig

and Winograd [7] with a complexity close to the theoretical

lower bound on the multiplicative complexity presented in

[11].

The paper is organized as follows. In Section 2, we

briefly present the algorithm described in [7]. In Section 3

we describe our integer IDCT algorithm. Section 4 presents

some results in terms of computational complexity and

accuracy. Finally conclusion remarks are presented in

Section 5.

2. THE FEIG AND WINOGRAD’S 2-D IDCT

As described in the last section, we use one of two

algorithms proposed in [7], the scaled version of the IDCT,

with a computational complexity of 54 multiplications, 464

additions and 6 shifts.

In [7], Feig and Winograd proposed an algorithm for

the factorization of the DCT matrix, which can be

represented as a matricial product given by,

82881888 RMRDPC (1)

where D8 is a diagonal matrix whose diagonal elements are

{1; 0.3536; 0.1913; 0.4619; 0.2778; 0.4904; 0.4157;

0.0975}. M8 is also composed of real values

k/32)cos(2(k) , k=2,4,6. R82=B1B2B3 and P8 is a

permutation matrix.

The computation of the 2-D DCT on 8x8 points

involves the product of the matrix,

)RMRDP()RMRDP(82881888288188 (2)

20091­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

with a 64-pixel vector X.

Since matrix C is orthogonal its inverse is equal to its

transpose. Furthermore, as D is diagonal and M is

symmetric, we have,

.D.P.B.M.B.A.AAC TT
1

T
2

T
1

T
2

T
3

-1 (3)

The 2-D IDCT can be calculated as

64
TTT

1
T
1

T
2

T
2

T
1

T
1

T
2

T
2

T
3

T
364

-1-1

D)X)(DP)(PB)(BBM)(B(M

)A)(AA)(AA(A)XC(C
 (4)

and since P is a permutation matrix, (4) can be transformed

into

64
TT

1
TT

1
T
2

T
2

T
1

T
1

T
2

T
2

T
3

T
364

-1-1

D)X)(DPBP)(BBM)(B(M

)A)(AA)(AA(A)XC(C
 (5)

where X64 is the 64-point vector with DCT coefficients.

The above equation yields an algorithm for the inverse

scaled-DCT computation. Multiplication by DD is a

simple pointwise multiplication (which can be incorporated

in pre-processing stages), TT PP is a matrix permutation

and multiplication of T
1

T
1 BB , T

2
T
2 BB , T

1
T
1 AA ,

T
2

T
2 AA , T

3
T
3 AA by 64X involves only additions,

altogether requires 416 additions. Multiplication by MM

demands for 54 multiplications, 6 shifts and 46 additions. In

total, the algorithm requires 54 multiplications, 462

additions and 6 shifts. A more detailed explanation about

the computation of the IDCT can be found in [7] and [10].

3. INTEGER 2-D IDCT

Efficient implementation of the IDCT, in terms of

computational complexity and power consumption, requires

fixed-point (integer) implementations. However, in fixed-

point implementation, there is an inherent accuracy problem

due to finite word length. Therefore, as the elements of

matrix M are real numbers an approximation error will

occur.

The multiplications between MM and

64
TT

1
TT

1
T
2

T
2)XPBP)(BB(B are replaced by a sequence of

sums and shifts given by,

1410862
64

1398632
4

14139751
62

9842
62

13732
6

148752
4

14964
2

22222

2222222/

222222

22221

2222

222221

22221

 (6)

The precision of the approximations (6) satisfy the

conditions imposed in [12]. To preserve accurate

calculations, we have to perform a scaling operation

(multiplication by 215) to increase the internal precision.

According to (5), DD is the first operation in the

calculation chain and our approach is to combine both

operations, scaling and multiplication by DD , into one

operation denoted as SDSD . Furthermore SDSD was

also approximated by a sequence of additions and shifts.

Since multiplication of a 64-point vector by SDSD is

simply a pointwise multiplication, (5) can be transformed

into,

||SD*.X||)PBP)(BBM)(B(M

)A)(AA)(AA(A)XC(C

8x8
TT

1
TT

1
T
2

T
2

T
1

T
1

T
2

T
2

T
3

T
364

-1-1

 (7)

where .* and || denote, respectively, a pointwise

multiplication and interlacing operation whereby the

columns of the 8x8 matrix are converted into a 64-point

vector.

Our algorithm is therefore as follows. Firstly, input data

go through a scaling operation which performs the

multiplication by SD increasing the internal precision up to

27 bits. Once this operation is performed, data is sent to the

pre-addition stage which deals with the multiplication of the

64-point scaled input vector by matrices)B(B T
2

T
2 and

)PBP(B TT
1

TT
1 . Then, the following operation is the IDCT

core which performs the multiplication of a 64-point vector

by matrix MM . The final stage is the post-addition,

performing the multiplication by)A(A T
1

T
1 ,)A(A T

2
T
2

and)A(A T
3

T
3 as well as the de-scaling operation that

manages the rounding of the resulting numbers in order to

match with the output dynamic range (9 bits). The de-

scaling operation consists of a right shift of 15 bits, together

with a rounding operation, as follows,

15)16384()(xxdescaling (8)

The matrix SD is given by,

2010

27262462117126

26252352016115

24232241915104

65403210

2120193181493

1716152141382

1211019871

65403210

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

sdsdsdsdsdsdsdsd

SD

 (9)

with the elements in matrix SD are approximated following

the same procedure as in (6), and are given by,

sd0=212+1;

sd1=211+210-27+23+1;

sd2=211+210+26-1;

sd3=212-29-27+25-22;

sd4=212+210+27-25-21;

sd5=213-29-27+24+21;

sd6=214-210-29;

sd7=211+26+24+1;

sd8=211+27+26+24+22;

sd9=211+29-26+24;

sd10=212-28-26-24-1;

sd11=212+210+28+26+24+1;

sd12=213+211+29-26+24;

sd13=211+28+26+25-1;

sd14=211+29+26+25+23+21; (10)

sd15=212-27+24+22+21;

sd16=212+211-28-26-25+1;

sd17=213+211+210+26+25+21+1;

sd18=211+210-27+24+21+1;

sd19=212+28+26+24+21;

sd20=212+211+28+25+22+1;

sd21=213+212+28+26+24+21+1;

sd22=212+211+29-25+23+22;

sd23=213+210+28+27+25+1;

sd24=214+211+29-26+24;

sd25=214-211-28-26-25+1;

sd26=215-212-210-28+25+23+1;

sd27=215+214+212+29+25+24+22+1.

All operations are done with 32-bit integer arithmetic.

4. TESTING RESULTS

The computational complexity of the algorithm described in

Section 2 is remarkable low, 54 multiplications, 464

additions and 6 shifts making it competitive with other fast

IDCTs available in the literature like [13] and [14] with 192

multiplications + 512 additions and 176 multiplications +

464 additions, respectively.

Table 1. Precision results for the proposed IDCT.

Precision Interval Error type

Sign=+1 Sign=-1

 ppe 1 1

 pme(0.015) 7.00e-004 5.00e-004

[-5 ,+5] omse(0.02) 4.17e-004 4.06e-004

 pmse(0.06) 9.00e-004 1.00e-003

 me(0.0015) 7.81e-006 2.50e-005

 ppe 1 1

 pme(0.015) 4.70e-003 3.80e-003

[-256, +255] omse(0.02) 1.73e-002 1.73e-002

 pmse(0.06) 2.27e-002 2.27e-002

 me(0.0015) 2.05e-004 1.67e-004

 ppe 1 1

 pme(0.015) 4.80e-003 5.20e-003

[-300, +300] omse(0.02) 1.70e-002 1.69e-002

 pmse(0.06) 2.16e-002 2.17e-002

 me(0.0015) 1.75e-004 2.23e-004

 ppe 1 1

 pme(0.015) 3.70e-003 3.60e-003

[-384, +383] omse(0.02) 1.62e-002 1.62e-002

 pmse(0.06) 2.17e-002 2.18e-002

 me(0.0015) 2.19e-005 7.81e-005

 ppe 1 1

 pme(0.015) 2.50e-003 2.60e-003

[-512, +511] omse(0.02) 1.63e-002 1.62e-002

 pmse(0.06) 2.21e-002 2.20e-002

 me(0.0015) 2.34e-005 5.00e-005

The main purpose is actually to convert those

multiplications into additions as described in Section 3.

Thus, concerning our proposed multiplierless algorithm, the

accuracy parameters are shown in Table 1, where ppe, pme,

omse, pmse and me are mean peak error, peak mean error,

overall mean square error, peak mean square error and mean

error, respectively. The proposed integer IDCT fulfills thus

all precisions defined in IEEE 1180 [12] and in the Call for

Proposals recently issued by MPEG [15].

The following step is the replacement of IDCT at the

H.263 encoder and decoder. Four different combinations of

float and integer IDCT were tested as shown in Tables 2-5.

In our setup, the H.263 encoder does not use any optional

annexes neither B frames. The simulations were conducted

using two test video sequences of 300 frames each,

Foreman and Silent, at QCIF and CIF resolutions. The

bitrates used were 32, 64, 128 and 256 kbps for QCIF and

128, 256, 512 and 1000 kbps for CIF. Only the first frame

was INTRA coded in order to observe the drifting effect.

However, it is not recommended to use long refresh periods

especially in error prone environments. At the decoder, the

mean PSNR for all three color components was measured.

For instance, the first row in Table 2 shows the PSNR (dB)

results of reference FDCT and IDCT implementations with

float values. The second table row presents the PSNR when

the decoder reference IDCT is replaced by our IDCT

whereas the third line presents the same metric but now

2011

when the encoder reference IDCT is replaced by the

proposed integer IDCT. Finally, the table bottom row shows

the PSNR for the proposed integer implementation of the

IDCT at the encoder and at the decoder.

Table 2. Average PSNR obtained for all combinations.

Video sequence Foreman QCIF.

 32

kbps

64

kbps

128

kbps

256

kbps

All Float 31.0068 33.0917 35.2959 37.5070

Dec Int_IDCT 31.0064 33.0915 35.2943 37.5041

Enc Int_IDCT 30.9768 33.0751 35.3025 37.5113

Enc+Dec

Int_IDCT

30.9771 33.0753 35.3034 37.5133

Table 3. Average PSNR obtained for all combinations.

Video sequence Silent QCIF.

 32

kbps

64

kbps

128

kbps

256

kbps

All Float 34.0589 36.4157 39.4628 43.5960

Dec Int_IDCT 34.0558 36.4130 39.4536 43.5655

Enc Int_IDCT 33.9323 36.3541 39.4626 43.1094

Enc+Dec

Int_IDCT

33.9314 36.3522 39.4705 43.1369

Table 4. Average PSNR obtained for all combinations.

Video sequence Foreman CIF.

 128

kbps

256

kbps

512

kbps

1000

kbps

All Float 32.1251 34.7484 36.9485 39.1405

Dec Int_IDCT 32.1244 34.7466 36.9406 39.1255

Enc Int_IDCT 32.1411 34.7386 36.9646 39.0531

Enc+Dec

Int_IDCT

32.1407 34.7381 36.9643 39.0547

Table 5. Average PSNR obtained for all combinations.

Video sequence Silent CIF.

 128

kbps

256

kbps

512

kbps

1000

kbps

All Float 35.8330 38.0305 40.7261 44.1824

Dec Int_IDCT 35.8307 38.0249 40.7148 44.1587

Enc Int_IDCT 35.7831 38.0021 40.7657 44.1648

Enc+Dec

Int_IDCT

35.7828 38.0013 40.7723 44.1852

By observing Tables 2-5, we realized that the value

differences are very small. Therefore, the performance of

our modified H.263 is comparable to the original float

IDCT based H.263. We also calculated the average PSNR

per row using all four tables and the results are respectively,

37.0106, 37.0031, 36.9586 and 36.9625 dB. The lowest

PSNR occurred when our proposed algorithm is only placed

at the encoder. The maximum drift is 1.3 dB and occurred

for Foreman QCIF when the quantization parameter, QP=1.

5. CONCLUSIONS

This paper proposes a fast integer 2D-IDCT algorithm. The

computational complexity is remarkable low, 979 additions

and 674 shifts making it a very competitive integer IDCT

satisfying the IEEE 1180 standard requirements. The PSNR

results in H.263 codec are quite comparable in every

situation when the IDCT is either the reference or the

proposed integer one. The drifting effect is very small on

average, 0.05 dB using video sequences with 300 frames.

We should mention that the standard forces each

macroblock to be coded in INTRA mode at least once every

132 times. The results were obtained by using two video

sequences, Foreman and Silent, both at QCIF and CIF

resolutions. All decoding operations are calculated in the

integer domain. The next step in our research will be the

inclusion of an integer version of the FDCT and find out a

tradeoff between the FDCT/IDCT precision and the

reconstructed video quality.

6. REFERENCES

[1] ITU Telecom. Standardization Sector of ITU, “Video coding for low
bitrate communication,” ITU-T Recommendation H.263, Jan. 2005.

[2] M. A. Haque, “A two dimensional fast cosine transform,” IEEE
Trans. Acoust., Speech, and Signal Processing, vol. 33, no. 6, pp.
1532-1539, Dec. 1985.

[3] S. C. Chan and K. L. Ho, “A new two-dimensional fast cosine
transform algorithm,” IEEE Trans. Signal Processing, vol.39, no. 2,
pp. 481-485, Feb. 1991.

[4] B. G. Lee, “A new algorithm to compute the discrete cosine
transform”, IEEE Trans. Acoust. Speech, Signal Processing, vol. 32,
pp 1243-1245, Dec. 1984.

[5] H. S. Hou, “A fast recursive algorithm for computing the discrete
cosine transform,” IEEE Trans. Acoust. Speech. Signal Processing,
vol. 35, pp. 1455 -1461, Oct. 1987.

[6] P. Duhamel and C. Guillemot, “Polynomial transform computation of
2-D DCT,” Proc. ICASSP’90, pp. 1515 – 1518, 1990.

[7] E. Feig and S. Winograd, “Fast algorithms for the discrete cosine
transform, ” IEEE Trans. Signal Processing, vol. 40, no. 9, pp. 2174-
2193, Sep. 1992.

[8] M. Vetterli, “Fast 2-D discrete cosine transform,” Proc. IEEE
ICASSP, pp. 1538–1541, 1985.

[9] M. Vetterli, P. Duhamel and C. Guillemot, “Trade-offs in the
computation of mono- and multi-dimensional DCTs”, IEEE Trans.
Acoust. Speech, Signal Processing, vol. 2, pp 999-1002, Dec. 1989.

[10] A. Silva and A. Navarro, “Fast 8X8 DCT Pruning Algorithm,” Proc.
IEEE ICIP, pp. 317–320, Sept. 2005.

[11] E. Feig and S. Winograd, “On the multiplicative complexity of
discrete cosine transform,” IEEE Trans. Information Theory, vol.38,
no. 4, pp. 1387-1391, Jul. 1992.

[12] IEEE, Standard Specifications for the implementations of 8x8 Inverse
Discrete Cosine Transform. IEEE Std 1180-1990.

[13] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical fast 1-D
DCT algorithms with 11 multiplications”, Proc. IEEE Intl. Conf on
Acoust., Speech, and Signal Proc. (ICASSP), vol. 2, pp. 988-991,
Feb. 1989.

[14] Chen-Wang, “Inverse Two-dimensional DCT algorithm,” IEEE
ASSP-32, pp. 803-816, Aug. 1984.

[15] ISO/IEC JTC1/SC29/WG11 N7335, Call for Proposals on Fixed-

Point 8x8 IDCT and DCT Standard, Poznan, Poland, July 2005.

2012

