
 

Abstract —Patient monitoring via video and physiological 

data recording can now be performed outside hospitals. This 

procedure, usually performed in a prolonged manner, generates 

a considerable amount of data, which calls for efficient ways for 

archiving and transmission. In this work, we present a 

specialized system to code the video and the physiological data 

recorded from a patient, aiming at a reduced bandwidth 

requirement compared to the conventional methods. We’ve 

developed an object-based approach to coding the monitoring 

video. By applying two change detection methods, we 

decompose a video frame into three video object planes (VOPs) 

representing the background, the stationary foreground and the 

moving foreground. These VOPs are coded at different frame 

rates, leading to a reduced overall bit rate. For coding the 

physiological data (using electroencephalogram, i.e. EEG, as an 

example), we present an effective solution by using a 

combination of the lifting scheme and the SPIHT algorithm. 

This approach is featured with a wavelet-quantization 

algorithm that enables a scalable transmission. The feasibility of 

this proposed system is demonstrated by our experimental 

results. 

1. INTRODUCTION 

Physiological data recording has been utilized for decades 

in hospitals for the purpose of patient monitoring. Some 

monitoring processes (e.g. epileptic patient monitoring) are 

accompanied by video recording to provide a cross reference 

for diagnostic evaluations. Recently, thanks to the 

development of telemedicine technology, these processes can 

be performed outside hospitals for home care applications.  

Usually carried out in an extensive amount of time (hours and 

days), these processes produce a large-scaled data set. There 

exists a demand for a coding system that is capable of highly 

efficient transmission and archiving of the monitoring data 

(including both the video and the physiological data). The 

existing systems, such as Bio-Logic and the Grass-Telefactor 

video/EEG systems are mostly based on general-purposed 

coding standards. These systems are not optimized for the 

need of coding the prolonged recordings and may not suit the 

home care applications, where the storage and transmission 

bandwidth are both very limited. For these reasons, we 
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develop a video and physiological coding system specialized 

for the patient monitoring purposes.  

In video monitoring, the features of the video should be 

specifically considered in the coding scheme. These features 

include, 1) hardly any global motion present in the video, 2) 

recording environment usually remaining unchanged, and 3) 

for most of the time, only small movements are present, such 

as those caused by body parts. Higher coding efficiency is 

expected if these features are utilized specifically in the 

design of a compression engine. For instance, the background 

regions should be coded with much relaxed quality (both 

spatial and temporal), in contrast to the foreground (i.e. the 

patient), especially the moving part of the foreground.  In the 

light of MPEG-4, these considerations can be formed into an 

object-based coding scheme, which decomposes a frame of a 

monitoring video into three video object planes (VOPs), one 

representing the recording environment (denoted by VOP1), 

one representing the stationary foreground (VOP2), and the 

other the moving foreground (VOP3). These VOPs are coded 

at different frame rates, with VOP3 the highest and VOP1 the 

lowest. Since VOP3 is usually small in size (in pixels), the 

overall bit rate can be reduced, while an essential quality on 

the foreground is preserved. 

For the coding of the physiological data, we adopt a 

device-adaptive strategy that allows a scalable transmission. 

This strategy was motivated by a fact that a considerable 

redundancy with respect to the data resolution may exist in 

the transmission. In most diagnostic evaluations, the 

physiological waveforms are visually examined.  The display 

resolution of these waveforms, however, is often lower than 

that of the data. This problem is particularly significant when 

portable devices, such as PDA or cell phone, are utilized to 

display the waveforms. Therefore, in many cases, a scalable 

transmission that suits the terminal device is desirable. We 

combine the SPIHT codec, the lifting scheme and wavelet 

quantization to tackle this problem. In this approach, the 

physiological data are transformed into wavelet coefficients 

by lifting scheme. These coefficients are quantized so that the 

resolution of the reconstructed data matches the remote 

display terminal.  

We present a preliminary system that implements the 

above coding schemes. The experimental results on 
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real-world data suggested a considerable improvement over 

the conventional coding systems for remote monitoring.  

2. OBJECT-BASED CODING FOR MONITORING VIDEO

In our strategy, three video objects are defined based on 

the features of the monitoring video. A snapshot of the 

recording environment (i.e. the monitoring room) forms the 

VOP1. If the camera is allowed to pan and tilt, the 

background scene can be updated online [6]. Since the 

background rarely changes, the VOP1 is coded at very small 

frame rate, e.g. once per minute. The second video object, 

VOP2, is obtained by constituting the distinction between 

VOP1 and a video frame. Essentially, VOP2 is consisted of 

the patient and the changes of the background brought by the 

patient. The VOP2 is coded at a properly chosen interval, e.g. 

every second. Within this interval, VOP2 can be considered 

as stationary foreground regions. The dynamics within this 

interval are captured by the VOP3, constructed from multiple 

consecutive video frames by exploring the motion 

information. Therefore, the VOP3 is usually consisted of the 

moving body parts of the patient.  

To construct the VOP2, we developed an illumination 

invariant change detection method [1] by combining a simple 

illumination model (“shading model”) and a statistical test 

approach.  This approach is robust against device noise and 

illumination variation and easy to implement. A sample result 

is shown in Fig. 1.The segmentation results can be improved, 

e.g. removing the holes, by a simple post-processing step. 

For VOP3, we developed a multiple-frame-based change 

detection method [2], which identifies moving pixels across a 

group of video frames. This method is more sensitive to small 

motions compared to traditional methods using frame pairs. A 

typical example is shown in Fig. 2, where the results of our 

method and a classic method (by Aach [3]) are compared. 

As these three VOPs have different activity levels, they 

are generated at different time and thus coded at different 

frame rates. The VOP1, VOP2 and VOP3 have life-spans of 

T1, T2 and T3 respectively, as shown in Fig. 3. The values of T1,

T2 and T3 are determined experimentally and T3 is just the 

interval of two frames. 

In the decoding process, the time stamps are extracted and 

the video frame is reconstructed by means of overlaying: 

VOP3 is surmounted on top of VOPs and then on VOP1. 

Since these VOPs are coded at different frame rates, they are 

rendered at different time points. Accordingly, VOP1 and 

VOP2 are held for intervals of T1, T2 respectively after being 

decoded.  

3. PHYSIOLOGICAL DATA CODING

We combine the 1D SPIHT [5] and the lifting scheme [4] 

to code the physiological data. The lifting scheme is a 

state-of-the-art method to implement the wavelet transform. It 

utilizes a ladder-like structure to compute wavelet transform, 

rather than the traditional filter bank. Because of this structure, 

the lifting scheme is more computationally efficient and can 

realize invertible integer-to-integer transform. The SPIHT is a 

well-known codec that is performed in wavelet domain. The 

wavelet coefficients are coded bit plane by bit plane, namely, 

the most significant bits of all the coefficients are output to 

the bit stream first, then the less significant bits. The coding is 

Fig. 3. The life-span of the VOPs. VOP1, VOP2 and VOP3 are coded at 

the intervals of T1, T2 and T3 respectively. T3 is just the interval of two 
frames. 

Fig. 1. Top-left: the VOP1, a background snapshot; top-right: a sample 

video frame; bottom-left: change detection mask, with the white 

regions denoting the “changed” and the black denoting the 

“unchanged”; bottom-right: VOP2 that is consisted of the patient and a 

deformed bed. The holes in the change detection mask can be 

compensated by morphological operations.  

Fig. 2. Top: a video frame that contains a moving hand; bottom-left: 

VOP3 detected by the multiple-frame-based change detection; 

bottom-right: change detection result of significance test method [3]. 
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lossless if all the bit planes of the entire set of coefficients are 

coded. However, as mentioned previously, there exists a 

typical mismatch between the data resolution and the display 

resolution. In many cases, a lossless transmission is simply a 

waste of bandwidth. Therefore, we developed a 

device-adaptive approach to coding the physiological data.  

Let us consider the “vertical resolution” of the display 

window, which is the number of pixels available in the 

vertical direction. This resolution is often much less than the 

range of the data value. For example, EEG samples are 

usually 12-bit integers, ranged from -2048 to 2047, while a 

laptop screen has normally 768 pixels in the vertical 

dimension. In addition, physiological data is often recorded in 

multiple channels, thus each channel is allocated a small 

portion of the vertical pixels. Obviously, this redundancy can 

be reduced by transmitting only a portion of the bit planes. 

The key question is how to determine the quantization step.  

Let the data be B -bit integers, then the value range is 
BA 2= . Let the vertical dimension be n , then a single pixel 

represents a sub-range of 
n
A . Let b  be the number of bit 

planes (the least significant ones) to be omitted. Let e  be the 

quantization error in the original domain. If b is properly 

determined, then e  produces no visual effect in the display of 

the reconstructed waveform, which satisfies 
n
Ae < . We 

characterize e  in a statistical way: by assuming the 

distribution of the quantization residuals in the wavelet 

domain, we calculate the standard deviation of the 

reconstructed error e . After a multi-level wavelet 

decomposition, most coefficients are the detail coefficients. 

We only consider the error generated by quantizing the detail 

coefficients. Let jd  be the quantization residual of the detail 

coefficients at level j , and let 
jdσ be its standard deviation. 

It can be shown that for the lifting implementation of 

symmetric interpolating filters [4], we may have
jde ασσ ≤ ,

where eσ is the standard deviation of e. If we quantize the 

detail coefficients of J  levels, 

2
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α where )(~ kge denotes the 

coefficients of the bandpass wavelet filter g~ [4]. Assuming 

jd  is uniformly distributed, we have 

3

)12(2
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−bb

d j
σ .One may use emσ as the measure 

of the error e, where m is a chosen constant. Then the 

quantization step 
b

2 can be numerically obtained by 

solving
n

A
m

bb

<−−

3
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1
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We evaluated this quantization method by testing a large 

scale EEG data. The quantization errors vs. the number of 

omitted bit planes (i.e. b) are shown in Fig. 4. Each plot shows 

the reconstructed error generated from the quantization of the 

coefficients on a single level.  In addition to the standard 

deviation of the quantization error (in dash lines), the 

maximum error (in solid line)  is also shown in Fig. 4, which 

is approximately three times the standard deviation. Our 

measure, i.e. 
jdασ , is plotted in a thick solid line, serving as 

an upper bound of the eσ , which is compatible with our 

derivation.  
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4. SYSTEM EVALUATION

 In our test system, we utilized Microsoft ConferenceXP 

and Directshow APIs to implement the video coding. We 
focused on designing the modules that implement video 

object construction to be embedded as add-on components in 

the platform. For simplicity, we used RTTP as the video 

transmission protocol and FTP to transmit EEG data. In this 

case, the EEG sequences were coded to files, each containing 

an epoch defined as one second data of all the channels. We 

used the time stamps that labeled the video stream as the file 

names of the EEG files, which enabled the synchronization of 
the EEG and the video stream.   

 The experimental video was in the 4SIF format (i.e. 

704 × 480 pixels) recorded by a JVC DV3000 camcorder. 

Samples of constructed VOP2 and VOP3 and the 

rate-distortion plots at constant bit rates are shown in Fig. 5. 

Fig. 4. The standard deviation (dash lines), the maximum (solid lines), 

and the derived estimate (the thick line) of the error of the 

reconstructed sequence vs. the number of the omitted bit plane. Each 

plot shows the error from the quantization of the detail coefficients on a 

single level. The derived estimate serves as an upper bound of the 
reconstructed error, which is compatible with the derivation.  
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We compare the coding efficiency of our object-based 

approach and the conventional frame-based compression by 

examining the PSNR of the foreground regions. It is seen that 

the object-based method provided a superior quality of the 

foreground to that by the conventional method. This is 

because the frame-based method allocated more bandwidth 
on the background regions, which is a waste in this 

application. 
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For the physiological data, we tested a set of multi-channel 
EEG sequences recorded at the University of Pittsburgh 

Medical Center. Concerning the display qualities, we show in 

Fig. 6 the screen dumps of the lossless sequence and the 

sequence reconstructed from quantized wavelet coefficients. 

At virtually the same display quality, the bit rates were 

reduced from 38.4 Kbps to 9.9 Kbps for coding the 16 

channels of EEG.  

5. CONCLUSION

We’ve presented a specialized video and physiological data 
coding system for patient monitoring. An object-based 

approach has been proposed to advance the video coding 

efficiency. We showed that a three-object representation of 

the monitoring video may be utilized to launch content-driven 

applications. The underlining concept is to selectively code 

the video content so as to reduce the overall bandwidth 

requirement, and facilitate future archiving and retrieval 

functions. Experimental results on a variety of monitoring 
video sequences showed that the object-based scheme 

outperformed the frame-based coding in a wide margin. In 

addition to the video coding, we’ve also presented a 

device-adaptive approach to coding physiological waveforms. 

Considering that the waveforms are usually diagnosed 

visually on a display device, we propose to transmit the 

physiological data at the resolution that matches the 

resolution available at the display terminal. This redundancy 
reduction may be significant for displaying waveforms on 

portable devices, such as PDA and cell phones, where both 

the transmission bandwidth and the display resolution are 

very limited. A wavelet quantization scheme has been 

provided along with analytical derivation of the proper 

quantization step. Experimental results on a large scaled EEG 

data set validated the proposed scheme. We believe both the 

video and physiological coding schemes presented in this 
work would enlighten some health care applications both in- 

and outside hospitals. 

REFERENCES

[1] Qiang Liu; Sclabassi, R.J.; Mingui Sun, “Illumination-invariant change 

detection model for patient monitoring video,” in Proc.26th  EMBC,

2004, vol. 3. pp.1782 – 1785. 

[2] Qiang Liu, Sclabassi, R.J., Mingui Sun, “A new change detection 

method and its application to epilepsy monitoring video”, in Proc.

IEEE 30th Annual Northeast Bioengineering Conference, 17-18 April. 

2004, pp. 59 – 60.  

[3] T. Aach, A. Kaup, and R. Mester, “Statistical model-based change 

detection in moving video,” in Signal Processing, vol. 31,  pp. 

165–180, 1993. 

[4] I. Daubechies and W. Sweldens, “Factoring Wavelet Transforms into 

Lifting Steps,” J. Fourier Anal. Appl., Vol. 4, No. 3, pp. 247-269, 1998. 

[5] Amir Said, William A. Pearlman, “A new, fast, and efficient image 

codec based on SPIHT,” IEEE Trans. On Circuits and Systems for 

Video Technology, Vol. 6, No. 6, pp. 243-250, June 1996. 

[6] Shao-Yi Chien, Shyh-Yih Ma, Liang-Gee Chen, “Efficient moving 

object segmentation algorithm using background registration 

technique,” IEEE Trans. On Circuits and Systems for Video 

Technology, Vol. 12, No. 7, pp. 577-586, June 2002. 

Fig. 5 Experimental results on object-based coding of the patient 

monitoring video. The top panels show a sample of constructed VOP2 

(left) and VOP3 (right) respectively. The rate-distortion plots of both the 

object-based method (in circle plot) and a conventional frame-based one 

are compared. We compare the quality (in terms of PSNR) of the 

foreground regions for both methods. We see that the object-based 

method provided a superior quality of the foreground to that by the 
conventional method.  

Fig. 6. Screen dumps of two windows displaying 16 channels of EEG 

segments. The left panel shows a lossless transmission at 38.4 Kbps; 

the right panel shows a reconstructed data from a lossy transmission at 

9.9 Kbps. There are hardly any visible distortions observed from the 
lossy sequence. 
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