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ABSTRACT

The line-based face recognition method is distinguished by
its features, but its development and application is limited to
some inherent drawbacks. This paper propose a method for
decreasing the influence under variable illumination intensity
by using the line-based singular value (LSV) feature vector
instead of image gray-level value to calculate “distance” be-
tween two lines. We prove that our method is invariant to
the illumination intensity. Finally, we suggest a distributed
computing algorithm using grid computing to solve the multi-
scale computation. Experimental results show our approach
is effective.

1. INTRODUCTION

Many methods of face recognition have been proposed during
the past 30 years, such as PCA, LDA, HMM [5] and elastic
matching [6]. PCA and LDA suffer the re-computation prob-
lem when a new face view is added. HMM spends lots of
expense in training. Elastic matching requires great compu-
tational effort. Furthermore, all these methods are not very
suited to parallel and distributed computing because a recog-
nition task is difficult to be divided into subtasks when they
work.

O.de Vel and S.Aeberhard proposed a novel image-based
face recognition algorithm [1, 2, 3, 4] that uses a set of ran-
dom rectilinear line segments of 2D face views as the underly-
ing image representation, together with the nearest-neighbor
classifier as the line matching scheme. The combination of
1D line segments exploits the inherent coherence in one or
more 2D face views in the viewing sphere.

The above algorithm is well-suited to parallel and dis-
tributed computing because a face recognition task can be
divided into many subtasks of calculating the “distance” be-
tween lines. Moreover, it is particularly effective in obtaining
a high recognition rate performance (nearly 100% recogni-
tion rate on Oracle Research Laboratory (ORL) face database
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[1]). The algorithm has some other distinguished advantages:
Due to the randomized sampling of the image, the algorithm
is robust to rotations of the face in the plane, changes in fa-
cial expressions and the presence or absence of glasses or
other accessories. Multiple views are even better suited to
1D line-based algorithm. Also, the algorithm is better able
to handle head rotations out of the plane than 2D view-based
algorithms. Since the lines run from one face-boundary to
another and have fixed dimensionality, the algorithm is also
scale-invariant.

Unfortunately, the line-based algorithm has inherent draw-
backs which make against its development and application
since it has been proposed, and so far, these problems remain
unsolved as follows:

• It is sensitive to changes in illumination intensity be-
cause the gray-level value is directly used.

• The computation is very huge. Olivier de Vel and Ste-
fan Aeberhard select N = 400 in training, which means
drawing 400 lines in a face image. It is far more com-
plex than that face image itself and the expense of com-
putation in drawing, scaling and recording a line of any
angle is very high.

• The algorithm depends on the assumption that the face
detection has been undertaken prior to the execution of
the line-based algorithm and the face boundaries are
available.

So, in this paper, for changes in illumination intensity, the
LSV feature is used instead of gray-level value. For training
and recognition, a distributed algorithm based on grid com-
puting is used.

The remainder of the paper is organized as follows: the
line-based face recognition algorithm is described in Section
2 and our approach is presented in Section 3. Experimental
results and analysis will be given in Section 4. We conclude
our work in Section 5.

2. RELATED WORK

In this section, we briefly outline the line-based face recogni-
tion algorithm. Given K face class Fk(k = 1, 2, ..., K), the
aim is to recognize one of the K faces from one or more test
face views.
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An image P is modeled as a regular lattice of w×h pix-
els. We first classify the pixels in P into two classes, Cp,1 and
Cp,2. Class Cp,1 consists of the background pixels in the im-
age P , and class Cp,2 consists of all those pixels that represent
one or more faces in P . We are interested in the pixels in Cp,2

with neighbors in Cp,1 and call the set of the face boundary
pixels β.

Consider l pixel values extracted along a straight line be-
tween two points in the image. For any two points B1∈β,
B2∈β in a face view Vk , such that the Euclidean distance be-
tween B1 and B2 is greater than the minimum Dmin, let

L(B1, B2) ≡ (L(1), L(2), ..., L(l))

be a vector of length l, where l is the number of equi-spaced
connected intensity values denoted by L(q) (q = 1, 2, ..., l)
along the image rectilinear segment from B1 to B2. The line
segment length l is a constant parameter determined a priori;
larger values of l result in better classification rates at the ex-
pense of increased processing times. All lines are scaled to
the value l by pixel interpolation. We call L(B1, B2) a lattice
line, denoted by L. Figure 1 illustrates how to obtain a line L
with the length l = 6. Each shaded rectangle Ri corresponds
to element Li in L, calculated as the weighted average of the
pixels fully, or partly, covered by Ri. Each pixel contributes
in direct proportion to its area covered by Ri. The exact end-
points of L need not lie on a corner of the boundary pixels B1

and B2.
For each class k in the training set of Vk face views, we

randomly generate Nk = Vk×NVk
lattice lines (NVk

lines

per face view per class), Li,k ≡ (L(1)
i,k , L

(2)
i,k , ..., L

(l)
i,k) for i =

1, 2, ..., Nk. There are M =
∑K

k=1 Nk such lattice lines for
K face classes. The set of lattice lines for all K face classes
is given by:

Ψ =
K⋃

k=1

Nk⋃
i=1

Li,k

The distance D(Li,k, Lm,n) between two lattice lines Li,k

and Lm,n can be defined as

D(Li,k, Lm,n) =
l∑

q=1

(L(q)
i,k − (L(q)

m,n + ∆))
2

(1)

where ∆ = µ(Li,k)− µ(Lm,n) and µ(Ls,t) =
∑l

q=0 L
(q)
s,t /l.

The value of ∆ has the effect of shifting the two lines to-
wards the same average value, making the distance measure
invariant to illumination intensity (not to be confused with the
illumination direction).

Given an unseen test lattice line Lj where generally Lj /∈Ψ,
we define Lj,∗ such that D(Lj , Lj,∗) is the minimum, where
Lj,∗ ∈ Ψ. The Nearest-Neighbour Classifier (NNC) maps Lj

to the class k to which Lj,∗ belongs. That is, NNC(Lj) = k.
We write Dj for D(Lj , Lj,∗).

Fig. 1. A definition of an image lattice line for l = 6 (Presented by O.de
Vel and S.Aeberhard). Crossed squares ∈ β.

Assume that there be N test lines Lj , j = 1, 2, ..., N , and
for each line we have Lj,∗ and Dj .

Let Dmax = k1×max1≤j≤N{Dj} (for some value k1,
where 0 < k1≤1) and Dmin = k1×min1≤j≤N{Dj}. We

define the cumulative error for line Lj , ej = (
∑l

q=1(|L(q+1)
j,∗ −

L
(q)
j,∗ |))/(l − 1) for q = 1, 2, ..., l − 1) and the maximum cu-

mulative error statistic, emax = max1≤j≤N{ei}.
Define the measure of confidence that NNC(Lj) is cor-

rect, Cj :

Cj = {0, if Dj>Dmax

[
Dmax−Dj

Dmax−Dmin
w1]p1 [

ej
emax

]p2 , otherwise

where p1, p2, w1 and w2 ∈ R+. The variables p1 and p2

control the shape of the confidence function, whereas w1 and
w2 are the weight magnitudes of the distance and cumulative
error statistic components, respectively.

To classify a face F for which we know its boundary pixel
set β, we randomly select N lattice lines Lj (j = 1, 2, ..., N ).
For each face class Fk (k = 1, 2, ..., K), let Tk =

∑N
j=1 Cj ,

such that NNC(Lj) = Fk. We assign F to class g when Tg is
the maximum. That is, if Tg = max1≤j≤N{TCj}, then F ∈
Fg (g = 1, 2, ..., K).

3. OUR APPROACH

In this section, we will indicate a theoretic drawback of equa-
tion (1) and re-define equation (1). Then, a deduction will be
given to prove the invariance of our approach to illumination
intensity. Finally, we suggest a distributed computing algo-
rithm to solve the huge computation problem.

3.1. Calculating distance using LSV feature vector

In equation (1), the illumination intensity will greatly influ-
ence the final result of D(Li,k, Lm,n) because the gray-level
value is directly used. Although the value of ∆ has been intro-
duced to shift the two lines towards the same average value,
great influence inevitably happens for the theoretic drawback.
To further decrease the effect of illumination intensity, we in-
troduce the line-based singular value feature vector.

For each class k in the training set of Vk face views, we
randomly generate Nk = Vk×NVk

lattice lines (NVk
lines
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per face view per class), Li,k ≡ (L(1)
i,k , L

(2)
i,k , ..., L

(l)
i,k) for i =

1, 2, ..., Nk.
Let l = s×s (s > 0), then

Li,k ≡ (L
(1)
i,k, ..., L

(s)
i,k)

| {z }

1

(L
(s+1)
i,k , ..., L

(2×s)
i,k )

| {z }

2

. . . (L
(s2−s+1)
i,k , . . . , L

(s×s)
i,k )

| {z }

s

We define a s×s matrix MLi,k
as

MLi,k
=

∣∣∣∣∣∣∣∣∣

L
(1)
i,k L

(2)
i,k · · · L

(s)
i,k

L
(s+1)
i,k L

(s+2)
i,k · · · L

(2×s)
i,k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

L
(s2−s+1)
i,k L

(s2−s+2)
i,k · · · L

(s×s)
i,k

∣∣∣∣∣∣∣∣∣
We will introduce theorem 1 [7] to show an important

property of any matrix. Denote the field of quaternion by H ,
all the M×N matrix quaternion valued by HM×N . We firstly
give the following singular value decomposition of quaternion
matrix.

Theorem 1 For any matrix S ∈ HM×N with the rank r,
there exist two unitary quaternion matrices U and V such that

S = U

(
Σr 0
0 0

)
V �

where Σr = diag(λ1, λ2, . . . , λr) is a real diagonal matrix
and has r non-null entries λi(1≤i≤r) on its diagonal (i.e. sin-
gular values of S); the sign “�” is the conjugate transposition
operator. U ∈ HM×N and V ∈ HM×N contain respectively
the left and right quaternion singular vectors of S.

The proof of the above theorem is similar to the proposi-
tion in [8]. According to theorem 1, the s×s matrix MLi,k

can be denoted as

MLi,k
= U

′
Σ

′
V T

where Σ
′
= diag(λ

′
1, λ

′
2, . . . , λ

′
r, 0, . . . , 0) is a real diagonal

matrix and has r non-null entries λ
′
i(1≤i≤r) on its diagonal.

Then we define a (s×1) column vector LSV(Li,k) as

LSV(Li,k) = (λ
′
1, λ

′
2, . . . , λ

′
r, 0, . . . , 0)T

Finally, the distance D(Li,k, Lm,n) between two lattice
lines Li,k and Lm,n can be re-defined as

D(Li,k, Lm,n) =
s∑

q=1

(LSV
(q)
(Li,k) − LSV

(q)
(Lm,n))

2
(2)

Some properties (stable, invariant to rotation, translation
and proportion transformation) of the LSV feature vector are
discussed in [7].

A disadvantage of our approach is that it may require ad-
ditional computation to calculate the LSV feature vector. Its
super performance, however, seems to compensate the addi-
tional computational effort (See Figure 2 (b)).

3.2. Invariance to changes of illumination intensity

We will discuss why our approach is invariant to changes of
illumination intensity here. Our aim is to prove that the LSV
feature vector changes in proportion with the linearly fluctua-
tion of illumination intensity.

Assume that the gray-level value matrix of a original im-
age be denoted as A. Linear changing in illumination means
to multiply A by a non-zero real number α, then we get a
image matrix αA. Of course rank(A) = rank(αA).

Let rank(A) = k, and the singular value of A and αA
are λ1, λ2, . . . , λk and σ1, σ2, . . . , σk respectively. Then the
eigenequation of (αA)(αA)T can be denoted as

|(αA)(αA)T − σ2I| = 0

such that ∣∣∣∣AAT − 1
α2

σ2I

∣∣∣∣ = 0

Then we can get that

(λ1, λ2, . . . , λk)T =
1
|α| (σ1, σ2, . . . , σk)T (3)

Equation (3) shows that an equal of linear changing in
illumination is to multiply the singular value feature vector by
a factor α. We can simply erase the influence of illumination
intensity changes by normalizing the LSV feature vector, and
the normalization of LSV feature vector will not result in the
information loss for recognition.

3.3. Distributed computing algorithm

Grid computing is a computational concept based on an in-
frastructure that integrates and collaborates the use of high
end computers, networks, databases and scientific instruments
owned and managed by organizations [9]. We build a dis-
tributed computing model in a grid environment for paral-
lel and distributed computing. We use grid computing nodes
(GCNs) to undertake the computation tasks.

To classify a face X for which we have detected its bound-
ary pixel set β, our distributed recognition algorithm is de-
scribed in Table 1 according to the line-based face recogni-
tion algorithm. If we have enough GCNs, the computation
task mentioned in step 3 can be further divided into Nk sub-
tasks.

4. RESULTS AND ANALYSIS

We use a face database established by ourselves to evaluate
the performance of our algorithm. Pictures of 35 persons are
taken by a standard camera (6 pictures per person) under dif-
ferent environments of illumination intensity (weak, medium
and strong). We select 3 views of each person for training,
and the other 3 views (in weak, medium, and strong illumina-
tion intensity respectively) is used to test. Figure 2 (a) shows
some samples of our database.
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Table 1. THE DISTRIBUTED RECOGNITION ALGORITHM
RecognizeOnGrid(X)
/*X represents the input face image*/
begin

Step 1: for each face class Fk (k = 1, 2, ..., K), read
Nk = Vk×NVk lattice lines (NVk lines per face
view per class, Vk face views in Fk) from face
database;

LineFinished = 0;
While (LineFinished < N )
begin

Step 2: select a lattice lines Lj (j = 1, ..., N )
randomly in X, and scale the line to length
l (l = s × s);

LineFinished = LineFinished + 1;
if (existing a spare GCN)

Step 3: for a test lattice line Lj , assign a spare
GCN to map Lj to a face class Fk using
NNC classifier;

else
Wait a second;

end
Step 4: calculate a TCg = max1≤j≤N{TCj};
Step 5: return X ∈ Fg (g = 1, 2, ..., K);

end

We have compared our results with benchmark results ob-
tained by other workers (e.g. PCA, LDA ) on the same, but
individually processed, face database.

As illustrated in Figure 2 (b) and Figure 3, our recogni-
tion results are better than the benchmarks on the database,
changes of illumination intensity influence little on recogni-
tion. Furthermore, our execution times can be shorten by in-
creasing number of GCNs.

5. CONCLUSIONS

We have described an improved approach to the line-based
face recognition algorithm. For changes in illumination inten-
sity, the LSV feature is used instead of the gray-level value.
For training and recognition, a distributed algorithm based on
grid computing is used.

The LSV feature vector is invariant to the illumination in-
tensity. This super performance seems to compensate the ad-
ditional computational effort. Also, a distributed computing
algorithm using grid computing has been given.

The main drawback of our technique lies in the huge com-
putation. We are currently investigating modifications to the
algorithm that will account for the decrease of computation.
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