
FORMAT-INDEPENDENT MULTIMEDIA STREAMING

Joseph Thomas-Kerr, Ian Burnett, Christian Ritz

University of Wollongong, CRC SIT (Smart Internet Technology)

joetk@elec.uow.edu.au, i.burnett@elec.uow.edu.au, chritz@elec.uow.edu.au

ABSTRACT

The Bitstream Binding Language (BBL) is a new technology
developed by the authors and being standardized by MPEG,

which describes how multimedia content and metadata can

be mapped onto streaming formats. This paper describes a
particular application of BBL – format-independent

multimedia streaming. This means that streaming servers no

longer require additional software modules in order to
support new content formats as they are introduced. Instead,

the server requires only a BBL description of the mapping

between the content format and the stream, and any content
in the new format may then be delivered by the streaming

server. This approach is validated using the H.264/AVC

format as an example, and performance data are provided.

1. INTRODUCTION

Multimedia technology continues to develop at an ever

increasing rate. New audio, video, and hybrid encoding

formats are regularly developed, and the number of devices

accessing or processing multimedia content has grown

exponentially, as has their variability in terms of available

processing power. This diversity hampers interoperability

because tools that handle multimedia data are generally

required to have custom software written to handle each

format. As new content formats are defined, they do not

become useful until software has been written and deployed

for the set of platforms which process or consume them,

including streaming servers, multimedia gateways, and

consuming devices from PCs to mobile devices.

It is clear that the complexity of many operations on

multimedia content mandates the use of custom software.

However, other approaches have been developed which

address certain tasks with multimedia data in a generic –

format-independent – way. Where format-specific

information is required, it is provided by a data file which is

simple, portable, and needs to be written only once. This

considerably simplifies the adoption of new media formats.

Two examples of this generic approach are Flavor [1] – an

automatic parser generator, and the Bitstream Syntax

Description Language (BSDL) [2], which describes the high-

level syntax of a scalable bitstream for the purpose of content

adaptation.

This paper addresses format-independent multimedia

streaming. Using this approach, support for new content

 This work was partially funded by the Smart Internet CRC

formats is provided via a simple data file, aiding their

adoption. There are a number of existing tools which

provide partial solutions to this problem (discussed in section

2), but these merely shift the format-specific software

modules from the streaming server to another application.

Instead, this paper demonstrates how the Bitstream Binding

Language (BBL) may be used to enable format-independent

streaming. BBL was previously proposed by the authors [3],

and is being standardized as part of MPEG-21 [4] – a format-

agnostic framework for multimedia transaction and delivery.

BBL is a generic language which describes how to map

collections of multimedia content and metadata into output

bitstreams. It specifies how to packetize and schedule both

binary and XML content, so that – for example – an MPEG-

21 collection can be mapped onto an RTP or MPEG-2

Transport Stream, regardless of the format of the individual

media or metadata content.

Section 3 discusses how BBL is applied as a format-

independent streaming server, and section 4 presents an

example application – streamed delivery of H.264/AVC over

RTP. Results of this example scenario are presented in

Section 5, and Section 6 concludes the work.

2. A GENERIC STREAMING SERVER

Figure 1 shows a number of possible architectures for a

multi-format streaming server. The simplest case (Figure 1a)

has software modules for each supported format to process

content of that form and ready it for streaming. When a new

content format is developed, additional software modules

must be developed and integrated into the streaming server in

order to support the new format.

2.1. Hint Tracks

Quicktime files [5] and the ISO file format [6] provide a

mechanism known as “hint tracks” which suggest how a

server could stream the content in the file. This means that

the streaming server itself (Figure 1b) no longer needs to

explicitly provide software to support each individual content

format (at least for content which may be contained in a

Quicktime or ISO file). Instead, the server may stream the

content by processing the hint track(s). This architecture

significantly increases scalability, since hint track processing

is essentially a sequence of byte-copy operations – requiring

much less computation than parsing the bitstream to

determine how it is to be streamed.

This computation is still required, but it may now be

conducted offline – and often on a different machine – in a

15091­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

separate hinter application. Consequently, the hinter still

requires specific software to process each individual format,

and must be updated in order to support new encodings as

they are developed. In practice, there are significantly more

hinter applications than there are streaming servers. As a

result, interoperability for new content formats is made even

more difficult, since the number of applications for which

new software must be developed is substantially larger.

2.2. gBSD-based 'generic streaming'

Ransburg et al have considered this issue, and devised a

‘gBSD-based generic streaming server’ [7]. gBSD – generic

Bitstream Syntax Description – is a tool related to BSDL

(see section 1) which uses a single XML Schema to describe

all bitstreams. Ransburg et al propose “to use an extended

version of the gBSD as a hint file.” Specifically, the gBSD is

extended with a marker to identify Access Units (AUs –

defined as the smallest unit of data to which timing may be

attached) and specify a timestamp for each AU.

While the gBSD schema is generic (format-independent),

the generation process is not. Generating a gBSD for a piece

of content requires specific software which is able to parse

the format in question. Consequently, the ‘gBSD-based

generic streaming server’ has essentially the architecture of

Figure 1b. That is, streaming itself is generic, but the hinting

application (this time based on gBSD) is not – it requires

additional software to support new content formats.

Additionally, the identification of access units does not

generally provide sufficient information to stream content.

Many content formats place additional restrictions on

packetization below the level of an access unit. For example,

the specification for H.264/AVC over RTP [8] places

constraints on the fragmenting of NAL units (part of an AU).

Content formats also often require custom header

information to be transmitted as part of the stream – for

example, H.264/AVC or MPEG-4 over RTP [8, 9]. The

fields in the custom header are generally based on the

payload, but not included within it. For these reasons, the

extended gBSD hint file provided by Ransburg et al does not

provide enough information to stream the content.

2.3. BBL-based streaming server

In contrast, a streaming server based on BBL (Figure 1c)

does not require any format-specific software. All

information required to stream content of a particular format

is stored in a BBL description file. Whereas a hint track or

extended gBSD describe one piece of content, a BBL

description relates to all content of that format.

This means that support for new encodings as they are

developed may be provided by merely disseminating a BBL

description. No additional software modules need to be

written, which considerably simplifies the process of

providing streaming support for new formats.

The streaming server may use the BBL description to

process content on-the-fly. This is useful in a live streaming

situation – where the content is not available for offline

hinting, or where dynamic network conditions can guide the

streaming process. Alternatively, a BBL description may be

used to control a hinter, processing the content offline and

providing the scalability benefits of hinted streaming.

The BBL language addresses the shortcomings

highlighted in section 2.2. It allows the identification of

syntactical content structures at any level – not just Access

Units – and it provides the ability to add custom headers or

other data to packets as required.

3. BITSTREAM BINDING LANGUAGE

Figure 2 depicts the model used by BBL to enable format-

independent multimedia streaming. Given an input bitstream,

BBL describes how to identify the content to be included in

each packet. It provides instructions to determine the timing

of the packet, and the value of header fields. The latter may

involve both standard headers (such as the RTP header), and

format-specific headers, where it is necessary to define both

the syntax and the values of each field.

Identification of packet content: In general, multimedia

bitstream formats are made up of numerous layers of

syntactical structures. In a streamed delivery scenario, the

packetization of the bitstream must proceed on the basis of

these structures, in order to ensure timely delivery and

facilitate error resilience [8, 9]. A format-independent

mechanism is therefore required that is able to identify the

 (a) Monolithic Streaming Server (b) Hinted Streaming Server (c) BBL-based Streaming Server

Figure 1 – Streaming Server Architectures

1510

syntactical elements of a bitstream, such as Flavor [1] or

BSDL [2]. BBL uses BSDL for this purpose, because it

allows bitstreams to be described in varying levels of detail

(for example, header fields may be explicitly described,

while payload data remains hidden).

BSDL exposes the structure of a bitstream as XML,

which allows standard XML tools to operate on the binary

data. BBL makes extensive use of XPath [10] – a language

which provides addressing and querying for XML along with

significant processing functionality – to identify packet

content and declare timing information.

To specify packet content, an XPath expression selects

the set of content to be packetized, and a number of rules are

applied to determine how to divide the set into individual

packets. The available rules are based on the requirements of

numerous use cases, including [8] and [9]. They may include

a maximum packet size or duration, a limit on the count of a

particular structure within a single packet, or that particular

sub-structures must remain whole.

Timing information: Some content formats have a

constant or variable packet duration which may be read or

inferred from the bitstream (for example, Theora, MP3,

MPEG-4 Visual). Others use explicit timestamps (such as

MPEG-2 Program Streams). H.264/AVC, on the other hand,

contains no internal temporal information. It must be

provided externally.

BBL supports all of these cases. Packets are placed on a

timeline beginning at t0 where the delivery time t of packet n

is given by

 tn = tn-1 + ∆n-1 … (1)

where ∆ represents the duration of a packet (Figure 2). Both

tn and ∆n may be specified in the BBL description. Typically,

only one is used for a particular session, however there are

some situations where resynchronization points in the

bitstream may have an explicit timestamp, while other

packets are given a duration offset.

Temporal information is declared in BBL using two

XPath expressions. The first identifies the bitstream

segment(s) to which the temporal parameter is to be applied.

The second describes how the timestamp or duration is

calculated from the fields within the bitstream segment

(which have been identified by BSDL), and/or values which

have been stored from other sections of the bitstream.

Standard Header data: On the Internet, RTP is used

almost exclusively as the streaming protocol. However, BBL

was designed for use in multiple domains (such as Digital

TV, where MPEG-2 Transport Streams are typically used),

and provides a mechanism to specify alternative output

stream handlers. This handler mechanism is also extensible,

so that new streaming protocols may be easily integrated into

the BBL framework.

A handler receives the data for each packet, along with its

delivery timestamp, and other parameters defined

specifically for the handler. For the RTP handler, this

includes the timebase, payload type, SDP data, and marker

bit. These parameters provide the values for some of the RTP

header fields. Others fields, such as the sequence number and

SSRC, are not media specific – they are set by the streaming

server without information about the content.

Payload-Specific headers: The mechanism used to

specify packet content may contain multiple separate

elements. This allows payload-specific headers to be added

to packet data. BSDL is used to specify the structure of the

header, and XPath expressions to calculate the field values.

4. BBL FOR H.264/AVC OVER RTP

H.264/AVC [11] is a recent video encoding format used as

an example application for BBL, since it has a number of

characteristics distinct from previous coding formats which

make generic streaming more challenging. These include

parameter sets and a lack of internal timing information.

A H.264 stream is made up of sequences of Network

Abstraction Layer (NAL) Units. These contain slices of

picture data, parameter sets or other supplementary data. In

general, each NAL unit in the input bitstream is carried in a

separate RTP packet [8]. In the BBL description (Figure 3),

this is accomplished by selecting the NAL units to be

packetized using the include element, then applying

fragmentation rules to separate the NAL units into packets

(not shown).

In order to derive timing information for each NAL unit,

their association to Access Units (AU) must be identified.

The bitstream may contain a specific AU delimiter which

simplifies this process but its presence is not guaranteed and

n-1

Input Content Standard
Header

Payload-specific
Header

t1t0 t2 tn-1 tn

Streamed
Output

Packet
timeline

Figure 2 – Abstract model for format-independent streaming

<packetStream>
 <contentTemplate>
 <include ref="/avc:h264/avc:slice |

 /avc:h264/avc:parameterSet" depth="-1">
 <!-- ... -->
 </include>
 </contentTemplate>
 <variables>
 <!-- ... -->
 <assign name="delTime" value="if ($newAU)

 then $delTime + $framePeriod else $delTime"/>
 <assign name="expectedPicOrder"
 value="if ($nalType = 5) then 0
 else if ($newAU) then $expectedPicOrder + 2

 else $expectedPicOrder"/>
 <assign name="timestampOffset"

value="if (./avc:h264/avc:slice) then
 $frameTime * ($picOrder - $expectedPicOrder) div 2

else $timestampOffset"/>
 </variables>
</packetStream>

Figure 3 – Extract of BBL description for H.264 over RTP

1511

so cannot be assumed. Consequently, the general process

specified in clause 7.4.1.2.4 of [11] is used to calculate the

Boolean variable $newAU, by detecting changes in certain

field values between one slice NAL unit and the next.

The NAL Units in an AU have the same delivery time

($delTime) – based on an external frame rate. The RTP

header timestamp, however, must be offset from the delivery

time according to the display order of the pictures. This is

implemented in BBL by comparing the pic_order_cnt
field ($picOrder) to its expected value ($expectedPicOrder).

5. EXPERIMENTAL RESULTS

A prototype implementation of the BBL processor has been

developed, and this section presents initial test results. The

results demonstrate that the algorithm performs correctly,

and also that its complexity is low enough to enable multiple

on-the-fly sessions. A full evaluation of the scalability of the

algorithm is pending an optimized implementation, however

in general, BBL processing may be conducted offline to

produce hint tracks, such that scalability is not critical.

The tests were conducted using a QCIF test sequence of

382 frames (15.3 seconds at 25fps). The sequence was

encoded using the H.264 reference software in three

configurations, to validate the BBL description across a

range of significantly different H.264 bitstreams. Each test

was repeated ten times, and the results averaged. The

configurations used were:

(a) Baseline Profile with NAL size limited to 100 bytes (a

profile targeted towards mobile applications [12]);

(b) Main profile, (introducing bi-predicted frames), NAL

size 1500 bytes; and

(c) Extended profile using data partitioning – an error

resilience feature provided by H.264 where each slice is split

into 3 portions with varying loss importance.

The correctness of the algorithm is validated by

comparing the output of the BBL processor to the RTPdump

output of the H.264/AVC reference software. In all cases,

both are identical.

Scalability is assessed by measuring memory usage, and

CPU time as a proportion of the duration of the sequence (%

CPU utilization), for each test1.

Results are shown in Table 1. CPU and memory usage

both indicate that the prototype system will scale to several

tens of simultaneous sessions – with the exception of the

baseline profile (test (a)). In this case, the CPU utilization is

significantly larger due to the greater number of NAL units

(and packets) to be processed. To improve scalability in such

an application, AU delimiters could be employed to reduce

processing complexity, or offline processing (hinting) used

with greater priority.

6. CONCLUSION

This paper has demonstrated how the Bitstream Binding

Language may be used to implement a format-independent

streaming server. This facilitates multimedia interoperability

in the face of newly developed content formats, by enabling

streaming support via a data file (the BBL instructions),

rather than requiring new software to be developed to

support the new format. BBL can be used to process content

on-the-fly, or offline to produce highly scalable hint tracks

whilst still providing format-independent streaming.

This approach has been tested using the H.264 video

format. It produces RTP streams with the correct timing and

data, and the prototype implementation may scale to several

tens of simultaneous sessions, depending on the number of

NAL units which much be processed per second.

Future work for BBL will focus on mechanisms to

improve the scalability of on-the-fly processing, including

the provision of a method to utilize XPath extension

functions. This will significantly reduce the number of XPath

expressions to be processed for each NAL unit.

7. REFERENCES

[1] A. Eleftheriadis, "Flavor: a language for media representation,"

presented at Fifth ACM Intl. Conf. on Multimedia, 1997.

[2] M. Amielh and S. Devillers, "Bitstream Syntax Description

Language: Application of XML-schema to Multimedia Content

Adaptation," presented at WWW, 11th Intl. Conf. on, 2002.

[3] J. Thomas-Kerr, et al., "Bitstream Binding Language -

Mapping XML multimedia containers into streams," presented

at Multimedia & Expo, 2005. IEEE Intl. Conf. on, 2005.

[4] ISO/IEC, "CD 21000-18, IT - Multimedia framework (MPEG-

21) -Part 18: Digital Item Streaming," 2005.

[5] Apple, "QuickTime File Format." http://developer.apple.com

/documentation/QuickTime/QTFF/qtff.pdf, 2001.

[6] ISO/IEC, "14496-12, IT - Coding of audio-visual objects - Part

12: ISO base media file format," 2005.

[7] M. Ransburg and H. Hellwagner, "Generic Streaming of

Multimedia Content," in Internet & Multimedia Sys. & Apps.,

2005.

[8] S. Wenger, "H.264/AVC over IP," Circuits & Systems for

Video Technology, IEEE Trans. on, vol. 13, pp. 645, 2003.

[9] J. v. d. Meer, et al., "RFC3640: RTP Payload Format for

Transport of MPEG-4 Elementary Streams."

http://www.ietf.org/rfc/rfc3640.txt, 2003.

[10] A. Berglund, et al., "XML Path Language (XPath) 2.0," in

Working Draft. http://www.w3.org/TR/xpath20, 2005.

[11] ITU-T, "Recommendation H.264: Advanced video coding for

generic audiovisual services," 2005.

[12] T. Wiegand, et al., "Overview of the H.264/AVC video coding

standard," Circuits and Systems for Video Technology, IEEE

Transactions on, vol. 13, pp. 560, 2003.

1 The BBL processor was implemented in Java and tested on a P4

3.0GHz PC, 1Gb of RAM, Windows XP & Sun 1.5.0_04 JVM. The

reported memory usage excludes that used by the JVM itself.

Avg. Max.

(a) Baseline 4555 23.0% 1.62 6.63

(b) Main 459 3.1% 0.94 4.49

(c) Extended 1146 5.5% 1.16 4.95

Test

configuration

NAL unit

count

% CPU

utilization

Memory usage (Mb)

Table 1 – On-the-fly BBL Processing, performance results

1512

