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ABSTRACT

In this paper, we present an AUC (i.e., the Area Under the Curve 

of Receiver Operating Characteristics (ROC)) maximization 

based learning algorithm to design the classifier for maximizing 

the ranking performance. The proposed approach trains the 

classifier by directly maximizing an objective function 

approximating the empirical AUC metric. Then the gradient 

descent based method is applied to estimate the parameter set of 

the classifier. Two specific classifiers, i.e. LDF (linear 

discriminant function) and GMM (Gaussian mixture model), and 

their corresponding learning algorithms are detailed. We 

evaluate the proposed algorithms on the development set of 

TRECVID’051 for semantic concept detection task. We compare 

the ranking performances with other classifiers trained using the 

ML (maximum likelihood) or other error minimization methods 

such as SVM. The results of our proposed algorithm outperform 

ML and SVM on all concepts in terms of its significant 

improvements on the AUC or AP (average precision) values. We 

therefore argue that for semantic concept detection, where 

ranking performance is much interested than the classification 

error, the AUC maximization based classifiers are preferred.

1. INTRODUCTION

The task of the high-level feature extraction or semantic visual 

concept detection in TREC video information retrieval 

(TRECVID) is to train a system to retrieve the top-N (e.g. 2,000) 

video shots relevant to the given semantic concept. Its efficiency 

of the system is measured by the ranking performance metric 

such as non-interpolated average precision (AP) or the area 

under the ROC curve (AUC). It is different from the 

classification problem where the classification error is a 

measurement of the system performance. Thus learning 

algorithms for error minimization will not be optimal for the 

detection task. In the paper, we study the learning algorithm for 

designing classifier optimized for ranking. 

The traditional approaches for semantic concept detection 

are to train a binary classifier by minimizing the penalized 

classification error (e.g. SVM) or maximum likelihood (ML) (e.g. 

Gaussian mixture model (GMM)) [1, 2, 9]. The classifier here is 

served as scoring and sorting the video shot documents. 

Therefore the ranking function should rank the relevant shots as 

high as possible. However, the traditional algorithms are not 

designed for ranking, because the mismatch between the training 

and the evaluation affects the final ranking performance. It 

becomes worse when the dataset is heavily imbalanced. Cortes 

& Mohri studied the relation between the ratio of the class 

distribution and the classification error rate and the average 

AUC in [5]. Their results showed that the average AUC 

coincides with the accuracy only for the even class distribution. 

With improving accuracy, the average AUC monotonically 

increases and its standard deviation decreases. The analysis 

gives a reasonable explanation for the partial success of using 

the error minimized based classifier for ranking. For example, 

                                                                
1 http://www-nlpir.nist.gov/projects/tv2005/tv2005.html

SVM trained by penalized error minimization is widely and 

successfully exploited for semantic concept detection in 

TRECVID1. Nevertheless, they also proved that the uneven class 

distributions have the highest variance of AUC. It implies the 

classifier with a fixed classification error will show the 

noticeable difference of AUC for highly uneven class 

distribution, which is the situation frequently occurred in 

information retrieval such as semantic concept detection. A new 

learning criterion is therefore expected, to suit for ranking rather 

than minimizing classification error. 

One of the available criterions is the AUC. It characterizes 

the correct rank statistics for a given ranking function and is 

measured by the normalized Wilcoxon-Mann-Whitney (WMW)

statistic [6]. The AUC based objective function is a function of 

the scores output from the classifier. So the classifier parameters 

have already been naturally embedded in the AUC. Maximizing 

AUC will lead to an optimal configuration of those parameters. 

Note that like all other metrics such as classification error, recall, 

precision, or F1 measure, the AUC is a discrete metric of correct 

ranking of pair-wise positive-negative samples. It has to be 

smoothed and differentiated before optimisation. 

The AP value, a measure of the area under the 

precision-recall curve, is closely related to the AUC. Both are 

two different views of the overall performance of the ranking 

system. Thus, the classifier optimized for AUC should be also 

optimal for AP. Later we will experimentally demonstrate their 

interesting relation. 

In this paper we present a learning algorithm to estimate the 

classifier for AUC optimization. First we approximate the 

empirical AUC on the training set using the smoothing functions. 

Then the gradient descent based algorithm is applied to find its 

optimal configuration. The details of the learning algorithms are 

presented for two specific classifiers, i.e. linear discriminant 

function (LDF) and GMM. We evaluate it on the development 

set used for semantic concept detection in TRECVID 2005.  

In the next section, we present the definition of the objective 

function for rank optimization and the learning algorithm. In 

Section 3, we discuss its application to design two specific 

classifiers used in our experiments. The experimental results and 

analyses are given in Section 4. Finally, we summarize our 

contributions in Section 5. 

2. LEARNING CLASSIFIER FOR AUC 

OPTIMISATION

Learning the classifier for ROC optimization has been studied in 

[3-6]. In [5], a theoretical analysis of the relations between AUC 

optimization and error minimization is demonstrated and then 

RankBoost is applied to learn a set of weaker classifiers for 

minimizing the pair-wise ranking error. In [3, 4, 6], the classifier 

is trained by directly maximizing the AUC based objective 

function using the gradient descent method. In our previous 

work [8], the metric-oriented objective function is defined for 

the preferred metric optimization such as F1 measure. This work 

is a further extension of [8] and [3, 4, 6] targeting at solving 

semantic concept detection. 

First we give a formal definition for our task and notations 

used throughout the paper. Given a set of training samples, T,
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with M positive samples and N negative ones, learn a binary 

classifier, f X  with the parameter set , so that the 

values of the function for positive samples are higher than those 

of the negatives. We denote X as a representation of the sample, 

X+ for the positive and X- for the negative. S+ and S- are the 

values of f X  and f X , respectively, given the 

known parameter set. 

2.1 AUC Metric 

The AUC is a one-dimensional metric for the quality of the ROC 

curve, and is a measurement of capability of the classifier for 

ranking. It is formally defined as the probability of the positive 

sample ranking higher than the negative, i.e.,  

U P S S                      (1),  

where S+ is the positive score from the classifier or ranking 

function and S- negative score. In real applications, it is 

empirically estimated from the training set as, 

1 1

1
,

M N

i ji j
U I S S

MN
              (2).        

c c

k kS f X , ,c , for the k-th sample, c

kX , of class c .

is the parameter set of the classifier.
ji SSI ,  is an indicator 

function. It is set to one when ranking is correct, i.e. 
ji SS .

Otherwise, it is zero. 

We would like to find a configuration of the classifier 

parameters so that the maximal value in Eq. (2) is obtained. 

2.2 Approximating AUC 

The score values in the indicator function are calculated from 

the classifier. So it is dependent on the classifier configuration. 

The indicator function bridges the classifier parameters with the 

AUC value. Clearly, Eq. (2) is a natural embedding of the 

classifier parameters. Maximizing Eq. (2) will result in a 

classifier with optimal ranking. However, Eq. (2) is discrete and 

non-differential. It must be smoothed before optimisation.  

When we use a smoothing function to approximate the 

indicator function, the overall AUC will be smoothed. One 

popular way is to use the sigmoid function. It has been shown 

successfully in the past work [6, 8]. Here we discuss two 

smoothing functions, sigmoid function and Gaussian-like 

function, used in our experiments. 

Case 1: Sigmoid function 

The sigmoid function for approximating the indicator 

function is defined as, 

, 1 1 expi j ijl S S z       (3), 

with being a positive constant to control the window size [8] 

and
ij i jz S S . For any pair-wise positive and negative 

sample, Eq. (3) is close to 1 if the positive is ranked much higher 

than the negative. Otherwise, it closes to zero. When the rank of 

the positive sample is close to the negative, it closes to 0.5. Soon 

after we will see (See sub-section 2.3) that the pair-wise samples, 

whose value is close to 0.5, play an important role in the 

learning.

Case 2: Gaussian-like function 

The second case has a form as, 

2 2

2 2

1
, exp 2

2

1
                     exp 2

2

ij

i j

x z

l S S x

y dydx

 (4), 

with a positive constant value, , to control the smoothing 

window size. Its gradient over zij has an analytic form (See 

sub-section 2.3). Although Eq. (4) has no analytic form, it does 

not affect the learning algorithm used in the paper. 

With the above approximations for the indicator function, 

we get the following objective function by substituting them into 

Eq. (2). 

1 1

1
,

M N

i ji j
U l S S

MN
       (5) 

2.3 Parameter Estimation 

The objective function in Eq. (5) is only the function of the 

classifier parameter. In general, the function is highly non-linear. 

We solve the function using the gradient descent algorithm. Thus 

the solution is locally optimal and the starting point will affect it. 

In our experiments we first estimate the parameter set using the 

traditional algorithms (e.g. ML) and then select the parameters as 

the initial point for the iterative algorithm.  

The gradient of Eq. (5) with respect to is as, 

1 1

1
,

ij

M N

i j z i j

i j

U l S S f X f X
MN

 (6) 

The first term in the summary is the gradient with respect to 

zij, a variable of difference scores between the positive sample 

and the negative. Its form depends on the chosen smoothing 

function. And the second term, whose form relates with the 

classifier, is the gradient difference with respect to the parameter 

set between the positive sample and the negative. 

When the sigmoid is used, Eq. (6) will be, 

, , 1 ,
iji j z i j i jl S S l S S l S S      (7). 

And for the Gaussian-like function, it will be as, 
2

21
, exp 2 2

2 2iji j z ijl S S z , (8) 

The second term in Eq. (6) is determined as the classifier is 

chosen. In Section 3, we will illustrate it using the LDF and 

GMM classifier. When the two types of gradients in Eq. (6) are 

gotten, the classifier parameters is obtained using the iterative 

algorithm as, 

11 |
tt t t U           (9). 

t
is the parameter set at the t-th iteration, and t is a positive 

constant learning rate. 

3. DESIGN SPECIFIC CLASSIFIERS 

Now we detail the learning algorithms for two specific 

classifiers which will be used in our experiments. 

3.1 LDF Classifier 

The LDF defined in Eq. (10) is trained for text modality. 

; Tf X W X ,      (10) 

with X being a D-dimensional feature vector for sample 

representation, and W being a D-dimensional parameter vector 

of the classifier, i.e. . Thus its gradient over W for X is, 

f X X        (11) 

3.2 GMM Classifier 

When the representation X is not a single vector, but a set of 

D-dimensional feature vectors, GMM is applied to model the 

distributions of the positive and the negative samples 

respectively. Denote 
1 2 Lx , x , , xX with D

ix R  and L

being its size. Then the ranking function is, 
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1 1

1
log , , log , ,

L L

i ii i
f X g x w g x w

L

(12),

with  

1
, , , , ,

Kc c c c c c

i k i k kk
g x w w N x c  (13), 

where K is the mixture number, c

kw is the weight 

coefficient, and N(.) is the Gaussian distribution with the 

mean c

k
 and covariance matrix c

k
(Here diagonal matrix 

is used).  Thus the parameter set being estimated is 

, , ,c c c

k k kw 1,k K , ,c . The gradients with 

respect to these parameters are as, 

1

1
c
k

Lc c

t kw i
f X I wt

L
                   (14) 

1

1

1
c
k

Lc c c c c

t k k k i ki
f X I w wt x

L
    (15) 

1 1 1

1

1

2
c
k

TLc c c c c c c c

t k k k k i k i k ki
f X I w wt x x

L

 (16) 

with , ,c c c c c

k i k k iwt N x g x , and, Ic is 1 if c is 

positive and –1 otherwise. Due to the constraints that the 

variances and weight coefficients must be positive (summarized 

equal to 1 for the latter), they are updated in the log-domain in 

practice.  

4. EXPERIMENTAL RESULTS AND 

ANALYSIS

We analyze the proposed learning algorithm on the development 

set of TRECVID 2005 for evaluating semantic concept detection 

task. We train the LDF and GMM classifiers using our learning 

algorithms introduced in Section 3 and Section 2. They are 

compared with: 1) trained using the ML algorithm and 2) SVM 

which is widely used for semantic concept detection. 

4.1 Evaluation Metrics 

We compare the different systems using the AUC metric (See 

Eq.2) and non-interpolated average precision (AP) defined as, 

1

1 Q i
ii

R
AP I

R i
.          (17) 

R is the number of true relevant image documents in the 

evaluation set. Q is the number of retrieved documents by the 

system (Here Q=2000 same as used in TRECVID official 

evaluation). Ii is the i-th indicator in the rank list with Q images. 

It is 1 if the i-th image is relevant and zero otherwise. Ri is the 

number of relevant in the top-i images. 

4.2 Experimental Setup 

The development set of TRECVID 2005 has 74,509 keyframes 

extracted from 137 news videos (~80 hours). 10 concepts for 

official evaluation are used. Two modalities, i.e., text and visual, 

are used. The news videos are divided into 3 sets for training, 

validation, and evaluation, respectively. The shots without any 

ASR (automatic speech recognition) /MT (machine translation) 

outputs are removed. Then 3,464-dimensional tf-idf feature is 

extracted for representing the shot-level text document within 

3-window shots. Then LDF is trained on the text documents. 

The visual feature is the 12-dimensional texture (energy of log 

Gabor filter) extracted from a 32x32 grid. Other expressive 

visual features will be evaluated in the future. But here we 

concern the efficiency of the proposed learning algorithm rather 

than feature extraction. Each keyframe is uniformly segmented 

into 77 grids. GMM is used for modeling texture. The dataset 

details are listed in Table 1. 

4.3 Experimental Results 

The results are presented on the individual modality and the 

fusion is not the concern here. SVM-light [10] with the default 

setting is used for text (We select the configuration based on a 

selected concept, Building, and find the default works best).  

First we study the comparison on text modality. The AUC 

values on validation (Column V) and evaluation (Column E) sets 

are in Table 2. First we check the effect of the smoothing 

functions on the ranking performance. Comparing the 

Gaussian-like smoothing (Column GAUS) with sigmoid 

smoothing (Column SIG), the former, having the average AUC 

values over 10 concepts as 71.7% for the validate set and 63.7% 

for the evaluation set, performs better than the latter whose 

average AUC values are 65.7% and 62.9% correspondingly. 

Both are significantly better than the systems trained using the 

ML or SVM. For all concepts except for Prisoner on the 

evaluation set, the improvements obtained from the proposed 

algorithms are observable. The similar conclusions as the above 

are obtained when comparing the AP values (See Table 3). The 

average AP values for GAUS are 6.8% on the validate set and 

6.2% on the evaluation set. As the comparison they are 3.7% and 

2.5% for SVM, and 2.2% and 2.2% for the ML, 

correspondingly.  

These results demonstrate that the AUC maximization based 

classifier outperforms the traditional ML or error minimization 

based classifiers. 

Table 1 Description of the TRECVID 2005 dataset
 Text Texture 

Building T: 19,943 (2,008) 

V: 8,538 (1,254) 

E: 6,447 (958) 

T: 41,978 (3,604) 

V: 8,295 (1,064) 

E: 11,173 (1,416) 

Car T: 19,943 (1,204) 

V: 8,538 (624) 

E: 6,447 (272) 

T: 41,919 (2,253) 

V: 11,325 (767) 

E: 8,487 (370) 

Explosion T: 19,943 (492) 

V: 8,538(71) 

E: 6,447 (23) 

T: 42,038 (641) 

V: 11,301 (81) 

E: 8,497 (26) 

US_Flag T: 19,943 (285) 

V: 8538(48) 

E: 6,447 (90) 

T: 42052 (337) 

V: 10,970 (51) 

E: 8,497 (92) 

Maps T: 19,943 (423) 

V: 8,538(161) 

E: 6,447 (142) 

T: 41,988 (594) 

V: 11,290  (171) 

E: 8,473 (145) 

Mountain T: 19,943 (139) 

V: 8,538(154) 

E: 6,447 (65) 

T: 42,073 (385) 

V: 11,331 (168) 

E: 8,496 (73) 

People T: 19,943 (715) 

V: 8,538(209) 

E: 6,447 (86) 

T: 42,021 (996) 

V: 11,321 (221) 

E: 8,473 (91) 

Prisoner T: 19,943 (43) 

V: 8,538(41) 

E: 6,447 (2) 

T: 42,003 (61) 

V: 11,332 (43) 

E: 8,112 (2) 

Sports T: 19,943 (332) 

V: 8,538(240) 

E: 6,447 (98) 

T: 41,753 (1,140) 

V: 11,310 (295) 

E: 8,498 (135) 

Waterscape T: 19,943 (372) 

V: 8,538(122) 

E: 6,447 (92) 

T: 42,043 (819) 

V: 11,312 (152) 

E: 8,484 (110) 

 For LDF an image is represented by a feature vector.Another 

popuar way of representation is to extract a set of feature vectors 

and the generative models such as GMM are chosen. To see the 
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efficiency of the presented algorithm on this representation, we 

extract the grid-based texture features and train the GMM 

models for the positive class and the negative, and use the 

likelihood ratio for ranking. The benchmark for comparison is 

the ML trained GMM. The values of the AUC are illustrated in 

Table 4 and those of AP values are in Tables 5. We see that 1) 

the two smoothing functions have a comparative result, and 2) 

the presented AUC based learning algorithms are obviously 

better than the benchmark. 

The experiments presented above demonstrate the capability 

of the AUC based learning algorithm for semantic concept 

detection. It shows the importance of designing special 

classifiers for detection. The differenct behaviors of two 

smoothing functions on text and texture features exemplifies the 

significant role of the smoothing function on the presented 

learning algorithm. We will exploit other smoothing functions in 

the future and study how to find an optimal one for a given task. 

5.  CONCLUSION 

In the paper we presented an AUC maximization based learning 

algorithm to design the classifier for maximizing the ranking 

performance. The proposed approach trains the classifier by 

directly maximizing an objective function approximating the 

empirical AUC metric. The gradient descent based method is 

applied to estimate the parameter set of the classifier. Two 

specific classifiers, i.e. LDF and GMM, and their corresponding 

learning algorithms are discussed. We evaluate the proposed 

algorithms on the development set of TRECVID’05 for 

evaluating semantic concept detection task. We compare the 

ranking performances with the classifiers trained using the ML 

and the error minimization method such as SVM. The systems 

trained using the proposed algorithm perform best on all 

concepts, and significant improvements on the AUC or AP 

values are observed. It demonstrates that for semantic concept 

detection, where ranking performance is much interested than 

the classification error, the AUC maximization based classifiers 

are preferred. 
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Table 2 AUC values (%) for Gaussian-like smoothing, sigmoid 

smoothing, ML, and SVM (Text) 

V E Class 

GAUS SIG ML SVM GAUS SIG ML SVM

Building 57.5 53.1 48.5 55.2 55.0 52.1 52.1 51.2

Car 63.9 64.0 47.2 57.6 66.5 65.0 46.8 60.5

Explosion 76.9 69.4 66.8 66.3 74.1 66.0 58.8 53.7

US_Flag 84.3 70.9 76.6 67.0 69.3 63.0 64.0 55.2

Maps 75.0 72.9 70.0 68.1 73.8 64.2 70.8 62.4

Mountain 62.7 61.3 42.6 56.7 67.1 60.7 39.3 45.3

People 74.1 58.4 51.4 57.4 60.8 51.5 48.6 48.9

Prisoner 69.6 68.4 73.2 55.4 27.4 70.1 87.9 32.0

Sports 89.4 79.4 71.7 81.8 79.4 73.7 62.4 69.6

Waterscape 63.1 58.9 44.6 58.0 63.1 62.2 50.2 49.0

Avg. 71.7 65.7 59.3 62.4 63.7 62.9 58.1 52.8

Table 3 AP values (%) for Gaussian-like smoothing, sigmoid 

smoothing, ML, and SVM (Text) 

V E Class 

GAUS SIG ML SVM GAUS SIG ML SVM

Building 6.3 4.5 3.1 6.13 7.8 5.5 5.3 4.51

Car 10.2 7.2 1.3 6.6 8.5 5.7 0.8 6.8 

Explosion 3.6 2.0 0.8 0.9 2.1 2.2 0.3 0.3 

US_Flag 4.4 0.9 3.1 0.4 4.7 1.9 5.5 0.8 

Maps 10.4 4.8 6.4 2.2 10.1 3.9 4.0 2.2 

Mountain 1.5 2.8 0.3 2.8 1.6 3.0 0.2 0.9 

People 2.0 2.2 0.6 1.7 1.0 0.5 0.2 0.5 

Prisoner 4.0 1.3 1.6 0.3 0.0 0.0 0.2 0.0 

Sports 23.8 12.6 4.3 15.0 18.7 12.8 1.8 8.1 

Waterscape 1.7 1.1 0.3 1.2 7.0 3.5 3.2 0.8 

Avg. 6.8 3.9 2.2 3.7 6.2 3.9 2.2 2.5 

Table 4 AUC values (%) for Gaussian-like smoothing, sigmoid 

smoothing, and ML (Visual) 

V E Class 

GAUS SIG ML GAUS SIG ML 

Building 70.1 70.2 60.4 69.7 69.6 62.3 

Car 72.1 71.2 65.6 77.1 76.9 67.1 

Explosion 75.5 73.9 64.3 79.4 78.4 73.7 

US_Flag 83.6 83.1 74.2 76.6 76.9 75.8 

Maps 77.4 75.8 65.5 84.0 83.1 72.1 

Mountain 86.4 86.2 71.4 91.6 91.7 74.9 

People 76.3 73.7 70.0 84.3 81.9 77.1 

Prisoner 64.1 64.1 58.2 82.4 82.2 42.7 

Sports 82.9 83.4 72.5 78.8 78.7 69.8 

Waterscape 82.4 82.4 76.0 79.6 79.2 69.4 

Avg. 77.1 76.4 67.8 80.4 79.9 68.5 

Table 5 AP (%) values for Gaussian-like smoothing, sigmoid 

smoothing, and ML (Visual) 

V E Class 

GAUS SIG ML GAUS SIG ML 

Building 10.8 10.3 3.9 12.4 12.2 7.7 

Car 7.0 6.4 3.5 10.3 10.0 3.8 

Explosion 1.8 1.5 0.8 1.8 1.6 0.8 

US_Flag 5.1 5.5 1.0 3.6 3.8 1.5 

Maps 5.4 7.7 1.8 9.5 7.6 2.1 

Mountain 8.5 8.3 2.5 8.4 8.2 2.7 

People 3.2 2.6 1.8 4.4 3.8 2.6 

Prisoner 0.5 0.4 0.1 0.1 0.1 0.0 

Sports 15.6 16.2 3.1 7.4 7.4 1.9 

Waterscape 10.2 10.3 6.0 6.1 5.9 2.5 

Avg. 6.8 6.9 2.5 6.4 6.1 2.6 
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