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ABSTRACT 

For automatic semantic annotation of large-scale video 
database, the insufficiency of labeled training samples is a 
major obstacle. General semi-supervised learning 
algorithms can help solve the problem but the 
improvement is limited. In this paper, two 
semi-supervised learning algorithms, self-training and 
co-training, are enhanced by exploring the temporal 
consistency of semantic concepts in video sequences. In 
the enhanced algorithms, instead of individual shots, 
time-constraint shot clusters are taken as the basic sample 
units, in which most mis-classifications can be corrected 
before they are applied for re-training, thus more accurate 
statistical models can be obtained. Experiments show that 
enhanced self-training/co-training significantly improves 
the performance of video annotation. 

1. INTRODUCTION 

With advances in storage devices, networks and 
compression techniques, large-scale video data is 
available to average users. How to browse and search 
these data has become a challenging task. To deal with 
this issue, it has been a common theme to develop 
automatic analysis techniques for deriving metadata from 
videos, which describes the video content at both 
syntactic and semantic levels. With the help of these 
metadata, the tools and systems for video retrieval, 
summarization, delivery and manipulation can be created 
effectively. 

Semantic concept annotation is an elementary step 
for obtaining these metadata. As manual annotation for 
large video archive is labor-intensive and time-consuming, 
efficient automatic annotation methods are desired. For 
general automatic video annotation methods, statistical 
models are built from manually pre-labeled samples, and 
then labels can be assigned to unlabeled samples by these 
models. In this process, the lack of labeled samples is a 
major obstacle, which usually leads to inaccurate 
annotation results. 

Semi-supervised learning algorithms, which attempt 
to learn from both labeled and unlabeled data, is one 

approach to deal with the lack of labeled samples. 
However, the improvements are limited as they are only 
based on certain assumptions of data set structure, such as 
decision boundary should avoid high density region and 
similar data samples mostly have a same label [2, 3]. 

Meanwhile, video sequence has a property named 
temporal consistency, which has already been commonly 
utilized in shot grouping and scene detection [7]. That is, 
the variation of semantic concept within one continuous 
video segment is much smaller compared to that in 
different video segments. In this paper, we will focus on 
how to enhance two general semi-supervised learning
algorithms, self-training and co-training, by exploring 
temporal consistency in video sequences. 

The remainder of this paper is organized as follows. 
In Section 2, general self-training and co-training are 
briefly introduced, and how to enhance them for video 
annotation is then discussed in Section 3. A framework of 
automatic video annotation based on enhanced 
self-training/co-training is presented in Section 4.  
Experiments are introduced in Section 5, followed by 
concluding remarks in Section 6. 

2. SELF-TRAINING AND CO-TRAINING 

Semi-supervised learning, a family of algorithms that take 
advantage of both labeled and unlabeled data, has been 
studied for a couple of years [2-6]. Among them, 
self-training, co-training, transductive SVM, and 
graph-based methods are frequently applied ones. 

For self-training, firstly a classifier is trained from a 
small amount of labeled samples, which is then used to 
classify unlabeled samples. Typically the classified 
samples with high confidence levels are added to the 
training set. For co-training, it is assumed that the features 
can be split into two sets that are conditionally 
independent given the class, and each feature set is 
sufficient for training a “good” classifier. Initially two 
separate classifiers are trained based on these two feature 
sets with a set of labeled samples respectively. Each 
classifier then classifies unlabeled samples, and adds 
those with high confidence levels to the training set, 
which is applied to “teach” the other classifier. 
Afterwards two classifiers are re-trained from the new 
training set based on the corresponding feature sets, and 
the process repeats. Details about self-training and 
co-training can be found in [4] and [6]. 
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3. ENHANCED SELF-TRAINING AND 
CO-TRAINING  

The basic ideas of both self-training and co-training are to 
iteratively expand the training set from classified samples 
with high confidence levels. Therefore, in these two 
algorithms, inaccurate prediction of the newly added 
training samples forms a bottleneck of performance 
improvement. However, as to be detailed in this section, 
some mis-classifications can be corrected by taking into 
account temporal consistency of semantic concept in 
video sequences, thus the performances of self-training 
and co-training can be improved. 

To achieve the target, time-constraint clustering [7, 8] 
is applied. Considering the shots in each cluster typically 
have a same label (i.e., temporal consistency of semantic 
concept), the isolated mis-classifications can be corrected 
by an appropriate cluster unification process (e.g., label 
voting) after classification. After that, the shot clusters are 
taken as basic sample units and added into training set. 
This is the main idea of the enhanced self-training and 
co-training proposed in this paper.  

3.1. Cluster label unification 

As aforementioned, time-constraint clustering is applied 
to explore temporal consistency within video sequence. 
By selecting an appropriate window parameter that 
measures the time-constraint degree [7], the shots in one 
cluster typically have a same label, as shown by the 
examples in Fig. 1. Therefore, isolated mis-classified 
shots in a cluster can be corrected by a label unification 
process, only based on an assumption that the original 
classification accuracy is not too low (say, above 60%, 
which is easy to achieve). 

(a) 

(b) 

(c)

(d)

Figure 1: Shots in a certain cluster can mainly be 
considered to have same label: (a) Room (b) Hall (c) 
Cityscape (d) Landscape 

 Considering a cluster C that contains N shots {x1, 
x2, …, xN}, the task of cluster label unification is to assign 
a label to the cluster from label set {l1, l2, …, lM} that 
corresponds to a set of different semantic concept classes. 

Here we make a simple assumption that feature vectors of 
shots in the cluster are conditionally independent, which 
is expressed as 
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where P(li) is the prior probability of label li and P(li|xk) is 
the posterior probability of label li for shot xk. Based on 
the estimated posterior probabilities P(li|C), the unified 
cluster label is decided according to MAP criterion, and 
its confidence score is estimated according to [11] as 
follows 

inmPPC argmax)( =ψ               (3) 

where Pmax = max{P(li|C), i=1,…,N} is the maximum 
posterior probability of the cluster label, Pmargin = Pmax

-max{P(li|C)|P(li|C) Pmax, i=1,…,N} is the multi-class 
margin of the unlabeled sample. 
 Generally the assumption indicated by equation (1) 
will not be strictly satisfied. However, approximate 
posterior class probabilities based on equation (1) are 
generally sufficient for deciding the unified cluster label, 
which is similar as independence assumption in naive 
Bayesian Classifier [12]. As to be detailed in Section 5, 
the significantly improved performances of the enhanced 
self-training and co-training also prove the rationality of 
the assumption. 

3.2. Enhanced Self-training and Co-training 

As aforementioned, general self-training and co-training 
can be enhanced based on time-constraint clustering and 
cluster label unification, The process of enhanced 
self-training and co-training are shown in Fig. 2 and Fig. 
3 respectively. 
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Figure 2: Process of enhanced self-training 

Figure 3: Process of enhanced co-training 

4. PROPOSED AUTOMATIC VIDEO 
ANNOTATION FRAMEWORK 

The automatic video annotation framework based on 
enhanced self-training/co-training is illustrated in 
Figure 4. Firstly, one or two sets of predictors, which 
correspond to self-training and co-training respectively, 
are trained on one or two feature sets, which are 
extracted from the pre-labeled video data set (i.e., the 
labeled video shots).  
 As shown in Fig. 4, the test process consists of 
five steps. Firstly, the unlabeled videos are segmented 
into shots. Then, all these shots are time-constraint 
clustered, which is as same as in [7]. In enhanced 
self-training/co-training, pre-trained predictors are 
refined by learning from unlabeled samples as 

presented in above sections. Then more accurate 
predictors are obtained and applied to classify 
unlabeled shots. Of course for co-training there are two 
sets of results, which are then combined according to 
their confidence levels, which is as same as in [1]. The 
final step is cluster label unification again, which has 
been proved helpful for generating more accurate 
labels as final output.  

Training 
video data

Output labels

Shot Detection

Time-constrained
 Clustering

Enhanced Self-training/ 
Co-training

Classification and 
combination

Initial Predictors

Updated Predictors

Cluster Label 
Unification

Supervised EM train

Under-test 
video data

Figure 4: Proposed automatic video annotation 
framework based on self-training/co-training 

5. EXPERIMENTS 

To evaluate the performance of proposed video 
annotation framework, a couple of experiments are 
conducted on 60 home videos, which contains about 
10000 shots. Each shot is manually labeled as room, 
hall, cityscape or landscape. “Cityscape” and 
“landscape” are already defined in TRECVID [9]. Here 
we further divide the concept of “indoor”, which is 
also defined in TRECVID, into “room” and “hall”. The 
label “room” mainly corresponds to smaller rooms, 
such as apartment, house and office, while the label 
“hall” mainly corresponds to public and large rooms, 
such as church, shop and restaurant. 

Ten videos, which are about 15% of the whole data 
set, are chosen randomly to be the training set, and the 
others are test set. All of the results in this section are the 
average of 5 such runs.  
 The feature sets are formed by a color feature set, 
which includes 36-dimensional HSV histogram and 
9-dimensional color moment features, and an edge 
feature set that includes 45-dimensional block-wise 
edge distribution histogram (EDH). GMMs (Gauss 
Mixture Model) are used to model different concepts. 
For self-training, GMMs are built on the whole 
90-dimensional feature set. For co-training, two sets of 
GMMs are built on 45-dimensional color feature set 
and 45-dimensional edge feature set respectively, 
which is the same as our previous work [1].

Input: 
Two complementary feature sets V1 and V2; a set of 

labeled samples L; a set of unlabeled samples U; the 
number of iterations T; and a set of clusters UC generated 
from time-constraint clustering on unlabeled samples U. 
For t = 1, 2, …T

C1 teaches C2: 
(a) Train classifier C1 based on feature set V1 using 

training set L. 
(b) Classify all samples in U using classifier C1. 
(c) Unify labels for each cluster in UC and calculate 

their confidence scores. 
(d) Move the samples in the top-n clusters that have 

highest confidence scores in UC to L with the 
corresponding predicted labels. 

C2 teaches C1: 
(a) Train classifier C2 based on feature set V2 on 

training set L. 
(b) Classify all samples in U using classifier C2. 
(c) Unify labels for each cluster in UC and calculate 

their confidence scores. 
(d) Move the samples in the top-n clusters that have 

highest confidence scores in UC to L with the 
corresponding predicted labels. 

Output: 
Classifiers C1 and C2

Input: 
A feature set V; a set of labeled samples L; a set of 

unlabeled samples U; the number of iterations T; and a set 
of clusters UC generated from time-constraint clustering on 
unlabeled samples U.
For t = 1, 2, …T

(a) Train classifier C based on feature set V on training 
set L. 

(b) Classify all samples in U using classifier C. 
(c) Unify labels for each cluster and calculate their 

confidence scores. 
(d) Move the samples in the top-n clusters that have 

highest confidence scores in UC to L with the 
corresponding predicted labels. 

Output: 
Classifier C. 
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The annotation results based on both general and 
enhanced self-training/co-training with different learning 
iterations (i.e., parameter T in Fig. 2 and 3) are presented 
in Fig. 5 and Fig. 6. We use an evaluation of average 
“RP” of four labels. Here RP is defined by 2rp/(r+p) (as 
described in [10]), where p means precision and r means 
recall. More detailed results are illustrated in Table 1.  

From Fig. 5 and Fig. 6 we can see that the 
increases of RP curves from enhanced self-training and 
co-training are mostly sharper, where the main reason 
is the reduction of inaccurate predicted labels in newly 
added training samples. Obviously the performances of 
annotation based on enhanced self-training and 
co-training significantly outperform those based on 
general self-training and co-training 

Figure 5: Average RP of annotation based on general and 
enhanced self-training 

Figure 6: Average RP of annotation based on general and 
enhanced co-training 

6. CONCLUSIONS

This paper has proposed a novel enhanced 
self-training/co-training algorithm for automatic video 
annotation. Compared with general ones, enhanced 
self-training and co-training explore temporal consistency 
of semantic concepts in video sequences based on 
time-constraint clustering and cluster label unification. 
Experiment results have shown that the enhanced 
self-training and co-training algorithms significantly 
improved the annotation performance.  
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Table 1: Detailed results of annotation based on general and enhanced self-training/co-training

Performance of general and enhanced self-training Performance of general and enhanced co-training 

Beginning 
After General 
Self-training 

With 10 iterations 

After Enhanced 
Self-training 

With 10 iterations 
Beginning 

After General 
Co-training 

With 10 iterations 

After Enhanced 
Co-training 

With 10 iterations 
p r RP p r RP p r RP p r RP p r RP p r RP

Room 0.66 0.61 0.63 0.67 0.71 0.69 0.79 0.74 0.76 0.69 0.68 0.69 0.69 0.71 0.70 0.85 0.70 0.77
Hall 0.66 0.67 0.66 0.65 0.76 0.70 0.78 0.87 0.82 0.57 0.72 0.64 0.63 0.72 0.67 0.80 0.87 0.84

Cityscape 0.76 0.77 0.77 0.82 0.75 0.78 0.83 0.84 0.83 0.82 0.75 0.78 0.83 0.78 0.81 0.84 0.89 0.86
Landscape 0.89 0.83 0.86 0.90 0.83 0.87 0.94 0.84 0.89 0.9 0.77 0.83 0.92 0.86 0.89 0.94 0.87 0.90
Average 0.74 0.72 0.73 0.76 0.76 0.76 0.84 0.82 0.83 0.75 0.73 0.74 0.77 0.77 0.77 0.86 0.83 0.84
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