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ABSTRACT
This paper proposes a framework for joint source-channel
decoding of Markov sequences that are encoded by an en-
tropy coded multiple description quantizer (MDQ), and trans-
mitted via a lossy network. This framework is particularly
suited for lossy networks of inexpensive energy-deprived mo-
bile source encoders. Our approach is one of maximum a pos-
teriori probability (MAP) sequence estimation that exploits
both the source memory and the correlation between different
MDQ descriptions. The MAP problem is modeled and solved
as one of the longest path in a weighted directed acyclic graph.

For MDQ-compressed Markov sequences impaired by both
bit errors and erasure errors, the proposed joint source-channel
MAP decoder can achieve 5dB higher SNR than the conven-
tional hard-decision decoder. Furthermore, the new MDQ de-
coding technique unifies the treatments of different subsets of
the K descriptions available at the decoder, circumventing the
thorny issue of requiring up to 2K − 1 MDQ side decoders.

1. INTRODUCTION

Suppose that a multimedia signal to be encoded and commu-
nicated via noisy channel(s) is a Markov sequence χM = χ1,
χ2, · · · , χM. Limited by battery capacity and computing
power (e.g., on mobile devices), the encoder cannot afford op-
timal compression (e.g., context-based arithmetic coding) nor
channel coding. It simply quantizes (scalar or vector) χM

into K ≥ 2 descriptions, and then send these descriptions
through a lossy network, either in fixed length code (no en-
tropy coding) or in a simple variable length (VLC) code (e.g.,
Huffman code). To keep multiple description coding simple,
multiple description scalar quantizer (MDSQ) or multiple de-
scription lattice vector quantizer (MDLVQ) should be used.

This simple encoder leaves three forms of statistical re-
dundancy: 1) the memory of the Markov sequence that is
unexploited due to scalar coding or simple suboptimal block
code (e.g., lattice VQ), 2) residual source redundancy for no
or suboptimal entropy coding, and 3) the correlation that is in-
tentionally introduced between the K descriptions by MDQ.
It is up to the decoder to exploit these available redundancies
to correct the channel errors.

In [1], we proposed a joint source-channel MDQ decod-
ing technique for fixed-rate code. This paper generalizes the
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Fig. 1. Block diagram of a MDSQ based communication sys-
tem with a MAP decoder.

work of [1] to variable length code (VLC). VLC achieves a
rate closer to the entropy, but it is very sensitive to channel
noise. Any loss of synchronization of source symbols makes
correct joint decoding of multiple descriptions impossible for
a hard-decision decoder. The proposed algorithm can simul-
taneously utilize the inter-description and intra-description re-
dundancies, thus successfully evades the difficulty in merging
multiple desynchronized descriptions. Joint source-channel
decoding of MDSQ and VLC coded Markov sequences was
also reported in [2], but the memory of the Markov source
and the correlation between the descriptions of MDSQ were
exploited in tandem.

We first pose the problem as one of MAP sequence es-
timation, and then solve it by a graph theoretical algorithm.
For MDSQ-coded Gaussian Markov sequences the algorithm
complexity can be reduced. Moreover, the MDQ decoding al-
gorithm eliminates the need for 2K − 1 side decoders, which
poses a great difficulty for a hard-decision MDQ decoder.

The paper is structured as follows. Section 2 formulates a
general framework for joint source-channel MAP decoding of
MDQ-coded Markov sequences. Section 3 presents a longest
path algorithm for solving the MAP MDQ decoding problem.
In Section 4, a more efficient solution is developed for Gaus-
sian Markov sequences. Simulation results are reported in
Section 5. Section 6 concludes.

2. PROBLEM FORMULATION

Fig. 1 schematically depicts the proposed joint source-channel
MDQ decoding system. The input to the system is a finite
Markov sequence χM = χ1, χ2, · · · , χM. A central quan-
tizer q : R → C maps a source symbol (MDSQ) or a block of
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source symbols (MDVQ) to a codeword in central codebook
C = {1, 2, · · · , L}, where L is the number of codecells of
the central quantizer. Let the VLC codebooks of the K side
quantizers be Ck = {ck,1, ck,2, · · · , ck,Lk

}, where Lk is the
number of codecells of side quantizer k, L ≤

∏K

k=1 Lk and
Lk ≤ L, k = 1, 2, · · · ,K. The K-description MDQ is spec-
ified by an index assignment function αk : C → Ck [3]. The
redundancy carried by the descriptions is reflected by a rate
1 − log2 L/

∑K

k=1 log2 Lk.
Let x = x1x2 · · ·xM ∈ CM be the output sequence of

χM produced by the central quantizer, M = M for MDSQ,
or M = ιM for MDVQ with ι being the VQ dimension. The
K descriptions of MDQ, αk(x) ∈ CM

k , k = 1, 2, · · · , K,
are transmitted via K noisy channels. We assume that the K
noisy channels are memoryless, mutually independent, and
do not introduce phase errors such as insertion or deletion of
code symbols or bits. Consequently, a received description
may have inversion or/and erasure errors, but it has the same
number of bits as the one generated by MDQ. Denote the re-
ceived code streams by yk, with length Nk = |αk(x)| =∑M

m=1 |αk(xm)|, where | · | is the number of bits in a bit-
stream.

Since VLC is used, the parsing of yk is not unique. Any
given x with |αk(x)| = Nk uniquely determines a parsing
of yk, which is called the parsing of yk with respect to x.
It parses the bit stream yk into a sequence of codewords de-
limited by (bk,0, bk,1, · · · , bk,M ). We write the mth code-
word parsed out of yk as yk(bk,m−1, bk,m], where bk,0 = 0,
bk,m − bk,m−1 = |αk(xm)|, 1 ≤ m ≤ M and bk,M = Nk.

Having the source and channel statistics and knowing the
design of MDQ, the MDQ decoder can perform joint source-
channel decoding of yk, k = 1, 2, · · · ,K, to best reconstruct
x. In a departure from the current practice of designing multi-
ple side decoders (up to 2K −1 of them!), we develop a single
unified MDQ decoder that operates the same way regardless
what subset of the K descriptions is available to the decoder.
Our MDQ decoder takes the approach of MAP sequence esti-
mation, and it reconstructs, given the observed sequences yk,
k = 1, 2, · · · ,K, the input sequence x such that the a posteri-
ori probability P (x|y1, y2, · · · , yK) is maximized. Namely,

x̂ = arg max
x∈C∗

log P (x|y1, y2, · · · , yK). (1)

According to the Bayes’ theorem,
P (x|y1, y2, · · · , yK)

=
P (x)P (y1, y2, · · · , yK |x)

P (y1, y2, · · · , yK)

(a)
∝ P (x)P (y1, y2, · · · , yK |x)

(b)
= P (x)

K∏
k=1

P (yk|αk(x))

(c)
=

l(x)∏
m=1

{
P (xm|xm−1)

K∏
k=1

Pk(yk(bk,m−1, bk,m]|αk(xm))

}
,

(2)

where we let P (x1|x0) = P (x1) as convention. In the above

derivation, step (a) is due to the fact that y1 through yK are
fixed in the objective function; step (b) is from the mutual
independency of the K channels; and step (c) is under the
assumption that x, the output of the central quantizer, is first-
order Markovian and the channels are memoryless. This as-
sumption certainly holds, if the original source sequence χM

before MDQ is first-order Markovian, and it remains a good
approximation for a high-order Markov sequence χM as well,
if χM is vector quantized.

3. JOINT SOURCE-CHANNEL MDQ DECODING

Now we devise a graph theoretical algorithm for joint source-
channel MDQ decoding. Combining (1) and (2), we have

x̂ = arg max
x∈C

∗

α(x)=N

l(x)∑
m=1

{
log P (xm|xm−1)

+
K∑

k=1

log Pk(yk(bk,m−1, bk,m]|αk(xm))

}
.

(3)

where N = (N1, · · · , NK), α(x) = (|α1(x)|, · · · , |αK(x)|).
The additivity of (3) breaks the MAP estimation problem into
the following subproblems:

w(n, a) = max
x∈C

∗

α(x)=n
xl(x)=a

l(x)∑
m=1

[
log P (xm|xm−1)

+

K∑
k=1

log Pk(yk(bk,m−1, bk,m]|αk(xm))

]
,

1 ≤ nk ≤ Nk, k = 1, 2, · · · ,K, a ∈ C,

(4)

where n = (n1, · · · , nK). Then, the solution of the optimiza-
tion problem (1) is given by

x̂ = arg max
c∈C

w(N , c), (5)

The subproblems w(·, ·) can be expressed recursively as

w(n, a) = max
b∈C

{
w(n − α(a), b) + log P (a|b)

}

+

K∑
k=1

log Pk(yk(nk − |αk(a)|, nk]|αk(a)).
(6)

The above recursion reduces the MAP estimation problem to
one of finding the longest path in a weighted directed acyclic
graph (WDAG) [4], which is given in Fig. 2. The underlying
graph G has L

∏K

k=1 Nk + 1 vertices, which forms a hyper-
trellis of dimension K + 1, with the K dimensions represent
the K received bitstreams y1, · · · , yK , and the remaining di-
mension corresponds to L codecells of the central quantizer.
There is also one starting node s, corresponding to the begin-
ning of x.

We use a (K + 1)-dimensional vector (n, x), 1 ≤ nk ≤
Nk, x ∈ C to label a node in G. From node (n − α(a), b) to
node (n, a), a, b ∈ C, there is a directed edge, with weight

log P (a|b) +
K∑

k=1

log Pk(yk(nk − |αk(a)|, nk]|αk(a)). (7)

1430



1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

s

(0,0)

(0,10)

(10,10)

(10,110)

(11,110)

(11,111)

Fig. 2. Graph G constructed for the joint source-channel
MDQ decoding (K = 2, L = 6, C1 = {0, 10, 11}, C2 =
{0, 10, 110, 111}, N1 = 7 and N2 = 9).

From the starting node s to each node (α(a), a), there is an
edge whose weight is

log P (a) +
K∑

k=1

log Pk(yk(0, |αk(a)|]|αk(a)). (8)

In graph G, the solution of the subproblem w(n, a) is the
weight of the longest path from the starting node s to node
(n, a), which can be calculated recursively using dynamic
programming. The MAP decoding problem is then converted
into finding the longest path in graph G from the starting node
s to nodes (N , c), c ∈ C.

To analyze the algorithm complexity we note that the dy-
namic programming algorithm proceeds from the starting node
s to the nodes (N , c), through all L

∏K

k=1 Nk nodes in G.
The quantities log Pk(yk(nk − |αk(a)|, nk]|αk(a)), log P (a)
and log P (a|b) can be precomputed and stored in lookup ta-
bles so that they will be available to the dynamic program-
ming algorithm in O(1) time. Hence (7) and (8) can be com-
puted in O(K) time. Therefore the value of w(n, a) can be
evaluated in O(L + K) time, according to (6). Thus the total
time complexity of this algorithm is O(L(L+K)

∏K

k=1 Nk).
To reconstruct the input sequence, the selection in (6) should
be recorded at each node, which results in a space complexity
of O(L

∏K

k=1 Nk).

4. COMPLEXITY REDUCTION

First let us convert our recursion formula into a matrix search
problem [4]. Define an L × L matrix An such that

An(a, b) =w(n, b) + log P (a|b)

+
K∑

k=1

log Pk(yk(nk, nk + |αk(a)|]|αk(a)).
(9)

Then (6) is equivalent to finding the row maxima of An.
A matrix A = A(a, b) is said to be totally monotone with

respect to row maxima if
A(a, b) ≤ A(a, b′) ⇒ A(a′, b) ≤ A(a′, b′), a < a′, b < b′.

(10)

If an n×n matrix A is totally monotone, then the row maxima
of A can be found in O(n) time [5]. A sufficient condition for
(10) is
A(a, b′) + A(a′, b) ≤ A(a, b) + A(a′, b′), a < a′, b < b′,

(11)
To apply the fast algorithm to the joint source-channel

MDSQ decoding problem, we check if matrix An satisfies
the total monotonicity. Substituting An in (9) for A in (11),
we have

log P (a|b′) + logP (a′|b) ≤ log P (a|b)+

log P (a′|b′), a < a′, b < b′,
(12)

which is a sufficient condition for An to satisfy the total mono-
tonicity and therefore, for the fast algorithm to be applicable.
This condition, which depends only on the source statistics
not the channels, is exactly the same as the one derived in [4].
It was shown by [4] that (12) holds if the source is Gaussian
Markov, which includes a large family of signals studied in
practice and theory.

Finally, we conclude that the time complexity of MAP
decoding of MDSQ can be reduced to O((L + K)

∏K

k=1 Nk)
for Gaussian Markov sequences.

5. SIMULATION RESULTS
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Fig. 3. The index assignments for two two-description scalar
quantizers as proposed by [6].

We implemented the proposed MAP-based MDQ decod-
ing algorithm and tested it on three first-order, zero-mean,
unit-variance Gaussian Markov sequences with the correla-
tion coefficient ρ being 0.1, 0.5 and 0.9 respectively. Two
different two-description scalar quantizers (2DSQ) were used
in our experiments, which are uniform and have the index as-
signment matrices shown in Fig. 3. One of them has L = 15
central codecells, and the other L = 21 codecells. For both
2DSQ’s, the two side quantizers each has L1 = L2 = 8 code-
cells. The 2DSQ with two diagonals in its index assignment
matrix has a stronger correlation between the two descriptions
than the 2DSQ of three diagonals, i.e., the former has higher
degree of redundancy than the latter.

For each description k, k = 1, 2, Huffman codes are gen-
erated according to the distribution of the side quantization
codecell. The encoded bitstreams αk(x) are then transmitted
over two error-and-erasure channels with erasure probability
pφ and inversion probability pc varying. The new MDQ de-
coding algorithm is compared with 1) MAP decoder for sin-
gle description scalar quantization, and 2) conventional hard-
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Fig. 4. SNR performances of different MDQ decoders (ρ =
0.1, 0.5 and 0.9), where d is the number of diagonals in the
2DSQ index assignment matrix.

decision MDQ decoder. The system performance measure is
the signal-to-noise ratio (SNR).

The simulation results are plotted in Fig. 4. Over all val-
ues of ρ, pc and pφ, the joint source-channel MAP MDQ de-
coder outperforms the conventional hard-decision MDQ de-
coder, regardless the level of correlation between the two side

descriptions. Not surprisingly, the performance gap between
the two approaches increases as the amount of memory in
the Markov source (ρ) increases. This is because the hard-
decision MDQ decoder cannot benefit from the residual source
redundancy in x. The gap also increases as the erasure error
probability pφ increases, indicating that the MAP MDQ de-
coder can make a better use of inter-description correlation.
Also, as expected, the MAP SQ decoder achieves higher SNR
than the MAP MDQ decoder when the channel quality is very
good, but the former loses to the latter as the channel condi-
tion deteriorates. This is when the redundancy of MDQ starts
to pay off. More interestingly, we notice that joint source-
channel MAP decoding of MDQ is advantageous even when
the source memory is weak (see the curves for ρ = 0.1).

6. CONCLUSIONS

We proposed a framework for optimal (in MAP sense) joint
source-channel decoding of Markov sequences compressed
by entropy coded MDQ. This framework allows both inter-
description and intra-description correlations to be exploited
for correcting bit errors as well as erasure errors. It is suitable
for lossy communications involving low-power inexpensive
encoders.

The new MDQ decoding technique unifies the treatments
of different subsets of descriptions available at the decoder,
overcoming the difficulty of having a large number of side de-
coders that hinders the design of a good hard-decision MDQ
decoder. Moreover, our joint source-channel decoder consid-
ers simultaneously the processes of decoding and merging of
multiple descriptions, thus evades the difficulty in merging
two desynchronized descriptions, which hard decision MDQ
decoders have to face.
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