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ABSTRACT

This paper investigates asymptotically optimal scalar quantiz-

ers to address QIM watermark detection with i.i.d. host data and

additive noise. False-alarm probability of detection is chosen as

the cost to be minimized, keeping the embedding distortion and

the miss probability upper-bounded. To avoid the intractability of

false-alarm probability, Kullback distance between watermarked

and non-watermarked data is adopted instead. The problem is

then to seek the quantizer which maximizes the false-alarm error

exponent under distortion constraint. Using Lagrange multiplier

minimization, a quantizer updating Lloyd-Max-like procedure is

used to solve the optimization. For experimental aspects, host data

and noise have been set gaussian. In comparison with uniform

or Lloyd-Max quantizers, it turns out that detection performances

can be notably enhanced by using proposed application-optimized

quantizers. The gain is effective even for small number N of sam-

ple at the detector input. However, this gain becomes more sub-

stantial as N grows. This also emphasises that good quantizers in

terms of distortion are not suitable for detection task.

1. INTRODUCTION

Quantization Index Modulation (QIM) [1] has been specifically

introduced for data-hiding purposes and has demonstrated perfor-

mance merits. The performances of these schemes are usually

evaluated according to achievable transmission rates. Alternatively,

it has been shown [2, 3, 4] that QIM systems can also be a rele-

vant choice in zero-bit watermarking (aka. one-bit watermarking).

This specific problem addresses the situation where one tries to de-

termine whether an arbitrary watermark is embedded into a noisy

content. Zero-bit watermarking is of main interest in contexts such

as copyright verification [5] or integrity checking [6, 7]. The nat-

ural criterion associated to this detection task is the Receiver Op-

erating Characteristic (ROC), i.e. the trade-off between the prob-

ability to falsely detect the watermark and the probability to miss

the presence of the watermark.

In data-hiding context, several works have proposed to design

non-uniform quantizers to enhance the robustness of transmission

[8, 9]. In this framework, a quantizer coset is to be associated to

each transmitted message. For a binary transmission, these studies

then design two non-uniform quantizer cosets. Liu [8] has pro-

posed an iterative algorithm to design quantizers which guarantee

good trades-off between robustness and distortion. In the joint wa-

termarking and compression context, Wu [9] addresses the prob-

lem to design nearest neighbor quantizers which minimize the bi-

nary error probability of transmission.

As opposed to data-hiding applications where the task is to

decide between rival transmitted messages, QIM watermark detec-

tion issue involves a single quantizer which has to be suitably de-

signed to be able to distinguish watermarked and non-watermarked

data. So far, this problem has been only studied for structured

quantizers (uniform [3, 4] and nearly spherical Voronoı̈ cell [2]).

In these studies, the host signal statistics have not been taken into

account due to additional arguments (in instance, projection onto

carriers, dithering or high resolution assumption). Nevertheless,

the knowledge of the host and noise statistics can naturally pro-

vide some performance increasing. Taking into account the lat-

ter point, we propose in this paper an iterative method to devise

application-specific scalar quantizers which provide ROC perfor-

mance gain. Our quantizer model does not assume nearest neigh-

bor rule. Performance comparison with uniform, Lloyd-Max (LM)

[10] and Distortion Compensated (DC) uniform quantizers and

Spread-Spectrum Modulation (SSM) [11] is carried out with i.i.d.

gaussian host data and additive white gaussian noise.

2. CONTEXT

2.1. QIM Watermark Detection Context

Let s = {sn}1≤n≤N be N real samples of an i.i.d. host signal dis-

tributed according to the component probability density function

(pdf) ps(sn). We denote the host signal variance σ2
s = N−1

E ‖s‖2
.

For the QIM process [1] to be applied, we introduce (c.f. Fig. 1)

a scalar quantizer Q(.) defined by a codebook of M reproduction

levels c = {ci}1≤i≤M such as c1 ≤ c2 ≤ · · · ≤ cM. The

ith quantization cell Vi is an interval [bi, bi+1), where the non-

decreasing set b = {bi}1≤i≤M+1 is the end points of the quan-

tizer. By construction, ci is constrained to belong to Vi ∪ {bi+1},

∀i. We require that b1 = −∞ and bM+1 = ∞ so that
�M

i=1 Vi =
R. For a quantizer input u ∈ R belonging to cell Vi, the mapping

is classically done by Q(u) = ci. The QIM watermark w ∈ R
N

is produced component-wise by computing the quantization error

wn = Q(sn)− sn, 1 ≤ n ≤ N and the watermark content is de-

fined as x = s+w. Hence, when sn belongs to Vi, we have xn =
ci. The mean embedding distortion defined as Dw = N−1

E ‖w‖2

equals
�

R
ps(u)(Q(u) − u)2du =

�M
i=1

�
Vi

ps(u)(ci − u)2du.

Signal x undergoes an additive i.i.d. noise v ∈ R
N with a compo-

nent pdf pv(vn), producing a signal r = x+v. The noise variance
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Figure 1: Considered M-cell non-uniform quantizer.

is denoted σ2
v = N−1

E ‖v‖2
. We then define the Watermark-to-

Noise power Ratio by wnr = Dw/σ2
v and the host Signal-to-

Noise power Ratio snr = σ2
s/σ2

v .

For a signal r to be tested, the watermark detection issue (also

named zero-bit watermarking) is defined introducing the two fol-

lowing hypotheses:

H0 : r is actually not watermarked, i.e. r|H0 = s + v,

H1 : r contains the watermark, i.e. r|H1 = x + v,

and a detector has to decide between both hypotheses without ac-

cess to the host signal (blind watermarking). Knowing distribu-

tions ps and pv and the quantizer, the optimal detector is a Neyman-

Pearson test [12]. This is based on the log-likelihood ratio

Λ(r) = log
Pr(r|H1)

Pr(r|H0)
(1)

=

N�
n=1

log
Pr(rn|H1)

Pr(rn|H0)

∆
=

N�
n=1

log
p1(rn)

p0(rn)
. (2)

(2) holds since all signals are assumed to be i.i.d. For a given

detection threshold τ , the associated decision rule is

Λ(r)

�
≥ τ ⇒ choose H1,

< τ ⇒ choose H0.
(3)

The efficiency of this test is measured by the two types of er-

ror probabilities: the False-alarm probability to falsely detect the

watermark PF (τ) = Pr (Λ(r) ≥ τ |H0) and the Miss detection

probability PM (τ) = Pr (Λ(r) < τ |H1) .

2.2. Intuitive Aspects

We now give expressions of distributions p0(rn) and p1(rn), for

rn ∈ R. Under hypothesis H0, r = s + v. s and v being sta-

tistically independent, p0 equals the pdf convolution p0(rn) =�
R

pv(u)ps(rn−u)du which is of course independent of the quan-

tizer. Under H1, r = x + v with x and v independent. Note

however that x is a discrete random variable. Hence p1 has the dis-

crete convolution form p1(rn) =
�M

i=1 Pr(xn = ci)pv(rn−ci).

Since the event xn = ci is equivalent so that sn lies in Vi, we then

have p1(rn) =
�M

i=1 Pr(sn ∈ Vi)pv(rn − ci). Some illustra-

tions of typical pdf’s are depicted on Fig. 2. For watermarked

data, it can be seen that the presence of the quantizer reproduction

levels scars the shape of the non-watermarked pdf, which provides

a specific statistical signature. Intuitively, the stronger these alter-

ations are, the easier the discrimination between p0 and p1 is, but

the greater the embedding distortion is.

Figure 2: Illustration of the data pdf’s under H0 and H1 with the

5-cell LM quantizer. Here, host signal and noise have been set

gaussian, with σ2
s = 1, snr = 10 dB and a wnr = −2.2 dB.

3. CONSIDERED PROBLEM

3.1. Problem Statement

As it has been discussed in [7], detection problems in watermark-

ing can be roughly divided in three categories: Copyright systems

aim at minimizing the the miss-probability [5], keeping the false-

alarm rate under an applicative acceptable bound. Integrity check-

ing issues [6] target a minimal false-alarm probability, keeping the

miss probability rate under an acceptable level P0. Then, a ”mix”

approach jointly minimizes half the sum of both error probabili-

ties [11]. In this paper, we choose the integrity checking approach.

The watermarks then acts as an integrity stamp [6, 7]. Addition-

ally, all these multimedia watermarking scenarii are subjected to a

maximal admissible embedding distortion D0 to avoid noticeable

degradations. Thus, for a given number of cells M, our problem

is to seek a quantizer which fulfills

min
c,b

PF subject to

�
PM ≤ P0

Dw ≤ D0.
(4)

As opposed to classical source coding contexts, the number of cell

M is here a free parameter. Note however that M has to be large

enough to meet the distortion constraint. Indeed, denote the mini-

mal distortion Dmin(M) induced by a M-cell scalar quantizer in

quantizing source s. For a given D0, M must be chosen such as

Dmin(M) ≤ D0 (5)

otherwise we have D0 < Dmin(M) ≤ Dw and there cannot

be any quantizer which verifies the distortion constraint. Since

Dmin(M) is clearly decreasing with respect to M, tending to

01, one can always find M sufficiently large which fulfills (5).

For practical cases, if the logarithm of ps is concave (which is the

case for laplacian and gaussian laws), it is known [10] that the

LM algorithm yields a globally optimal quantizer. In this case,

Dmin(M) is thus the distortion induced by the LM quantizer.

1For example, the high resolution (i.e. M � 1) distortion equals

Dmin(M) = π
√

3
2

σ2
sM−2 in choosing s gaussian [10].
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3.2. Proposed Cost Criterion

False-alarm probability is an intractable function of b and c. In-

stead, we resort to the Kullback-Leibler distance [13] as an al-

ternative cost criterion. This non-negative dissimilarity measure

between distributions is defined by

D(p1||p0) =

�
R

p1(u) log
p1(u)

p0(u)
du. (6)

This quantity is known to capture the difficulty to discriminate be-

tween hypotheses H0 and H1 [14]. The larger is D(p1||p0), the

smaller PF is expected to be. More precisely, the relevance of

this criterion can be formalized by the Stein’s lemma [13] which

states that, for a fixed upper-bound P0 on PM uniformly over all

N , PF decays exponentially in the number of observations N at

rate D(p1||p0). Defining the false-alarm error exponent EF =
limN→∞ − 1

N
log PF , this means that EF = D(p1||p0). Hence,

we now seek the quantizer which maximizes this false-alarm decay

rate. This criterion then provides a form of asymptotical optimal-

ity. However, it will be demonstrated that the gain provided by this

approach is effective even for small N . Our problem reduces to

max
c,b

D(p1||p0) subject to Dw ≤ D0. (7)

4. OPTIMIZATION

We propose to solve (7) using a Lagrange multiplier approach. Let

be the Lagrangian function L defined by L(λ) = −D(p1||p0) +
λDw for some positive λ. For a given λ and for a given number

of cells M satisfying condition (5), we minimize L(λ) by an it-

erative descent LM-like algorithm. Our method is similar to the

one proposed in [9] in joint watermarking and compression data-

hiding context. Nevertheless, contrary to this study, we do not

apply the nearest neighbor rule. The procedure is divided in two

steps: first, we begin by fixing the end points b and seek the repro-

duction levels c which minimize L(λ). To that end, we proceed

independently level by level: we fix all levels except one, say the

ith. Then we seek the best position of ci in Vi which minimizes

L(λ). In practice, this optimization task is solved numerically.

Once this is done, we do the same procedure for the ith + 1 level

and so on until all levels have been updated. At the second step,

we fix c and minimize L(λ) over b following the same updating

strategy. These two steps are alternatively iterated until the crite-

rion variation drops below a prescribed threshold ε. The criterion

is then decreasing. If L is lower-bounded, the convergence is guar-

anteed. The term λDw of L is clearly positive so it is sufficient to

find an upper bound on D(p1||p0). For practical implementation

of this procedure, one should set the extremal end points b1 = −U
and bM+1 = U to compute integrals terms, where U is an arbi-

trarily large positive real number with respect to the width of dis-

tributions p0 and p1 so that ensuring that most of area of these

pdf’s are contained in [−U, U ]. pv being defined on the closed

interval [−U, U ], it exists some A1 > 0 such that pv(u) ≤ A1

for u ∈ [−U, U ]. Thus, p1 can be upper-bounded by p1(u) =�M
i=1 Pr(sn ∈ Vi)pv(u − ci) ≤ A1

�M
i=1 Pr(s ∈ Vi) = A1.

Last equality holds since cells {Vi} map the real line. Assume

additionally that the support of p0 is empty over [−U, U ] so that

it exists A2 > 0 such that p0(u) ≥ A2 for u ∈ [−U, U ]. Us-

ing these two latter boundings on p0 and p1, we straightly have

D(p1||p0) =
� U

−U
p1(u) log p1(u)

p0(u)
du ≤ 2UA1 log A1

A2
. Hence,

the procedure converges in practice. By sweeping λ over the range

from zero to infinity, we finally find the appropriate multiplier λ0

which meets the distortion constraints Dw = D0. Note that for

large λ, L is dominates by the distortion constraint and the result

of the optimization is then the LM quantizer.

5. RESULTS

For experimental aspects, we choose ps and pv gaussian with ps ∼
N (0, 1). Note however that this procedure can be straightly im-

plemented with a large variety of statistics. In the sequel, we

set wnr = 0 dB and maximal distortion D0 = 0.07995. Do-

ing so, we have snr = 10.97 dB. The extremal end points are

fixed setting U = 6.365. These specific values have been chosen

so that the comparison with simple quantizers (uniform and LM

quantizers) is fair. Indeed, the distortion of the 13-cell uniform

quantizer and the 5-cell LM quantizer equal both D0. Hence,

the minimal value of M which fulfills condition (5) is 5. For

given M ≥ 5 and λ ≥ 0, we initialize the procedure with the

M-cell uniform quantizer and we stop the minimization of L(λ)
when its variation drops under ε = 0.001. The appropriate λ0

which meets the distortion constraint is fixed with a relative error

lower than 0.0001. Optimization results are depicted on Fig. 3.

It can be seen that D(p1||p0) is increasing with respect to M for

M ≤ 9. When taking M greater than 9, optimized quantizers

provide equivalent scores (D(p1||p0) 
 0.147). As expected, it

turns out that uniform and LM quantizers provide lower Kullback

distances (D(p1||p0) = 0.049, respectively 0.042).

Figure 3: Result of the maximization of D(p1||p0) with respect to

the number of quantizer cells M, keeping the distortion constant

at D0. The first point of the curve (M = 5) corresponds to the

LM quantizer. The single point in the right down corner depicts

the score of uniform quantizer.

We now propose to assess the effective gain in term of ROC

performance. For this study, we work with the 10-cell optimized

quantizer. In order to reliably estimate the trade-off between false-

alarm and miss probabilities, we use large deviation techniques.

These techniques are clearly presented in [12], chap. II.7 and used

in [4]. Comparisons with uniform, ML and uniform DC quantiz-

ers and SSM are provided. As expected, for N = 128, it can be

seen on Fig. 4 that the optimized quantizer version of the scheme

notably outperforms rival schemes with no DC’s. This underlines

that good scalar quantizers in terms of distortion (LM quantizers)
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and uniform quantizer are not well adapted for watermark detec-

tion. Such as DC, use of optimized quantizers is an effective tech-

nique to enhance performances with several orders of magnitude.

Of course, these two techniques can be jointly applied.

Figure 4: ROC profile comparison when using Optimized, Uni-

form, LM and DC Uniform quantizers and SSM (with N = 128,

wnr = 0 dB and snr = 10.97 dB).

The Kullback distance criterion (6) provides a form of asymp-

totical optimality as N grows. Thus, performance gain for small

N is not guaranteed. In order to evaluate this gain rate, we pro-

pose to compute performance with respect to N . To illustrate this

point, we now work with the overall probability of detection error,

assuming that H0 and H1 have equal priors and equal costs. This

quantity is defined as PE = PF (τ = 0)/2+PM (τ = 0)/2, which

is more compact but captures the global shape of ROC curves. It

is shown on Fig. 5 that the gain is effective even for small val-

ues of N . However, the gain is more substantial when taking N
large since the decreasing rate of PE for the optimized quantizer

is greater than the ones of rival schemes.

Figure 5: Overall probability of error PE with respect to N when

using Optimized, Uniform and LM quantizers and SSM (with

wnr = 0 dB and snr = 10.97 dB).

6. CONCLUSION AND PERSPECTIVES

We have investigated asymptotically optimal scalar quantizers to

address QIM watermark detection with i.i.d. host data and addi-

tive noise. False-alarm probability of detection has been chosen

as the cost to be minimized, keeping the embedding distortion and

the miss probability upper-bounded. To avoid the intractability of

false-alarm probability, Kullback distance between watermarked

and non-watermarked data has been adopted instead. The problem

is then to maximize the false-alarm error exponent under distortion

constraint. Using Lagrange multiplier minimization, a quantizer

updating Lloyd-Max-like procedure has been used to solve the

optimization. Experimentally, host data and noise have been set

gaussian. In comparison with uniform or Lloyd-Max quantizers,

it has turned out that ROC performances can be notably enhanced

by using proposed application-optimized quantizers. This gain in-

creases with respect to the number of sample at the detector input.

This emphasises that good quantizers in terms of distortion are

not suitable for detection task. Note that distortion compensation

principle is readily applicable. This would potentially provide sig-

nificant performance increasing [4]. The proposed procedure can

be straightly applied with different typical host and noise statistics.

Laplacian host and uniform noise could be an interesting case.
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