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    ABSTRACT 

Blind multiplicative watermarking schemes for speech signals 
using wavelets and discrete cosine transform are presented. 
Watermarked signals are modeled using a generalized Gaussian   
distribution (GGD) and Cauchy probability model. Detectors are 
developed employing generalized likelihood ratio test (GLRT) and 
locally most powerful (LMP) approach. The LMP scheme is used 
for the Cauchy distribution, while the GLRT estimates the gain 
factor as an unknown parameter in the GGD model. The detectors 
are tested using Monte Carlo simulation and results show the 
superiority of the proposed LMP/Cauchy detector in some 
experiments. 

1. INTRODUCTION 

Spread-spectrum approaches are among the traditional methods for 
efficient watermarking  [5] [11]. In these techniques, a pseudo-
random noise sequence is adopted as the watermark and embedded 
into the transform domain [normally the discrete cosine transform
(DCT) or wavelet transform (WT)] of the multimedia content. 
Embedding the watermark in the perceptually most significant 
transform coefficient(s) of the media, one would expect a more 
robust watermark against possible attacks  [5] [11].  

Watermarks are ordinarily embedded using linear 
combinations in the relevant domain.  In this paper, multiplicative 
watermarks are employed to enhance the complexity of the 
embedding operation, thereby rendering it more difficult to detect, 
remove, or destroy the watermark  [9]. In addition to increased 
robustness to attack, multiplicative watermarks have been noted to 
possess another important feature for speech, the signal of interest 
in the present work.   In fact, multiplicative embedding rule is in 
accordance with the Weber’s law and thus the human visual system
(HVS) relatively insensitive to this type of watermark  [9]. 
Remarkably, we also found that embedding multiplicative 
watermark in a (speech) signal would degrade the quality of that 
signal less than an additive watermark using the same gain factor. 

Blind watermark detection has been an area of active research 
in recent years. Assuming a generalized Gaussian distribution
(GGD) model for the DCT coefficients of images, the authors in 
 [7] propose a likelihood ratio test (LRT) watermark detector in 
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which an additive rule is used and the gain factor is assumed 
known. Although the LRT detection provides optimality in the 
Neyman-Pearson sense, its existence is subject to the availability of 
the gain factor γ . The gain factor is generally unknown. Note that 
since the watermark is under attack, one cannot embed the gain 
factor in the watermark. Further, it is signal dependent and hence it 
is not possible to keep it in the public key. It follows that the 
optimal LRT detector cannot be realized. Another example of 
watermark detection is the method proposed by Cheng and Huang 
 [4], where a locally most powerful (LMP) detection of 
multiplicative watermarks with a GGD model employed. Finally, 
Briassouli and Strintzis  [3] used Cauchy and Gaussian-tailed zero 
memory nonlinearities to better capture the heavy tail of the DCT 
coefficients. Then they applied the proposed model for additive 
watermark detection in the DCT domain. 

In this work, we develop a generalized likelihood ratio test
(GLRT) as well as LMP tests for the detection of multiplicative 
watermarks in the WT and DCT domains. We model the 
distribution of watermarked coefficients in these domains with a 
GGD model and also a Cauchy probability distribution function
(PDF). The proposed watermarking strategies are then tested for 
robustness to certain attacks. 

2. SPEECH WATERMARKING AND 
PROBABILITY MODELS 

2.1. Spread-Spectrum Watermarking 
Spread-spectrum watermarking in the DCT and WT domains has 
shown potential for image watermarking  [5] [11]. In this work, we 
apply this watermarking technique to speech signals. 

Let the watermark (0 )iw i N≤ <  be a realization of white 
Gaussian noise with PDF (0,1)N . Let (0 )i ss i N≤ <  be the 
original signal and (0 )i sy i N≤ <  denote the transform (DCT or 
WT) coefficients of the signal. In order to embed the watermark in 
the perceptually most significant coefficients of the signal, the N
transform coefficients with the largest magnitudes [ (0 )ix i N≤ < ] 
are selected for embedding. In the DCT domain this translates to 
the selection of high frequency coefficients; however, the high-
magnitude (or significant) WT coefficients represent the transitions 
in the signal which include a significant amount of the information 
content of speech  [6]. In fact, this selection is in accordance with 
the human auditory system (HAS) perceptual model.   
Accordingly, the watermarked signal (0 )iz i N≤ <  can be 
expressed as 

(1 ) for 0i i iz x w i Nγ= + ≤ < , (1) 

where we employ a single gain factor γ . Sections 2.2 and 2.3 
discuss the impact of the signal PDFs on the selection of 
significant transform coefficients. 
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2.2. Generalized Gaussian Distribution Model 
The GGD is an appropriate PDF for modeling WT and DCT 
coefficients of images  [2] [7]. We justify below that the GGD can 
also be used to effectively model the significant transform 
coefficients of speech.   To illustrate the distribution of a speech 
signal ( 1s ) in the WT and DCT domains,   normalized histograms 
of the significant coefficients are shown in Fig. 1. Here, 

1 46,000sN =  is the signal size and 10,000N =  is the number of 
significant coefficients. The histograms are clearly non-Gaussian 
whereas a GGD model would be a proper choice. Note that the 
small gap in the middle of histograms is due to the exclusive 
selection of high-amplitude coefficients. Simulation results 
confirm that such “gaps” have little impact on the detector 
performance. 

A GGD with zero mean is defined as ( )
cx

Xp x Ae β−
=  ( [2]) 

where ( )
1/ 2

(1/ ) (3/ ) (1/ )c cβ σ= Γ Γ , ( )2 (1/ )A c cβ= Γ , and Γ

denotes the gamma function. Here, c  is the shape parameter, 
which is equal to two for a Gaussian distribution and one for the 
Laplacian PDF. In the present work, the parameters are estimated 
using the method proposed in  [2].  

For the above example, c  equals 0.50 for the WT and 0.90 
for the DCT. The fitted GGDs are illustrated in Fig. 1. Since a low 
gain factor is used to assure inaudibility of the watermark, the 
histograms remain practically unchanged, so that the GGD remains 
an appropriate model. 

To obtain the probability of the watermarked signal z  (in the 
transform domain), we assume that the watermarked coefficients 

(0 )iz i N≤ <  are independent and identically distributed (i.i.d.). 
Therefore, from (1) we can compute ( )Zp z  as 

1
(1 )

1
( ) ( 1 )

N c
i ii

N z w
Z ii

p z A w e
β γ

γ =
− +

=

∑= +∏ , (2) 

where, 1( , , )nz z z= …  is the watermarked signal and the gain factor 
γ  is the unknown parameter. 

2.3. Cauchy Distribution Model 
Unlike the Gaussian PDF and GGD, the Cauchy probability model 
does not taper quickly making it a proper model for heavy-tailed 
distributions. The PDF of a zero-mean Cauchy distribution is 

( )2 2( ) ( )Xp x xα π α= + . We can estimate the parameter α  using 
a maximum likelihood (ML) approach. To do so, we consider the 

(0 )ix i N≤ <  to be i.i.d. random variables, where each ix  has a 
Cauchy PDF. Thus, ( )2 2

1
( ) ( / ) 1 ( )

N
X ii

p x xα π α
=

= +∏ , where 

1( , , )nx x x= … .  
To estimate α , we compute ln ( ) / 0Xd p x dα = , which leads 

to 2 2
1

/ 2 ( ) 0
N

ii
J N xα α α

=
= − + =∑ .   Using the Newton’s 

algorithm, α  can be obtained via the recursion 
[ 1] [ ] [ ] [ ]( ) ( )n n n nJ Jα α α α+ ′= − , where /J d J dα′ = . 

For the signal 1s  discussed in Section 2.2, the estimated α  is 
equal to 0.058 and 0.097 for the significant WT and DCT 
coefficients, respectively. Fig. 1 shows with dashed lines the 
Cauchy PDFs fitted to the histograms. 

Using the i.i.d. assumption for the watermarked signal z  (in 
the WT or DCT domain) as in the case of the GGD model, we can 
express ( )Zp z  as 

( )2 2 2
1

( ) ( / ) 1 [ (1 ) ]
N

Z i i ii
p z w z wα π γ α γ

=
= + + +∏ . (3) 

3. GENERALIZED LIKELIHOOD RATIO TEST 

In GGD or Cauchy distribution an unknown parameter, i.e., the 
gain factor γ , renders it impossible to  take advantage of the 
likelihood ratio test (LRT), which is an optimal detector in the 
Neyman-Pearson sense.  For a given probability of false alarm, 

fP , the probability of detection, dP , is maximized. Nevertheless, 
one can employ ML estimation of γ  and employ the GLRT  [8]. 

3.1. Maximum Likelihood Estimation of the Gain Factor  
In the case of Cauchy PDF, after taking the derivative of logarithm 
of ( )Zp z  in (3) and setting it to zero, we obtain 

( )2 2 2 2 2 2
1

ln ( ) / ( ) ( ) 0
N

Z i i i i i ii
p z w z zγ α ϕ ϕ α ϕ

=
∂ ∂ = − + =∑ , 

where 1i iwϕ γ= + . A closed-form solution for γ  cannot be 
derived. Moreover, numerical methods return multiple solutions. 
Thus, we merely use the LMP test for the Cauchy distribution. 

Here we obtain an ML estimation of γ  for use with the GGD 
in (2). For the GGD model, the optimization equation is 

( )( 1) 1
1

ln ( ) / 0
N c

Z i i i i ii
p z cw z wγ β ϕ ϕ− + −

=
∂ ∂ = − =∑ . 

Again, a closed-form solution of γ  is not achievable. 
However, since the gain factor is a small number (usually less than 
0.1), we have 1iwγ <  and therefore, one could take advantage of 
binomial identity to approximate ( 1)c

iϕ − +  and 1
iϕ −  to within two 

orders to obtain the following quadratic equation, 
2ˆ ˆ 0A B Cγ γ+ + = , where  

3
1

(1/ 2) ( 1)( 2)
N c

i ii
A c c c w zβ

=
= + + ∑ , 

( )2
1

1 ( 1)
N c

i ii
B w c c zβ

=
= − +∑ , and 

1

N c
i ii

C cw zβ
=

=∑ . 
The above equation provides two solutions for γ̂ . The 

acceptable solution satisfies ˆ 1γ < . In the next section, the GLRT 
using the estimated γ̂  is developed. 

3.2. GLRT for the GGD probability model  
To detect the watermark 1( , , )nw w w= … , we consider the 
hypotheses pair 0 1: 0 vs. : 0H Hγ γ= ≠ . Now we form the 
GLRT using 1ˆ( ; ; )Zp z Hγ γ=  and 0( ; 0; )Zp z Hγ = , which 
becomes 

( )1
ˆ1

1 0 1
ˆ( ) ( ; ) ( ; )

N c c
i i ii

z zN
G Z Z ii

L z p z H p z H e
β ϕ β

ϕ =
− −−

=

∑
= = ∏

or  

( )( ) 1
1

ˆ ˆ( ) ln ( ) ln /
N c cGGD

GLRT G i i i ii
T z L z z zϕ β ϕ β−

=
= = − −∑ , 

where ˆ ˆ1i iwϕ γ= + . The GLRT detection scheme is similar to the 
LRT with the exception that estimates of the unknown parameters 

Fig. 1.  Normalized histograms of the significant transform coefficients of 
the speech signal 1s  as well as the fitted GGD and Cauchy distribution.

-1 -0.5 0 0.5 1
0

1

2

3

4

5
DCT

GGD
Cauchy

-1 -0.5 0 0.5 1
0

1

2

3

4

5 WT

GGD
Cauchy

1370



are used.   The LMP detector, however, does not require parameter 
estimation as explained next. 

4. LOCALLY MOST POWERFULL TEST 

A LMP detector in conjunction with the GGD model is proposed 
in  [4] for multiplicative watermark detection. In this work, 
however, we propose a LMP detector using a Cauchy PDF for 
modeling the transform coefficients. Below, a brief description of 
the LMP test is provided. 

If 0 1γ< � , one can approximate ( ; )Zp z γ  as  

0
ln ( ; ) ln ( ;0) ln ( ; )Z Z Zp z p z p z

γ
γ γ γ γ

=
= + ∂ ∂ , 

using a first-order Taylor expansion. Recall that the LRT is 
expressed as ( )( ) ln ( ; ) ( ;0)LRT Z ZT z p z p zγ θ= > , where θ  is the 
threshold. Hence, 

0
( ) ln ( ; )LRT ZT z p z

γ
γ γ γ θ

=
= ∂ ∂ >  or 

0
ln ( ; )Zp z

γ
γ γ θ γ θ

=
∂ ∂ > = � . The scaled LMP test is  [8] 

1
0 0

( ) ln ( , ) Ι ( )LMPT z p z
γ γ

γ γ γ−

= =
= ∂ ∂ , (4) 

where 2 2I( ) ( ; )E p zγ γ γ⎡ ⎤= − ∂ ∂⎣ ⎦  is the Fisher information. Here, 
we have assumed that the hypotheses imply a one-sided test  

0 1: 0 vs. : 0H Hγ γ= > . 
 Since LMPT  is derived from the optimal detector, LRTT , its 

performance is optimal for small values of γ . For large data 
records (when N is large), the LMP statistic in (4) has a Gaussian 
PDF under each hypothesis as  [8],  

0

large
10

(0,1), under
( )

( I( ) , 1), underLMP N

H
T z

H
γ

γ γ
=

⎧⎪
⎯⎯⎯→⎨

⎪⎩

N

N
  

Therefore, the LMP test comprises a Gauss-Gauss detector 
with the deflection coefficient equal to 

0
I( )LMPd

γ
γ γ

=
= .  

Accordingly, the theoretical asymptotic receiver operating 
characteristic (ROC) will be 

( )1( )d f LMPP Q Q P d−= − , (5) 

where 
2(1/ 2)( ) (1 2 ) tQ e dt

θ
θ π

∞ −= ∫ . 

4.1. LMP Detector Using the GGD  
We can construct the LMP detector by applying (4) to the GGD 
model (2). After some calculations we obtain 

( ) 1

1

( )
( 1)

N c
i iGGD i

LMP N c
ii

cw z
T z

c c z N

β

β

=

=

=
+ −

∑

∑
, 

where   the watermark iw  is assumed to have a normal PDF 
(0,1)N . Also note that 

2 2[ ]
c c c c

i i i i i iE w z E w E z E z zβ β β β⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

� . 

4.2. LMP Detector Using the Cauchy PDF   
Because of the Cauchy PDFs appropriateness for heavy-tailed 
distributions, Briassouli and Strintzis  [3] developed an 
LMP/Cauchy detector for additive watermark detection, and 
showed its efficiency for detecting the watermarks in the DCT 
domain. Here we develop a LMP detector for multiplicative 
watermarks. Taking the derivative of logarithm of (3) and 
evaluating the result at 0γ =   yields 

2 2 2 2
0 1

ln ( ) ( ) ( )
N

Z i i ii
p z w z z

γ
γ α α

= =
∂ ∂ = − +∑ . 

Further, the Fisher information at 0γ =  is computed as  
2 2 2 2 2 2

0 1
I( ) 2 ( ) ( )

N
i ii

N E z z
γ

γ α α α
= =

⎡ ⎤= + − +⎣ ⎦∑ , 

where we again approximate the expectation by its experimental 
value.  Consequently, the LMP test statistic is 

2 2 2 2
( ) 1

2 2 2 2 2 2
1

( ) ( )
( )

2 ( ) ( )

N
i i iCauchy i

LMP N
i ii

w z z
T z

N E z z

α α

α α α

=

=

− +
=

⎡ ⎤+ − +⎣ ⎦

∑

∑
. 

5. EXPERIMENTAL RESULTS 

The speech signal used in the experiments, designated 1s  above,   
is an utterance of the sentence “She had your dark suit in greasy 
wash water all year,” spoken by a female in the TIMIT database 
 [10],  and the watermark is a realization of zero-mean white 
Gaussian noise with 1σ = . To achieve inaudibility of the 
watermark, we set 0.08γ =  for the WT watermarking and 

0.03γ =  for the DCT. Remarkably, even with this lower gain 
factor in the DCT domain, a background noise is heard upon high 
volume playback. 

The developed detectors were tested via Monte Carlo 
simulation. To do so, we generated 500 realizations of watermarks. 
Then at each time we embedded a watermark, then attempted 
detection of each of the 500 watermarks in the stegosignal.   Thus, 
a total of 250,000 detections were executed by each detector to   
generate an ROC curve. To implement the GLRT detector using 
the GGD,   the gain factor had to be estimated at each run. Fig. 2 
shows the estimated values of γ  using the DCT significant 
coefficients. The average of these values is 0.03, which is the same 
as the true value in this case. 

Detectors performance was first assessed without attacks on 
the stegosignals. In the WT case, perfect detection resulted over all 
experiments. Accordingly, the gain factor was lowered to 

0.04γ = . We also obtained the asymptotic values of the LMP 
detectors using (5). Moreover, we applied the optimal LRT 
schemes for the sake of comparison. Fig. 3 demonstrates the 
resultant ROC curves in the WT and DCT domains. As seen, the 
LMP detector with a Cauchy PDF yields the best results in both 
domains. Furthermore, the LMP detection strategies nearly provide 
identical performance to their related optimal LRT detectors. The 
GLRT technique yields suboptimal results. In addition, the 
asymptotic theoretical ROC curves obtained from (5) for the LMP 
detection schemes are slightly different from the empirical ones. 
This is likely due to the fact that the model PDFs  do not exactly fit 
the data. 

To evaluate the robustness of the proposed watermarking 
schemes, several severe attacks were applied to the stegosignal.  In 
the cropping attack,    only 50% of the signal was retained in the 
middle of the waveform.  A downsampling attack removed seven 

Fig. 2.  Estimated values of the gain factor using the DCT coefficients of 
the watermarked speech signal 1s .  
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of eight samples, and   a filtering attack   lowpass-filtered the 
watermarked signal to remove energy above 3.5 kHz. Only the 
LMP detectors were employed due to their optimal performance in 
the “clean” experiments. Fig. 4 shows the resulting ROC curves for 
both WT and DCT embedding. Despite the superiority of the 
LMP/Cauchy detector with no attack, this detector performs more 
poorly than the LMP detector using the GGD model in the wavelet 
domain. In the case of the DCT watermarking, however, the 
Cauchy PDF appears to be a better model for the DCT coefficients 
in most cases. This is because the DCT coefficients distribution has 
heavy tails which are better modeled by the Cauchy PDF. 
Remarkably, the WT watermarking strategy is more robust to 
filtering attack than the DCT scheme. Since the watermark is 
embedded in the high frequency components of signal in the DCT 
approach, however, DCT embedding is not robust to lowpass 
filtering attacks. 

6. CONCLUSION 

Watermarking strategies for speech signals using the WT and DCT 
significant coefficients have been presented.  The WT approach is 
more appropriate for embedding since the significant coefficients 
of this scheme represent the transitions to which the human 
auditory system is less sensitive. A method for estimation of the 
gain factor was incorporated into a GLRT detection strategy. A 
LMP detector in conjunction with the Cauchy PDF has also been 
developed and found to be effective when no attack is involved. 
Further, the proposed LMP/Cauchy detector is superior to the 
LMP/GGD scheme for DCT watermarking. 
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Fig. 3.  ROC curves for the multiplicative watermark detection of the speech signal 1s . Left: WT domain. Right: DCT domain.  

Fig. 4.  ROC curves obtained from the attacked watermarked signal 1s . 
Top: Cropping to 50% of the original size. Middle: Downsampling by 8. 
Bottom: Lowpass filtering with cutoff frequency of 3.5 kHz.  
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