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ABSTRACT
In this paper, we present a novel data hiding scheme based
on the minimum distortion look-up table (LUT) embedding
that achieves good distortion-robustness performance. We
first analyze the distortion introduced by LUT embedding and
formulate its relationship with run constraints of LUT. Sub-
sequently, a Viterbi algorithm is presented to find the mini-
mum distortion LUT. Theoretical analysis and numerical re-
sults show that the new LUT design achieves not only less
distortion but also more robustness than the traditional LUT
based data embedding schemes.

1. INTRODUCTION

Data hiding system plays a more and more important role
in multimedia applications with the development of internet.
Quantization based embedding [1] and spread-spectrum [2]
are two most commonly used data hiding schemes. Quan-
tization based method has the advantage of host interference
rejecting. Look-up table (LUT) embedding is a simple and ef-
ficient quantization based scheme. The most popular LUT is
odd-even embedding or dither modulation [1] which is LUT
with run (number of consecutive zeros or ones) of 1. A pixel-
domain LUT embedding scheme is proposed in [3], where the
LUT is associated with a cryptographic key to provide secu-
rity and it is a n-run LUT, i.e., the maximum allowable run
of the LUT is n. Wu [4] indicated that n-run LUT embed-
ding generally introduces larger distortion than the traditional
odd-even embedding with the same quantization step size.

In this paper, we show that with the knowledge of the wa-
termark data the LUT can be designed to achieve less distor-
tion than the traditional schemes. From the analysis of the
mean squared distortion introduced by n-run LUT, we find
that the distortion can be greatly reduced by designing the
LUT according to the distribution of the host data and the
watermark data. We further formulate the minimization of
the LUT distortion as a dynamic programming problem. A
practical minimum-distortion n-run LUT design method is
presented based on a Viterbi algorithm. Experiment results
show that at the same watermark-to-noise ratio (WNR), the
bit error rate (BER) for minimum-distortion n-run LUT em-
bedding can be smaller than the odd-even embedding.

2. OVERVIEW OF THE LUT EMBEDDING

A LUT T is a sequence of 0’s and 1’s. The table is associated
with a uniform quantizer. It maps every feature or pixel value
of an image to the quantization level according to the input
data to be embedded. For example to embed a “1” in a pixel,
the pixel is rounded by its quantization value if the entry of
the table corresponding to that pixel is also a “1”. If the entry
is not “1”, we should find its nearest quantization level for
which its LUT entry is “1” to replace the pixel as illustrated in
Fig. 1. The process of embedding “0” is the same. The look-

Fig. 1. An example of of LUT based data hidding

up function Lookup(·) simply returns a “0” or “1” depending
upon the input index,

Lookup(I) = value in Look-up table at index I . (1)

The LUT (·) function takes the value of the original signal
as the input and maps it to a “0” or “1” according to the LUT.
Thus, the LUT (·) function is actually a simple composition
of the lookup and the quantization functions:

LUT (s) = Lookup(Q(s)/q), (2)

where q is quantization step and Q is quantization function .
The entire process altering a pixel can be abstracted into

the following formula:

x =
{

Q(s) if LUT (s) = b,
s + δ if LUT (s) �= b,

(3)

where s is the original feature, x is the watermarked feature,
b is the bit to be embedded; and δ = arg mind{|d|

∣∣d =
(Quant(x) − s) s.t. LUT (x) = b}.

Once the LUT is known, the watermark detection can be
easily implemented through a simple lookup from the LUT.
The table is looked up as

b̂ = LUT (x̂), (4)
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where b̂ is the extracted bit and x̂ is the watermarked, possibly
corrupted signal. It is desired to design the LUT such that the
distortion is as small as possible.

3. DISTORTION ANALYSIS

In LUT embedding, uniform quantization Q(·) divides the in-
put signal space into K levels. If the k-th entry of LUT is b, to
embed b the data samples of signal s in the quantization cell
of [(k− 1/2)q, (k +1/2)q] is rounded to kq, the mean square
distortion produced by this operation is calculated as

Dk(sb) =
∫ (k+1/2)q

(k−1/2)q

|s − kq|2 f(s)ds, (5)

where f(s) is the Probability Density Function (PDF) of s
and the features to embed bit “b” is denoted by sb. However,
if the bit to be embedded for s is not b, the host data must be
mapped to the nearest quantization point corresponding to the
desired bit. There are three cases as illustrated in Fig. 2.

Fig. 2. Illustration of distortion analysis of embeding 1. (a)
(k + 2)-th entry is the only one closest entry. (b) (k − 2)-th
entry is the only one closest entry. (c) (k+2)-th and (k−2)-th
entry are both closest entries.

If the (k + l)-th entry is the only one closest entry for the
desired bit (Fig. 2(a)), the distortion of the k-th entry is

D+l
k =

∫ (k+1/2)q

(k−1/2)q

|s − (k + l)q|2 f(s)ds

= Dk(sb) + l2q2

∫ (k+1/2)q

(k−1/2)q

f(s)ds

−2lq

∫ (k+1/2)q

(k−1/2)q

(s − kq)f(s)ds. (6)

If the feature is approximately symmetric distributed within
each cell, the last term is close to 0. We have

D+l
k ≈ Dk(sb) + l2q2

∫ (k+1/2)q

(k−1/2)q

f(s)ds. (7)

Similarly, if the (k − l)-th entry is the only one closest
entry for the desired bit (Fig. 2(b)), the distortion is

D−l
k ≈ Dk(sb) + l2q2

∫ (k+1/2)q

(k−1/2)q

f(s)ds. (8)

In another case, we have two nearest quantization points
(k+ l)q and (k− l)q corresponding to the desired bit simulta-
neously (Fig. 2(c)), then the original features in the range of
[(k − 1/2)q, kq] will be rounded to (k − l)q, and the features
in the other half interval [kq, (k + 1/2)q] will be mapped to
(k + l)q. The distortion will be composed by two parts:

D±l
k =

∫ kq

(k−1/2)q

|s − (k − l)q|2 f(s)ds

+
∫ (k+1/2)q

kq

|s − (k + l)q|2 f(s)ds. (9)

Similarly it comes to

D±l
k ≈ Dk(sb)+l2q2

∫ (k+1/2)q

(k−1/2)q

f(s)ds− lq2

2

∫ (k+1/2)q

(k−1/2)q

f(s)ds.

(10)
For a binary data hiding system, we can divide the fea-

tures into two categories: the features that are used to embed
bit “0”, denoted by s0, and the features to embed bit “1”, de-
noted by s1. The PDFs of s0 and s1 are f0(s0) and f1(s1),
respectively. Now consider that each of the K LUT entries
is either “0” or “1”. In all K quantization cells, all the data
have to be mapped to the closest reconstruction points for the
desired entry. According to (5) - (10), the overall n-run LUT
T embedding distortion for the feature within the k-th quan-
tization cell can be formulated as

Distk(T ) = Dk(s0) + q2
n−1∑
l=1

[
l2αl

0,k − l

2
βl

0,k

]

·
∫ (k+1/2)q

(k−1/2)q

f(s0)ds0

+Dk(s1) + q2
n−1∑
l=1

[
l2αl

1,k − l

2
βl

1,k

]

·
∫ (k+1/2)q

(k−1/2)q

f(s1)ds1, (11)

where T is LUT, α and β are calculated as follows:

αl
0,k = max

{
tk−l tk−l+1..tk..tk+l−1, tk−l+1..tk..tk+l−1 tk+l

}
,

αl
1,k = max

{
tk−l tk−l+1..tk..tk+l−1, tk−l+1..tk..tk+l−1 tk+l

}
,

βl
0,k = αl

0,k tk−l tk+l,

βl
1,k = αl

1,k tk−l tk+l,

where t is entry of T . αl
b,k = 1 only when tk �= b, tk−l or

tk+l or both is the nearest LUT entry for b. βl
b,k = 1 only

when tk �= b, tk−l and tk+l are the nearest LUT entries for b.
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From (11), we can formulate the overall distortion as

MSEw(T ) =
K−1∑
k=0

Distk(T ). (12)

Considering the overall mean squared distortion due to
quantization only is MSEquan =

∑K−1
k=0 [Dk(s0) + Dk(s1)].

Let the additional distortion by data hiding at the k-th cell

Dk(T ) = q2
∑n−1

l=1

[
l2αl

0,k − l
2βl

0,k

] ∫ (k+1/2)q

(k−1/2)q
f(s0)ds0

+ q2
∑n−1

l=1

[
l2αl

1,k − l
2βl

1,k

] ∫ (k+1/2)q

(k−1/2)q
f(s1)ds1.

We can rewrite the overall embedding distortion as

MSEw(T ) = MSEquan +
K−1∑
k=0

Dk(T ). (13)

4. MINIMUM DISTORTION LUT WITH VITERBI
ALGORITHM (VA)

The overall structure of the proposed data hiding scheme is
illustrated in Fig. 3 for binary case. The channel could be any

Fig. 3. Watermark Embedding and Detection Process

attack or noise. First host data are quantized using uniform
quantizer. Then a Viterbi algorithm is used to find the optimal
distortion LUT which is described below. After that the LUT
is used as secret key to both embedding and detection sides.

Since MSEquan is the same for every T , the n-run LUT
we want is the one that minimize the additional distortion,

Topt = arg min
T

{
K−1∑
k=0

Dk(T )

}
. (14)

We formulate it as a problem of minimizing K steps summa-
tion of Dk(T ) and it can be solved using dynamic program-
ming. A Viterbi algorithm (VA) [5] is used. For a n-run LUT,
we have 22n−2 states represented by the 2n − 2 neighboring
LUT entries:

S = “tk−n+1...tk...tk+n−2”. (15)

In each state of the trellis, the previous state metric (SM)
and the corresponding branch metric (BM) are added together,
and then the accumulated SM is updated by choosing the min-
imum of all possible cases recursively

SMk+1
Si

= min
Sj

(SMk
Sj

+ BMk+1
Sj ,Si

), k = 0, ..., K − 2, (16)

where SMk
Sj

represents the SM of the jth state at step k, and

BMk
Sj ,Si

denotes the BM at step k associated with a transition
from state Sj to state Si. A transition happens only when the
last 2n− 3 entries of Sj is the same as the first 2n− 3 entries
of Si. Fig.4 shows the trellis of a 2-run LUT.

00
���������� ∞ �� 00

01

�����������
��
01

10

��
���������� 10

11
��

∞ �� 11

Fig. 4. Trellis of 2-run LUT. A arc is traversed if the next en-
try is 1, a dotted arc is traversed if the next entry is 0. Because
the run is 2, the BM from ”00” to ”00” and from ”11” to ”11”
is ∞.

The initial state metric SM0
Si

is given by the additional
distortion of k = 0.

SM0
Si

= D0(Si), (17)

where Dk(Si) denotes the additional distortion while tk−n+1, · · ·
tk, · · · , tk+n−1 are given by Si.

Let BMk
Sj ,Si

be the additional distortion of the k-th en-
try. Since the additional distortion of the k-th entry is decided
only by the 2n-1 nearby entries tk−n+1, ..., tk, ..., tk+n−1 which
can be obtained from Sj and Si. Considering the case that
from Sj to Si will break the run n constrain, BMk

Sj ,Si
is given

by a modification of the additional distortion.

BMk
Sj ,Si

=
{ ∞ if run > n from Sj to Si,

Dk(Sj , Si) else,
(18)

where Dk(Sj , Si) denotes the additional distortion while
tk−n+1, · · · , tk, · · · , tk+n−1 are given by Sj and Si. Then
the accumulated SM is the overall additional distortion for all
the K entries. Once the accumulated SM, and the history of
the states the smallest accumulated SM is built up, we can
create the minimum-distortion n-run LUT.

5. EXPERIMENTAL RESULTS WITH IMAGES

To verify our scheme, we apply our proposed minimum dis-
tortion LUT embedding with run constraint of 2 and 3 to the
popular 512 × 512 images Lena, Bridge and Goldhill. One
bit is embedded in each pixel. For comparison, an embedding
scheme using the odd-even LUT was also implemented.

The following results are using Lena as an example and
other pictures get the similar results. Fig. 5 is the PSNR
(peak-signal-to-noise-ratio) after embedding of two schemes.
As we expected, PSNR of the minimum distortion LUT em-
bedding is better than the odd-even LUT embedding at all
levels. When the number of quantization level increases, the
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difference between the two gets smaller. The underlying rea-
son is that the distortion of the odd-even LUT embedding gets
smaller with more quantization levels and leaves less space
for improvement. That the 3-run LUT only has slight im-
provement over 2-run is due to the distribution of the water-
mark signal which is not far from uniform.
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Fig. 5. PSNRs at different quantization levels for the mini-
mum distortion and odd-even LUT.
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Fig. 6. BER versus WNR for the minimum distortion and
odd-even LUT under white Gaussian noise. The quantization
level is 20.

Next, we add white Gaussian noise to watermarked im-
ages with the minimum distortion LUT and the odd-even LUT.
The detection errors on 512 × 512-bit raw data at different
WNR are shown in Fig. 6. Fig. 7 visualizes the detection
errors from which we can see minimum distortion LUT has a
great improvement on reducing the raw BER. And the PSNR
is also increased from 26.54dB of odd-even to 27.30dB of
minimum distortion LUT.

6. CONCLUSION

A new LUT data hiding scheme that minimizes distortion was
designed. Through the distortion analysis, we generalized the

(a) (b)

(c) (d)

Fig. 7. The embedded image and raw error pattern with the
odd-even LUT (a)(c) and the minimum distortion 3-run LUT
(b)(d) under WNR=4.77dB. The quantization level is 20.

embedding distortion function and formulated the distortion
minimization problem as a dynamic programming problem.
A Viterbi algorithm is then used to find the minimum distor-
tion LUT. Experiment results show that our presented scheme
with a run constraint larger than 1 is more robust and has less
distortion than traditional LUT embedding schemes such as
odd-even LUT embedding. The presented embedding scheme
is distinguished by its ability to achieve minimum distortion
adaptively according to the distribution of the watermark sig-
nal. Future work may include exploring optimal LUT perfor-
mances in the transform domain.
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