
VIDEO AND AUDIO EDITING FOR MOBILE APPLICATIONS

Ari Hourunranta, Asad Islam, Fehmi Chebil

Nokia

ari.hourunranta@nokia.com, asad.islam@gmail.com, fehmi.chebil@yahoo.com

ABSTRACT

Video content creation and consumption have been increasingly
available for the masses with the emergence of handheld devices
capable of shooting, downloading, and playing videos. Video
editing is a natural and necessary operation that is most commonly
employed by users for finalizing and organizing their video
content. With the constraints in processing power and memory,
conventional spatial domain video editing is not a solution for
mobile applications. In this paper, we present a complete video

editing system for efficiently editing video content on mobile
phones using compressed domain editing algorithms. A critical
factor from usability point of view is the processing speed of the
editing application. We show that with the proposed compressed
domain editing system, typical video editing operations can be
performed much faster than real-time on today’s S60 phones.

1. INTRODUCTION

Almost immediately after embedded cameras were introduced into
mobile phones, video-capturing applications started to emerge.

Nowadays, many mobile phones can capture long clips with a
reasonably good quality. This has turned mobile phones into digital
camcorders. Further, using the connectivity capabilities in their
devices, users can share the recorded content with friends and
family instantaneously. After shooting video clips, however, users
tend to trim or personalize them by introducing a set of effects,
organizing them into a new sequence, removing unwanted parts or
combining them with other clips.

There are several PC-based commercial products available
providing such video editing functionalities. It is not very practical
solution, however, to transfer files from a phone to PC for editing
and then transfer the edited videos back to the phone for sharing.
Editing capabilities on the mobile phones, therefore, would provide
significant advantage.

Solutions from the PC world cannot be ported directly into
mobile devices that are constrained by low resources in processing
power, RAM memory, storage space, and battery. For these

devices, decoding a video sequence and re-encoding it, typically
multiple times to achieve a desired visual effect, would take
significantly long time. To overcome this problem, it is necessary
to utilize fast and efficient compressed domain techniques.

Efficient algorithms for video editing have been studied in the
literature, mainly in the context of MPEG-1/2 videos. We show
that an efficient mobile video editing system can be developed
using a combination of existing and novel techniques for

compressed domain editing. The existing algorithms include DCT

domain editing algorithms proposed by Chang et al. [1] and
temporal dependency manipulation algorithms proposed by Wee et
al [2,3,4]. Further, Meng and Chang [5] presented a compressed
domain video editing and parsing system with a set of editing
effects, such as cutting, pasting, blending, and temporal effects.

Our complete video editing system for mobile devices offers an
extensive set of features for editing video clips on mobile

terminals. The application enables users to create edited movies
out of their captured video content for instant sharing and
playback, as well as for storing the movies in finalized shape.

The paper is organized as follows. In section 2, we look into
the editing requirements in mobile environment. In section 3, we
give an overview of the techniques for editing video sequences.
We present the architecture of our video editor in section 4, and
provide some experimental results on the performance in section 5.

2. EDITING ON MOBILE TERMINALS

In this section, we identify mobile video editing use cases and their
impact on the editing procedure. We start by introducing the

mobile video and audio formats employed for mobile devices and
the characteristics they have for editing.

2.1. Mobile Audio and Video Formats

In the mobile domain, the most common video coding formats for
user-generated content today are ITU-T H.263 baseline [6] and

ISO MPEG-4 Simple Profile [7]. They both are based on the
traditional DCT and motion compensation based hybrid coding
scheme with intra (I) and inter (P) pictures.

For the associated audio, the most relevant formats are 3GPP’s
AMR-NB and MPEG-4’s AAC. The relevant characteristic for
editing in both of them is that the frames are independently
encoded, which enables cutting and splicing audio streams at
individual frame boundaries.

The file formats used in mobile use cases – 3GP and MP4 – are
inherited from ISO media file format [8], making them closely
compatible. The ISO media file format is based on a concept of
separated metadata and media data. The metadata contains
common information for the whole file, and detailed information
of video and audio frames, e.g. timestamps, grouped as video and
audio tracks. The frames can be located and read based on the
information in the audio/video tracks, as illustrated in Figure 1.

The original use case for mobile-generated video was

Multimedia Messaging Service (MMS). MMS puts rather strict
restrictions for video clips (e.g. codecs, bitrates, video resolution,
clip size), but the idea is to enable MMS usage even in low-end
phone categories. The 3GP multimedia file format was designed to
include H.263 video and AMR-NB audio for MMS use.

13051­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

Metadata

Audio track

Video track Video and

audio frames

Media data

Figure 1: ISO/3GP/MP4 file format structure

2.2. Use Cases

2.2.1. Video Sharing

The video editing application should be able to generate videos
that can be shared over the MMS. To meet the MMS restrictions,

and in general to save up/downloading time, video clips may
require size reduction – a process that typically requires user
interactions. In addition to reducing video resolution and
increasing compression, the clip may need to be shortened, and the
user must be provided a way to control how to cut the clip.

To optimize the use of the limited size, the editor should
provide a possibility to create a summary clip, by picking up only
the relevant parts of the clips and splicing them.

2.2.2. Video Content Creation

Video recording capabilities of today’s high-end smart-phones are
getting close to the camcorders. In real camcorder use cases, it is
justified to use MPEG-4 Simple Profile video and MPEG-4 AAC
audio instead of the 3GPP formats.

For camcorder-type of video content, video editing could

support users in creating useful video clips that are worth storing,
such as, documents of holiday trips or birthday parties. This can
mean removing unwanted scenes, splicing video clips, and adding
titles or some effects. Further, inserting an image (still image, text
frame) inside a video can enrich the video.

A natural requirement for a video application is to be able to
use video content independently of its origin. This is not
straightforward, since as explained above, mobile videos can be

created for various formats, depending on the original use case.
The above mentioned use cases and requirements imply that a

number of editing operations are needed for an efficient video
editing solution on mobile devices. The video editing tool must
essentially be able to support video cutting and splicing, as well as
video transcoding features. It must support transitional effects
(such as Wipe, Fade, etc.) as well as some special effects (such as
Slow Motion, Black & White, etc.). Moreover, it must provide

basic editing support for the audio associated with video clips.

3. EFFICIENT ALGORITHMS FOR EDITING
OPERATIONS ON MOBILE TERMINALS

In this section, we give an overview of the video editing operations
that our system supports; details are presented in [9].

3.1. Video Editing Operations

The following editing operations were selected based on the
identified use cases, and were optimized for mobile devices –
splicing, cutting, transitional effects for fading, slow motion, black

& white, inserting still images in videos, and basic audio effects.
Splicing and cutting can be considered as the very basic editing

operations. Both operations modify durations of video, and

therefore it is essential to ensure the timing information remains
continuous over the editing points and consistent for all frames.

Splicing can be done in compressed domain by simply
concatenating the video bitstreams, translating timestamps, and

updating the file format metadata. However, splicing two videos in
compressed domain is possible only if the format and resolution of
the two videos are the same. If they are not, one clip must be
transcoded to the format and/or resolution of the other clip.

In cutting a video, the principle proposed by Wang and Woods
[10] for MPEG-2 streams can be applied. Video frames are first
decoded starting from the last preceding I-frame up to the first
frame to include in the output, which is then converted to an I-

frame. The timing information of all the included frames is then
converted to map the translation in time due to cutting These steps
are illustrated in Figure 2. The frequency of I-frames in the input
has direct impact to the speed of cutting operation.

For performing transitional effects, such as fading in and fading
out, we use a hybrid approach, where only the transition frames are
re-encoded while the rest of the video is processed in compressed
domain. The transition part can be considered as a new input clip,

first cut out from the video, then transcoded with the effect applied
on spatial domain, and then spliced with the rest of the video.

Still images can be inserted into video by decoding the input
JPEG image and then encoding it as a video clip, either as a single
I-frame with a given duration, or as a set of video frames. The
resulting video clip is then spliced with the other video clips.

In addition to the basic trimming type of operations, special
effects can also be applied to video. Slow Motion effect can be

achieved by changing the timing information of the clip.
Theoretically, the same approach could be used for fast motion
effect too, but care must be taken not to increase the playback
frame rate above the limits set by the standards. Black & White
Effect can essentially be achieved by simply removing
chrominance data from the compressed video bitstream.

An important thing to note is that in contrast to the traditional
transcoding-based editing that repetitively employs lossy coding,
compressed domain editing retains original quality of video while

simultaneously providing significant processing speed-ups.

3.2. Audio Editing Operations

Different kinds of audio operations can be employed to support the
video editing system. Our system supports the following three
simplest audio editing operations: retaining, replacing, and muting.

Retaining simply copies the audio from input video clips to
output movie. The cut points of the video and audio must match
exactly in order to avoid any audio drift in the edited video clip.

Replacing is used to add new audio, e.g. a music file. It may
require transcoding the audio to a compatible format.

Audio can be muted by inserting “silent” audio frames that give
the effect of silence.

Decode and
ignore

Input video clip

Video segment to include in output movie

Cut-in point Cut-out point

Ignore Ignore Copy to output
movie

Convert from
P to I

P … … P … I P P ... I P P … I P P …… I P P ……

Figure 2: Cutting procedure of a video clip

1306

4. EDITING ARCHITECTURE

In this section, we present a complete editing system that can be
built based on the proposed editing operations. Our video editing
system employs both system components and internal editing
components, as illustrated in Figure 3.

The input and output to the system are files while the user
controls the operations. The heart of the editing system consists of
two key modules: Video Processor and Audio Processor. All the

components of the video editing system are discussed below.

4.1. System-Level Components

The system-level components are not specific to the editing system
but can be standard components. For example, if the editor is
implemented on S60 phones, hardware accelerated codecs can be

used through Symbian APIs, namely Multimedia Framework
(MMF) and Media Device Framework (MDF).

4.1.1 File Format Parser and Composer

File format parser is used to extract metadata information (such as
video/audio duration, frame properties), and to read compressed
video and audio frames from input 3GP or MP4 files. Similarly,

the composer creates output 3GP or MP4 files using the generated
metadata information and the edited video and audio frames.

4.1.2 Video and Still Image Codecs

Video decoder is used to decode compressed video to spatial
domain, whereas video encoder encodes spatial domain video to

compressed signal. While this editing system does most of the
processing in compressed domain, there are instances when full
decoding of a video frame is needed, for example when seeking for
a cutting point or when applying a transition effect. Similarly, the
video encoder is needed only in some cases, for example when
applying transition effect, inserting still images, or converting P
frame to I in cutting. Both of them are needed in full transcoding as
well. In the still image insertion case, still image decoder is used

instead of video decoder.
In cases where data is modified in compressed domain, the

editor must also be capable of doing partial decoding and encoding
operations, such as VLC coding, since typically hardware
accelerators do not provide access to such individual operations.

4.1.3. Audio Codecs

Audio encoder and decoder are used in our system only when
transcoding audio.

4.2 Video Processor

Video Processor provides the core of the editing system. It consists
of several components, as illustrated in Figure 4 and listed below,

and it interfaces with the introduced system level components.

4.2.1. Frame Analyzer

Frame Analyzer takes in the information about the video frame,
and in conjunction with the editing parameters, decides the kind of
operations to be performed on the frame. It may remove the frame
altogether, or it may feed the frame to the decoder for full

decoding. Alternatively, it may send the frame to the compressed
domain processor for editing the frame in compressed domain.

4.2.2. Spatial Domain Processor

The Spatial Domain Processor is used to perform some spatial
domain processing on the raw video frame, e.g. for the transitional

effect, or for scaling in transcoding case.
4.2.3. Compressed Domain Processor
Compressed Domain Processor performs compressed domain
editing operations on the video frame, based on the information
provided by the Frame Analyzer. The operations include, for

example, Black and White effect and time stamp alignment.

4.2.4. Pre-Composer

Once the compressed video frame data is ready after editing, Pre-
Composer collects and updates the file format information. This
information consists of video frame size and type, timestamp, etc.

4.3. Audio Processor

Audio Processor provides simple audio editing features to support
the video editing system. It processes the audio data in the input
clips in accordance with the editing parameters to generate the
desired audio track in the output movie, keeping the timing
information synchronized with the video. The processed audio
frames are sent to the Composer for inclusion in the output movie.

5. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the efficiency of the presented compressed-domain
editing solutions, we compared the processing times of the editing
operations to the durations of the video clips, i.e. how much faster

than real-time can an edited video clip be generated. The rationale
is that a spatial domain editing system on mobile device can
typically only encode video in real-time and, hence, cannot
generate edited video in less time than the video duration.

We measured the performance of the developed video editing
system on an OMAP1710-based S60 imaging phone. The phone is
capable to separately record and playback MPEG-4 CIF video in
real-time, but it cannot do CIF transcoding in real-time. The
operations involving video encoding utilized a HW-accelerated

video encoder; all other processing was done in software on ARM
processor. The operating speed is naturally very dependent on the
hardware, optimization level of the software, and how well the
system layer parameters are tuned for editing type of operations.
However, running the tests on a commercial product should at least

File

Parser

File

Composer

Decoders Encoders

Processors

User interface

File File

Figure 3: High-level architecture of the video editing system

Figure 4: Video Processor module

System level

components

Frame

Analyzer

Compressed

Domain

Processor

Pre-Composer

Decoder

Spatial

Domain

Processor

Frame

data

Frame to

decode

Decoded

frame

Edited

frame

Encoder

Re-encoded

frame

Decoded

frame

Edited

frame

Edited

frame

data

Video

frame info

Video

frame data

Unwanted

compressed

frame

Unwanted

decoded

frame

1307

give an idea of the achievable performance. However, similarly to
the PC world, the HW performance of imaging phones is
continuously improving, and the results present only a snapshot of
the situation at the time of conducting this study.

Table 1 shows the test cases and the ratios of the editing speeds

and clip durations. Ratios greater than 1.0 indicate the operation is
faster than real-time. For example, ratio 10 means that a 60-second
video can be edited in 6 seconds. We selected four cases that
should be typical for mobile video editing: a simple cutting case, a
simple splicing case with cutting and a transitional effect, a
splicing case with special effects and a transitional effect, and a
complicated case with title frame generation and insertion, video
cutting, still image insertion, and several transitional effects. All

the input video clips were about 60 seconds long. None of the test
cases involved transcoding of video to another resolution or
format, since that is mainly dependent on the performance of the
system layer components. However, all involved partial video
decoding and partial video encoding, especially the last case where
more than 25% of the clip was encoded, and the 2.7 Megapixel still
image was decoded and scaled to video resolution. Input clips had
I-frames about every five seconds. The clips also contained audio

track, which was retained in the output.

Table 1 Test cases and the relative editing speeds compared to

real-time operation

Test cases H.263 QCIF

15 fps @ 128

kbps

MPEG-4 CIF

15 fps @ 512

kbps

Video (Cut 24…54s) 14.9 x 4.4 x

Video1 (Cut 12…42s) +
Fade + Video2 (Cut
12…42s)

7.8 x 2.1 x

Video1 (Black & White) +
Wipe + Video2 (Slow
Motion)

6.4 x 1.7 x

Title (5 s) + Fading + Video

(Cut 7…52s) + Crossfading
+ Still image (10 s) +
Fading

2.5 x 1.0 x

The results show that typical editing operations for video clips
recorded on mobile phones can be performed at least in real-time
on the phone, and in most cases, much faster. Especially in the

MMS-compatible QCIF-resolution, editing is significantly faster
than real-time. The reported figures can, however, still be
improved by software optimizations even on the same HW.

In cases where compressed domain algorithms are dominating
the editing process, editing MPEG-4 CIF clips is about 4 times
more complex than editing H.263 QCIF clips. The performance is
mainly dependent on bit-rate, since the operations are done on
bitstream layer. Therefore, operations like bitstream parsing and

shifting, VLC coding, and file I/O operations may become the
bottlenecks of the system, whereas in traditional video processing
the bottlenecks are elsewhere, like in IDCT/DCT transform and in
pixel processing related to motion estimation and compensation.
Further, typical codec accelerators do not provide access to
individual operations. Therefore, utilizing hardware acceleration to
further improve the performance of compressed domain video
editing may not be straightforward, but requires at least additional
APIs to access individual operations on hardware.

6. CONCLUSION

In this paper, we addressed the problem of providing video editing
capabilities on memory- and power-constrained portable devices,
such as mobile phones with integrated video cameras. In order to
avoid the computationally demanding decode-edit-encode cycle for
a typical video editing session, we proposed a viable alternative for
video editing on mobile phones — by developing a highly
optimized, compressed domain video editing system. This system

supports most of the common video editing features, such as video
cutting and splicing, frame insertion, special effects (such as slow
motion and black & white), transitional effects (such as wipe and
fade), and supporting audio editing capabilities. Results indicate
substantial gains in editing times for these operations, without loss
of quality, making it viable to perform video editing on today’s
mobile phones.

As the mobile technology expands its focus more towards the

multimedia market, it is imperative that efficient and viable
solutions are provided for mobile devices for managing the
growing multimedia content. Mobile video editor is one such step
in this direction.

7. REFERENCES

[1] S.F. Chang and D.G. Messerschmitt, “Manipulation And
Compositing Of MC--DCT Compressed Video”, IEEE Journal on
Selected Areas in Communications: Special Issue on Intelligent
Signal Processing, 13:1--11, 1995.
[2] S. J. Wee and B. Vasudev, "Splicing MPEG Video Streams In
The Compressed Domain", IEEE Workshop on Multimedia Signal

Processing, Princeton, NJ, Jun 1997.
[3] S. J Wee and J. Apostolopoulos, “Efficient Processing Of
Compressed Video”, Asilomar Conference on Signals, Systems,
and Computers, Volume 1 , 1-4, pp. 853 – 857, Nov. 1998.
[4] S. J Wee, “Manipulating Temporal Dependencies In
Compressed Video Data With Applications To Compressed-
Domain Processing Of MPEG Video”, IEEE International
Conference on Acoustics, Speech, and Signal Processing, Phoenix,

AZ, Vol. 6, pp. 3129-3132, March 1999.
[5] J. Meng and S.-F. Chang, "CVEPS: A Compressed Video
Editing and Parsing System", ACM Multimedia Conference,
Boston, MA, Nov. 1996.
[6] ITU-T Recommendation H.263, “Video Coding For Low Bit
Rate Communication”, February 1998.
[7] ISO/IEC JTC 1/SC 29/WG 11 N4350, “Information
Technology – Coding Of Audio-Visual Objects – Part 2: Visual”,

July 2001.
[8] ISO/IEC JTC 1/SC 29/WG 11 N4350, “Information
Technology – Coding Of Audio-Visual Objects – Part 12: ISO
Base Media File Format”, February 2004.
[9] A. Islam, F. Chebil, and A. Hourunranta, “Efficient Algorithms
for Editing Videos on Mobile Terminals”, submitted to ICIP 2006,
Atlanta, GA, Oct. 2006.
[10] K. Wang and J.W. Woods, “Compressed Domain MPEG-2
Video Editing”, IEEE International Conference on Multimedia and

Expo 2000, Volume 1, 30 July-2 Aug. 2000, pp. 225-228.

1308

