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ABSTRACT

Many novel multimedia applications use visual sensor arrays.
In this paper we address the problem of optimally placing
multiple visual sensors in a given space. Our linear program-
ming approach determines the minimum number of cameras
needed to cover the space completely at a given sampling fre-
quency. Simultaneously it determines the optimal positions
and poses of the visual sensors. We also show how to account
for visual sensors with different properties and costs if more
than one kind is available, and report performance results.

1. INTRODUCTION

Visual sensor arrays are used in many novel multimedia ap-
plications such as video surveillance, sensing rooms, or smart
conference rooms. An important issue in designing sensor ar-
rays is the appropriate placement of the visual sensors such
that they achieve a predefined goal. Our goal it to get com-
plete coverage of a given space at a predefined ’sampling rate’
guaranteeing that an object in the space will be imaged at a
minimum resolution (see Section 2 for a precise definition).
Currently designers of multi-camera systems place cameras
by hand as there exists no theoretical research on planning
visual sensor placement. As video sensor arrays are getting
larger, efficient camera placement strategies need to be devel-
oped.

Often several different types of cameras are available. They
differ in their range of views, intrinsic parameters, image sen-
sor resolutions, optics, and costs. Minimizing the cost of a
visual sensor array while maintaining the required resolution
(i.e., minimal ’sampling frequency’) is also an important is-
sue we consider. Fig. 1 shows one ineffective setup that not
even achieves coverage.
Although significant amount of research exists in designing
and calibrating video sensor arrays, automated visual sensor
placement in general has not been addressed. There is some
work in the area of grid coverage problems with sensors sens-
ing events that occur within a distance r (the sensing range of
the sensor) [1, 2, 3]. Our work is based on those approaches,
but differs in the sensor model, since cameras do not posses
circular sensing ranges.

Fig. 1. Example of an inefficient setup we desire to optimize

The sensor placement problem is also closely related to
the guard placement problem (AGP) – the problem of deter-
mining the minimum number of guards required to cover the
interior of an art gallery. It is addressed by the art gallery
theorem [4]. Our camera placement problem differs from the
AGP in two ways: (1) in the restriction of the field-of-view
of cameras in our sensor model due to resolution and sensor
properties; (2) in considering cameras with different fields-
of-views at different levels of costs. In AGP all guards are
assumed to have similar capabilities.
The paper is organized as follows. In Section 2 the prob-
lem is formulated. Our approach is presented in Section 3,
before Section 4 gives implementation details and reports re-
sults. Section 5 concludes the paper.

2. PROBLEM STATEMENT

Definitions: In the following the term space denotes a phys-
ical 2D or 3D room, which we want to cover by our visual
sensors. Currently, we assume that the room is rectangular.
Coverage means that every point of a given space is sensed
with a specified minimal resolution. In this work, the minimal
resolution is satisfied if a given point in space is imaged by at
least one pixel of a camera that does not aggregate more than
x cm2 of a surface parallel to the imaging plane through that
point. x is expressed in terms of the sampling frequency fs

and converted into the field-of-view of a camera. The field-
of-view is defined as the area in which a pixel aggregates no
more that 1

f2
s

cm2 of a surface parallel to the imaging plane.
Thus an object that appears in the camera’s field-of-view is
imaged with at least this resolution assuming the object has
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a planar surface orthogonal to the optical axis1. Occlusions
are not considered. To simplify the derivation we consider
only the 2D problem in this paper; however, the presented ap-
proach can be extended easily to the third dimension.
Problem Statement: Given a space to be covered at a sam-
pling frequency fs by visual sensors, we are interested in the
following two camera placement problems:

• Determine the minimum number of visual sensors of a
certain type as well as their positions and poses in the
space such that coverage is achieved.

• Given different types of visual sensors determine how
to obtain coverage while minimizing the total cost of
the sensor array.

2.1. Modeling a camera’s field-of-view

The field-of-view of a camera can be described by a triangle
as shown in Fig. 2. The parameters of this triangle can be eas-
ily calculated given the (intrinsic) camera parameters and the
sampling frequency fs using well known geometric relations.
Defining the field-of-view by a triangle enables us to describe

Fig. 2. Deriving the model of a camera’s field-of-view

the area covered by a camera at position (cx, cy) and pose (ϕ)
linearly. Therefore a camera’s field-of-view is first translated
to the origin of the coordinate system (Fig. 2 left):

x′ = x − cx, y′ = y − cy (1)

Then we rotate the field-of-view, so that the optical axis be-
comes parallel to the x-axis (Fig. 2 center):

x′′ = cos(ϕ) · x′ + sin(ϕ) · y′ (2)

y′′ = − sin(ϕ) · x′ + cos(ϕ) · y′ (3)

The resulting area covered by the triangle (Fig. 2 right) can
now be described by three line equations l1, l2, l3:

l1 : x′′
≤ d (4)

l2 : y′′
≤

a

2d
· x′′ (5)

l3 : y′′
≥ −

a

2d
· x′′ (6)

1Clearly the resolution is smaller if the surface is not orthogonal.

Thus by substitution the following three equations define the
area covered by the field-of-view of a certain camera:

cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy) ≤ d (7)

− sin(ϕ) · (x − cx) + cos(ϕ) · (y − cy) ≤
a

2d
· (cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy)) (8)

− sin(ϕ) · (x − cx) + cos(ϕ) · (y − cy) ≥

−
a

2d
· (cos(ϕ) · (x − cx) + sin(ϕ) · (y − cy)) (9)

2.2. Modeling space

In the ideal case cameras can be placed continuously in the
space, i.e. the variables cx, cy and ϕ that define a camera’s
position and pose are continuous variables. As we are not
able to solve our problem for the continuous case we approx-
imate the space by a two-dimensional grid of points. The
minimum distance ∆ between two grid points in the x- and y-
direction is determined by the spatial sampling frequency
fa: ∆ = 1/fa . Cameras can only be placed at these dis-
crete grid points, and coverage is ensured only for these grid
points. Thus our problem turns into a grid coverage prob-
lem. For fa → ∞ our approximated solution converges to
the continuous-case solution.
We only consider rectangular spaces of width w and height h
with no obstacles in the room constricting the field-of-view of
our visual sensors. Remarks about more complex spaces are
made in Section 3.1.

3. LINEAR PROGRAMMING

Considering only one type of cameras, i.e., only cameras with
the same field-of-view, we formulate our camera placement
problem in terms of minimizing the number of cameras needed
subject to the coverage constraint. We assume that our space
consists of sx and sy grid points in the x− and y− dimension
respectively2. Visual sensors locations are restricted to these
grid points. Similarily we discretize the angle ϕ defining a
camera’s pose to sϕ different poses only. A camera at posi-
tion (cx, cy) with orientation ϕ covers a grid point (x, y) if
and only if Eq. 7 to 9 are satisfied.

Thus, we can state the optimization problem as follows:
Problem 1: Given a set of grid points and a camera model,
minimize the total number of cameras (by optimally assign-
ing cameras to grid points and angels) while ensuring that
every grid point is covered by at least one camera.
In the followingwe derive an integer programming (ILP) model

2Given a rectangular space sx and sy can be easily calculated given the
room’s dimensions and the spatial sampling rate fa.
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to solve this visual sensor placement problem. Our approach
is based on the algorithm presented in [2]. Let a binary vari-
able xijϕ be defined by:

xijϕ =

⎧⎨
⎩

1 if a camera is placed at grid point (i, j)
with orientation ϕ

0 otherwise
(10)

The total number of cameras N is then given by

N =

sϕ−1∑
ϕ=0

sx−1∑
i=0

sy−1∑
j=0

xijϕ (11)

Furthermore we define a binary variable c(i1, j1, ϕ1, i2, j2):

c(i1, j1, ϕ1, i2, j2) =

⎧⎪⎪⎨
⎪⎪⎩

1 if a camera placed at grid point
(i1, j1) with orientation ϕ1
covers grid point (i2, j2)

0 otherwise
(12)

c(i1, j1, ϕ1, i2, j2) can be calculated in advance and stored
in a table. Our sensor deployment problem can now be for-
mulated as an IPL model:

min

sϕ−1∑
ϕ=0

sx−1∑
i=0

sy−1∑
j=0

xijϕ (13)

subject to

sϕ−1∑
ϕ1=0

sx−1∑
i1=0

sy−1∑
j1=0

xi1,j1,ϕ1 · c(i1, j1, ϕ1, i2, j2) ≥ 1 (14)

0 ≤ i2 ≤ (sx − 1), 0 ≤ j2 ≤ (sy − 1)

The constraints represented by Eq. 14 ensure that each grid
point is covered by at least one camera. The minimum num-
ber of cameras that should cover each grid point can be easily
changed to e.g. two or more cameras.
To ensure that only one camera is located at each grid point,
we can add the constraints:

sϕ−1∑
ϕ=0

xijϕ ≤ 1 (15)

0 ≤ i ≤ (sx − 1), 0 ≤ j ≤ (sy − 1)

The number of variables xijϕ in our ILP is sx ·sy ·sϕ. Thus, if
we increase the number of grid points to achieve a better ap-
proximation of the continuous case, the number of variables
and constraints in our IPL increases accordingly.

3.1. Different types of cameras

A very similar problem arises if several types of cameras with
different sensor resolutions and optics (i.e. focal lengths) are

available. Then we have for each type of camera k different
field-of-view parameters dk and ak (see Fig. 2) and a cost Kk.
Our objective is to find the configuration of cameras that min-
imizes the total cost of the visual sensors while ensuring cov-
erage. The optimization problem is formulated as follows:
Problem 2: Given a set of grid points and k types of visual
sensors with costs Kk and field-of-view parameters dk, ak

minimize the total cost of the sensor array (by optimally as-
signing cameras to grid points and angles) while ensuring
coverage for every grid point.
To solve this problem we need to modify the previous solu-
tion. We define a binary variable xijϕk as follows:

xijϕk =

⎧⎨
⎩

1 if a camera of type k is placed at
grid point (i, j) with orientation ϕ

0 otherwise
(16)

The total cost C of the visual sensors is then calculated by:

C =

k∑
k=1

Kk(

sϕ−1∑
ϕ=0

sx−1∑
i=0

sy−1∑
j=0

xijϕk) (17)

Similar to Eq. 12 a binary variable ck(i1, j1, ϕ1, i2, j2) is de-
fined for each camera type k by:

ck(i1, j1, ϕ1, i2, j2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if a camera of type k with
orientation ϕ1 is placed at
grid point (i1, j1) and covers
grid point (i2, j2)

0 otherwise
(18)

Again the value of all variables ck(i1, j1, ϕ1, i2, j2) can be
calculated in advance. Like in Problem 1 the solution to our
visual sensor placement problem is found by solving the fol-
lowing ILP model:
Minimize the cost function

C =

k∑
k=1

Kk(

sϕ−1∑
ϕ=0

sx−1∑
i=0

sy−1∑
j=0

xijϕk) (19)

subject to

k∑
k1=1

sϕ−1∑
ϕ1=0

sx−1∑
i1=0

sy−1∑
j1=0

xi1,j1,ϕ1,k1·

ck(i1, j1, ϕ1, k1, i2, j2) ≥ 1 (20)

0 ≤ i2 ≤ (sx − 1), 0 ≤ j2 ≤ (sy − 1)

To ensure that at each grid point only one camera is located
we need to add the constraints:

k∑
k=1

sϕ−1∑
ϕ=0

xijϕk ≤ 1 (21)

0 ≤ i ≤ (sx − 1), 0 ≤ j ≤ (sy − 1)
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Fig. 3. Results of the ILP minimization for identical cameras
of two sample configuratations (a) and (b)

The number of variables xijϕk in our ILP is k · sx · sy · sϕ,
i.e. the number of variables increases with the number of grid
points and available camera types as do the constraints.

More complex spaces: We have only considered rect-
angular spaces so far. More complex rooms can be easily
included as linear constraints into our framework as long as
they are convex. Additionally, the ILPs’ extension to the third
dimension is straightforward, but has been excluded in the
discussion due to space limitations.

4. EXPERIMENTAL RESULTS

Both ILPs have been implemented in C++ using the lpsolve
package [5]. First we evaluate our proposed solution to Prob-
lem 1: Given a single camera type minimize the total num-
ber of cameras subject to the coverage constraints. Fig. 4
shows two results with two sample configurations. Blue dots
mark camera locations; red lines mark the field-of-views of
the cameras. The sampling frequency fs and the camera type
were set equally in both experiments, the other parameters
were set as follows:

• Experiment (a): room: 120 × 120, fa = 1

10
, sϕ = 2

• Experiment (b): room: 160 × 120, fa = 1

20
, sϕ = 16

It can be observed in Fig. 4(b) that some areas are uncovered.
This is due to the low spatial sampling frequency fa. Cover-
age is only assured for discrete grid points and the distance
between two grid points depends on fa. To ensure near com-
plete coverage, fa needs to be increased.

We also evaluated the cost minimization ILP for two cam-
era types with different field-of-views. A cost of $70 was
assumed for the cameras with the larger field-of-view, while
only $50 were assumed for the cameras with the smaller field-
of-views. Fig. 4 shows two results. Blue dots denote camera
locations, while blue and green lines mark the field-of-views
of the two different camera types.

The size of the room, the sampling and spatial sampling
frequency fs and fa were constant for both experiments. In
the first and second experiment we chose sϕ = 2 (Fig. 4(a))

Fig. 4. Results of minimizing the total costs of the sensor
arrays for two different parameters settings

and sϕ = 8 (Fig. 4(b)), respectively. The total cost of the sen-
sor arrays in Fig. 4(a) was $440 and $420 in Fig. 4(b).
The above presented ILP problems are practically solvable
for only a small number of grid points. For a large num-
ber Chakrabarty et al. [2] propose a divide-and-conquer al-
gorithm.

5. CONCLUSION AND FUTURE WORK

We have presented an approach to optimally place visual sen-
sors in a given space such that coverage is achieved for dis-
crete grid points. We have proposed two different algorithms.
The first one minimizes the number of cameras covering a
sensing field at a given sampling frequency. The second algo-
rithm minimizes the total cost of the sensor array while cov-
ering a space with sensors of different properties.
Future work will include a slack variable for coverage, i.e.,
only a predefined percentage of grid points needs to be cov-
ered. Additionally it has to be investigated how to handle a
large number of grid points.
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