
AN ANALYTIC STUDY OF STREAM TAPPING PROTOCOLS

Jehan-François Pâris

Department of Computer Science
University of Houston, Houston, TX 77204-3010

Darrell D. E. Long

Department of Computer Science
University of California, Santa Cruz, CA 95064

ABSTRACT

We present the first analytic study of stream tapping proto-
cols, a family of protocols that provide the most efficient
way to distribute videos on demand at low to medium
request arrival rates, say, less than ten requests per hour for
a two-hour video. The main results of this study are
analytical solutions for the optimal operational points of
stream tapping, stream tapping with small client buffers,
stream tapping with partial preloading and stream tapping
with proactive streams. In addition we introduce a new
stream tapping protocol with batching that caps the band-
width requirements of stream tapping at high to very high
arrival rates.

1. INTRODUCTION

Despite its attractiveness as a concept, video-on-demand
(VOD) has yet to make a significant impact on the home
entertainment market. One of the reasons behind this state
of affairs is the high demands that VOD makes on video
servers. Videos in MPEG-2 format require the delivery of
around 5 Mb/s of data per stream. A video server that
allocates a separate stream of data to each request requires 5
Gb/s to accommodate 1,000 concurrent users.

This situation has led to numerous proposals aiming at
reducing the bandwidth requirements of VOD services.
These proposals can be broadly classified into two groups.
Proposals in the first group are said to be proactive because
they broadcast each video according to a fixed schedule that
is not affected by the presence–or absence–of requests for
that video. They are also known as broadcasting protocols
[4, 6, 9, 10].

Other solutions are purely reactive: they only transmit
data in response to a specific customer request. Unlike
proactive protocols, reactive protocols do not consume
bandwidth in the absence of customer requests [1−3, 5, 7,
8]. Of all reactive protocols, stream tapping is the one that
has spawned the most variants thanks to its good
performance and its simplicity.

Given the reactive nature of stream tapping, previous
studies of the protocol [1, 2, 8] have relied on discrete
simulation to evaluate the bandwidth requirements of the
protocol. While these studies produced reliable estimates
of the bandwidth requirements of the numerous protocol
variants, they did not provide the same wealth of
information, as analytical solutions would do. In particular,
they offered no help in setting the optimal protocol settings.

Complete streamCustomer a

Useful part of complete streamCustomer b

Tap

∆b ∆b

Figure 1: How stream tapping works

We present the first systematic analytical study of the
performance of stream tapping with or without partial
preloading and introduce a new stream tapping protocol
with batching that caps the bandwidth requirements of the
protocol at high to very high arrival rates.

2. STREAM TAPPING

Stream tapping [1, 2] requires each customer set-top box to
have a buffer capable of storing at least 10 minutes of video
data and to be able to receive data at at least twice the video
consumption rate. This buffer will allow the set-top box to
“tap” into streams of data on the server originally created
for other clients, and then store these data until they are
needed. In the best case, clients obtain most of their data
from an existing stream.

In particular, stream tapping defines two types of
streams. Complete streams read a video in its entirety and
are the most commonly tapped. Full tap streams can be
used if a complete stream for the same video started ∆ ≤ b
minutes in the past, where b is the size of the client buffer,
measured in minutes of video data. In this case, the client
begins receiving the complete stream right away, storing
the data in its buffer. Simultaneously, it receives a full tap
stream and uses it to display the first ∆ minutes of the
video. After that, the client will consume directly from its
buffer, which will then always contain a moving ∆-minute
window of the video.

Clients that can receive data at three times the video
consumption rate, they can use an option of the protocol
called extra tapping. Extra tapping allows clients to tap
data from any stream on the VOD server, and not just from
complete streams. Figure 1 shows some two sample
customer requests. Since customer a is the first customer, it
is serviced by a complete stream, whose duration is equal to
the duration D of the video. Since customer b arrives ∆b

12371­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

minutes after customer a, it can share D – ∆b minutes of the
complete stream and only requires a full tap of duration ∆b
minutes.

3. OUR ANALYSIS

We will focus our study of on the performance of stream
tapping protocols without extra tapping.

3.1. Stream tapping

We consider first stream tapping without extra tapping for a
video of duration D that is being accessed at a rate λ. We
assume that we will restart a new complete stream when-
ever the length of the next full tap exceeds βD where 0 < β
≤ 1 is a parameter to be determined. In other words, we
will wait for an incoming request, start a complete stream
of duration D, tap this stream over a time interval of dura-
tion βD then restart the process. During this time interval,
the server will process an average of λβD requests in addi-
tion to the request that prompted the complete stream.
Hence the average number of requests sharing the same
complete stream is

Dnavg λβ+= 1 .

Since the lengths of the λβD full tap streams in the group
will be uniformly distributed over the interval (0, βD], the
average duration of each of these streams will be equal
to βD/2. The total duration of the streams required for
processing these 1 + λβD requests will thus be

2/)2/)((
22

DDDDDW λββλβ +=+=

and the average request service time Tavg will be

D

DD

n

W
T

avg

avg
λβ

λβ

+

+
==

1

2/22

. (1)

Differentiating the above expression with respect to β, we
obtain

2

22

)1(2

)22(

+

−+

D

DD

βλ

βλβλ
,

the only positive root of which is

D

D
opt

λ

λ
β

112 −+
= . (2)

This solution has the interesting property that
Tavg(βopt) = βopt D, meaning that the optimal point for
restarting a new complete stream is reached when the cost
of the new tap stream becomes equal to the average service
cost of all previous requests serviced by the current com-
plete stream.

The average bandwidth requirements BST of the stream
tapping protocol are then given by multiplying the average
request service time Tavg by the request arrival rate λ:

D

DD
TB avgST

βλ

λβλ
λ

+

+
==

1

2/)(22

. (3)

Fig. 2 displays the bandwidth requirements of the
stream tapping protocol for a two-hour video when the
request arrival rate varies between one and one thousand
requests per hour: the solid line represents the values

0

10

20

30

40

50

60

70

1 10 100 1000

Requests/hour

B
a

n
d

w
id
th

Simulation

Markov

Fig. 2. Bandwidth requirements of the stream tapping protocol for
a two-hour video.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

1 10 100 1000

Requests/hour

ββ ββ
 o
p
t

Fig. 3. Fraction of a two-hour video that the client must be able to
store in order to achieve the best performance at different request
arrival rates.

predicted by Eq. (2) while the small circles correspond to
values obtained by simulating one million requests. As we
can, the two techniques reach nearly identical results.
In addition, we can now estimate how the client buffer size
βopt D required to minimize the server bandwidth is affected
by the request arrival rate λ. As Fig. 3 shows, βopt is a
monotonically deceasing function of λ: a buffer capable of
containing 20 percent of the video suffices to achieve opti-
mal performance when λ exceeds 20 requests per hour
while lower arrival rates require buffers capable of storing
up to 62 percent of the video.

3.2. Stream tapping with a small buffer

We may encounter clients that can only store a fraction βmax
of each video. In that case, we need to replace βopt in all the
previous equations by βeff = min (βmax, βopt). This will result
in a significant increase of the server bandwidth whenever
βmax, is much smaller than βopt. Returning to Fig. 3, we see
that the impact of this restriction will mostly affect the per-
formance of the protocol at low arrival rates as βopt rapidly
decreases when the arrival rate λ increases.

1238

3.3. Stream tapping with partial preloading

Stream tapping with partial preloading [8] requires each
client to receive and store in its buffer ahead of time the
first few γD minutes of each video with 0 < γ < 1. Hence a
complete stream will only have to transmit the remaining
(1 − γ)D minutes of the video.

As before, we will restart a new complete stream
whenever the length of the next full tap will exceed βD
where 0 < β ≤ 1 is a parameter to be determined. The main
difference is that all requests arriving within γD minutes
after the request that prompted the complete stream will
receive all the data they need from the complete stream. As
a result, only the requests arriving more than γ minutes after
the first request but less than γ + β after it will require tap
streams. During this time interval, the server will process
an average of λ(β + γ)D requests. Hence the average num-
ber of requests sharing the same complete stream is now

Dnavg)(1 γβλ ++= .

Since the lengths of the corresponding full tap streams will
be uniformly distributed over the interval (0, βD), the aver-
age duration of each of these streams will be βD/2. The
average request service time is

D

DD

n

W
T

avg

avg
)(1

2/)1(22

γβλ

λβγ

++

+−
== .

and the derivative of that expression with respect to β has a
single positive root

D

DDD
opt

λ

λγλγλ
β

1 12222 −−++
= .

From Tavg, we can compute the bandwidth require-
ments BSTPP of the stream tapping protocol with partial
preloading by multiplying the average service time for a
request by the request arrival rate, obtaining

avgSTPP
TB λ= . (4)

Fig. 4 displays the bandwidth requirements of the
stream tapping protocol for a two-hour video when various
fractions γ of the video is preloaded. As we can see, partial
preloading has most impact at high to very high request
arrival rates. For instance, preloading the first six minutes
of a two-hour video reduces the server bandwidth by only
13 percent when the video is requested 10 times per hour
but would reduce the same bandwidth by at least 33 percent
when the request arrival rate exceeds 60 requests per hour.

3.4. Adding proactive streams

Like all purely reactive video distribution protocols, stream
tapping performs much better than proactive distribution
protocols at low request arrival rates and much worse at
very high request arrival rates. As a result, stream tapping
is especially vulnerable to flash crowds caused by a large
number of customers suddenly deciding they want to watch
a specific video, which could overload the server.

Returning to Fig. 3, we notice the very low values of
βopt at high arrival rates. Consider, for instance, a server
receiving one request per minute for a two-hour video. Its
βopt would be close to 0.125, which means that it would

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000

Requests/hour

B
a

n
d

w
id
th

No Preloading

Gamma = 0.01
Gamma = 0.02
Gamma = 0.05
Gamma = 0.10

Fig. 4. Bandwidth requirements of the stream tapping protocol for
a two-hour video when various fractions γ of the video are pre-
loaded.

restart a complete stream every 15 minutes. Let us assume
that (a) customers always watch the video in sequence
without fast-forwarding and (b) their set-top box can
receive video data at at least three times the video
consumption rate. We could then halve the durations of
these complete streams by introducing a single proactive
channel that would continuously repeat the second half of
the video. As a result, a client serviced by a tap stream
would simultaneously receive data from three sources,
namely, the complete stream it is tapping, its dedicated tap
stream and the channel broadcasting the last half of the
video. The bandwidth requirements of a stream tapping
protocol with one proactive channel broadcasting the last
half of the video is then given by

2/1

2/)2/(2/
1

22

1
D

DD
BST

βλ

λβλ

+

+
+=+ .

As we have shown previously [7], adding more
proactive streams can further reduce the duration of the
complete streams. With two proactive streams, we could
partition the video into four segments and broadcast three
of them on the proactive streams. Adding a third proactive
stream would then allow us to partition the video into ten
segments and broadcast nine of them on the proactive
streams, leaving only the first ten percent of the video to be
distributed reactively. Fig. 5 displays the bandwidth
requirements of the stream tapping protocol for a two-hour
video and one, two or three proactive streams.

3.5. Stream tapping with batching

A simpler solution to this problem is to enforce a maximum
request service rate λmax of, say, one or two requests per
minute. This would mean that a request arriving less than
1/λmax minutes after the previous request would be delayed
by at most 1/λmax minutes and that all requests arriving in
that interval would be serviced by the same server stream.

Hence, we define the effective request service rate λeff

as the minimum of the request arrival rate λ and the maxi-
mum request service rate λmax, that is,

),min(maxeff λλλ =

1239

0

5

10

15

20

25

30

35

40

1 10 100 1000

Requests/hour

B
a

n
d

w
id
th

No proactive channel

One proactive channel

Two proactive channels

Three proactive channels

Fig. 5. Bandwidth requirements of the stream tapping protocol for
a two-hour video with and without proactive channels.

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000

Requests/hour

B
a
n

d
w

id
th

No batching

Lambda max = 60

Lambda max = 30

Lambda max = 20

Fig. 6. Bandwidth requirements of the stream tapping protocol for
a two-hour video when the request service rate is limited to 20, 30
or 60 requests per hour.

As before, we will restart a new complete stream
whenever the length of the next full tap exceeds βD where
0 < β ≤ 1 is a parameter to be determined. The main
difference is that the λβD requests arriving on the average
within βD minutes after the complete stream will never
result in more than λmaxβD service streams. In addition,
that complete stream will now be likely to serve more than
one request whenever λ > λmax. As a result, the average
number of requests sharing the same complete stream will
now be

Dnavg λβλλ +=)/,1max(max

and the total duration of the streams required for processing
these navg requests will be

2/)2/(22DDDDDW effeff βλββλ +=+= .

Hence, the average request service time will be

D

DD

n

W
T

eff

avg

avg
λβλλ

βλ

+

+
==

)/,1max(

2/

max

22

. (5)

When λ ≤ λmax, λeff is equal to λ, max (1,λ /λmax) is
equal to one, and Eq. (5) becomes identical to Eq. (1): Since
our model only considers average cases, it assumes that
batching does not affect the performance of the protocol as
long as λ ≤ λmax. This not true in reality because actual

request interarrival times fluctuate around their average
1 /λ and will occasionally exceed 1/λmax.

When λ ≤ λmax, Eq. (5) becomes

D

DD

n

W
T

avg

avg
λβλλ

βλ

+

+
==

max

22

max

/

2/
. (6)

and the derivative of that expression with respect to β has a
single positive root

D

D
opt

max

max 112

λ

λ
β

−+
= . (7)

In that range of request arrival rates, the bandwidth
requirements BSTB of the stream tapping protocol with
batching is given by

D

DD
TB

opt

opt

avgSTPP

max

22

max

2

max

1

2/

λβ

λβλ
λ

+

+
==

which does not depend on λ.
Fig. 6 displays the bandwidth requirements of the

stream tapping protocol with batching for a two-hour video
and selected values of λmax.

4. CONCLUSIONS

We can make three main conclusions from our study of
stream tapping protocol. First, the client buffer require-
ments of the stream tapping protocol rapidly decrease when
the request arrival rate increases. For instance, a buffer
capable of containing 20 percent of the video suffices to
achieve optimal performance when the request arrival rate
exceeds 20 requests per hour while lower arrival rates
require buffers capable of storing up to 62 percent of the
video. Second, partial preloading can effectively reduce the
distribution costs of very popular videos but has little or no
impact on the distribution costs of less popular videos.
Finally, batching requests at high arrival rates can actually
cap the bandwidth requirements of the protocol at a reason-
able value.

REFERENCES
[1] S. W. Carter and D. D. E. Long. “Improving video-on-demand

server efficiency through stream tapping.” Proc. 5th ICCCN Conf.,
pp. 200−207, Sep. 1997.

[2] S. W. Carter and D. D. E. Long. “Improving bandwidth efficiency
on video-on-demand servers.” Computer Networks and ISDN Sys-
tems, 30(1–2):99–111, Mar. 1999.

[3] D. Eager and M. K. Vernon. “Dynamic skyscraper broadcast for
video-on-demand.” Proc. 4th

Int’l Workshop on Advances in Multi-
media Information Systems, pp. 18–32, Sep. 1998.

[4] K. A. Hua A. and S. Sheu. “Skyscraper broadcasting: a new broad-
casting scheme for metropolitan video-on-demand systems. Proc.
ACM SIGCOMM '97 Conf., pp. 89–100, Sep. 1997.

[5] K. A. Hua, Y. Cai, and S. Sheu. “Patching: a multicast technique for
true video-on-demand services.” Proc. 6th ACM Multimedia Conf.,
pp. 191–200, Sep. 1998.

[6] L. Juhn and L. Tseng. “Harmonic broadcasting for video-on-demand
service.” IEEE Trans. on Broadcasting, 43(3):268–271, Sep. 1997.

[7] J.-F. Pâris, S. W. Carter and D. D. E. Long. “A Reactive Broadcast-
ing Protocol for Video on Demand.” Proc. 2000 MMCN Conf., pp.
216–223, Jan. 2000.

[8] J.-F. Pâris. “A Stream Tapping Protocol with Partial Preloading.”
Proc. 9th MASCOTS Symp., pp. 423–430, Aug. 2001.

[9] J.-F. Pâris. “A simple low-bandwidth broadcasting protocol for
video on demand.” Proc. 7th ICCCN Conf., pp. 690–697, Oct. 1999.

[10] S. Viswanathan and T. Imielinski. “Metropolitan area video-on-
demand service using pyramid broadcasting.” Multimedia Systems,
4(4):197–208, Aug. 1996.

1240

