
AN ANALYTIC STUDY OF STREAM TAPPING PROTOCOLS 

Jehan-François Pâris 

Department of Computer Science 
University of Houston, Houston, TX  77204-3010 

Darrell D. E. Long 

Department of Computer Science 
University of California, Santa Cruz, CA  95064 

ABSTRACT 

We present the first analytic study of stream tapping proto-
cols, a family of protocols that provide the most efficient 
way to distribute videos on demand at low to medium 
request arrival rates, say, less than ten requests per hour for 
a two-hour video.  The main results of this study are 
analytical solutions for the optimal operational points of 
stream tapping, stream tapping with small client buffers, 
stream tapping with partial preloading and stream tapping 
with proactive streams.  In addition we introduce a new 
stream tapping protocol with batching that caps the band-
width requirements of stream tapping at high to very high 
arrival rates. 

1. INTRODUCTION 

Despite its attractiveness as a concept, video-on-demand 
(VOD) has yet to make a significant impact on the home 
entertainment market.  One of the reasons behind this state 
of affairs is the high demands that VOD makes on video 
servers.  Videos in MPEG-2 format require the delivery of 
around 5 Mb/s of data per stream.  A video server that 
allocates a separate stream of data to each request requires 5 
Gb/s to accommodate 1,000 concurrent users.   

This situation has led to numerous proposals aiming at 
reducing the bandwidth requirements of VOD services.  
These proposals can be broadly classified into two groups.  
Proposals in the first group are said to be proactive because 
they broadcast each video according to a fixed schedule that 
is not affected by the presence–or absence–of requests for 
that video.  They are also known as broadcasting protocols 
[4, 6, 9, 10]. 

Other solutions are purely reactive: they only transmit 
data in response to a specific customer request.  Unlike 
proactive protocols, reactive protocols do not consume 
bandwidth in the absence of customer requests [1−3, 5, 7, 
8].  Of all reactive protocols, stream tapping is the one that 
has spawned the most variants thanks to its good 
performance and its simplicity. 

Given the reactive nature of stream tapping, previous 
studies of the protocol [1, 2, 8] have relied on discrete 
simulation to evaluate the bandwidth requirements of the 
protocol.  While these studies produced reliable estimates 
of the bandwidth requirements of the numerous protocol 
variants, they did not provide the same wealth of 
information, as analytical solutions would do.  In particular, 
they offered no help in setting the optimal protocol settings. 
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Figure 1: How stream tapping works 

We present the first systematic analytical study of the 
performance of stream tapping with or without partial 
preloading and introduce a new stream tapping protocol 
with batching that caps the bandwidth requirements of the 
protocol at high to very high arrival rates. 

2. STREAM TAPPING 

Stream tapping [1, 2] requires each customer set-top box to 
have a buffer capable of storing at least 10 minutes of video 
data and to be able to receive data at at least twice the video 
consumption rate.  This buffer will allow the set-top box to 
“tap” into streams of data on the server originally created 
for other clients, and then store these data until they are 
needed.  In the best case, clients obtain most of their data 
from an existing stream. 

In particular, stream tapping defines two types of 
streams.  Complete streams read a video in its entirety and 
are the most commonly tapped.  Full tap streams can be 
used if a complete stream for the same video started ∆ ≤  b 
minutes in the past, where b is the size of the client buffer, 
measured in minutes of video data. In this case, the client 
begins receiving the complete stream right away, storing 
the data in its buffer. Simultaneously, it receives a full tap 
stream and uses it to display the first ∆ minutes of the 
video. After that, the client will consume directly from its 
buffer, which will then always contain a moving ∆-minute 
window of the video.   

Clients that can receive data at three times the video 
consumption rate, they can use an option of the protocol 
called extra tapping.  Extra tapping allows clients to tap 
data from any stream on the VOD server, and not just from 
complete streams.  Figure 1 shows some two sample 
customer requests.  Since customer a is the first customer, it 
is serviced by a complete stream, whose duration is equal to 
the duration D of the video. Since customer b arrives ∆b  
 

12371­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006



minutes after customer a, it can share D – ∆b minutes of the 
complete stream and only requires a full tap of duration ∆b 
minutes.   

3. OUR ANALYSIS 

We will focus our study of on the performance of stream 
tapping protocols without extra tapping.   

3.1. Stream tapping 

We consider first stream tapping without extra tapping for a 
video of duration D that is being accessed at a rate λ.  We 
assume that we will restart a new complete stream when-
ever the length of the next full tap exceeds βD where 0 < β 
≤ 1 is a parameter to be determined.  In other words, we 
will wait for an incoming request, start a complete stream 
of duration D, tap this stream over a time interval of dura-
tion βD then restart the process.  During this time interval, 
the server will process an average of λβD requests in addi-
tion to the request that prompted the complete stream.  
Hence the average number of requests sharing the same 
complete stream is 

Dnavg λβ+= 1 . 

Since the lengths of the λβD full tap streams in the group 
will be uniformly distributed over the interval (0, βD], the 
average duration of each of these streams will be equal 
to βD/2.  The total duration of the streams required for 
processing these 1 + λβD requests will thus be 
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Differentiating the above expression with respect to β, we 
obtain 
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the only positive root of which is 
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This solution has the interesting property that 
Tavg(βopt) = βopt D, meaning that the optimal point for 
restarting a new complete stream is reached when the cost 
of the new tap stream becomes equal to the average service 
cost of all previous requests serviced by the current com-
plete stream. 

The average bandwidth requirements BST of the stream 
tapping protocol are then given by multiplying the average 
request service time Tavg by the request arrival rate λ: 

 
D

DD
TB avgST

βλ

λβλ
λ

+

+
==

1

2/)( 22

. (3) 

Fig. 2 displays the bandwidth requirements of the 
stream tapping protocol for a two-hour video when the 
request arrival rate varies between one and one thousand 
requests per hour: the solid line represents the values  
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Fig. 2.  Bandwidth requirements of the stream tapping protocol for 
a two-hour video. 
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Fig. 3.  Fraction of a two-hour video that the client must be able to 
store in order to achieve the best performance at different request 
arrival rates. 

predicted by Eq. (2) while the small circles correspond to 
values obtained by simulating one million requests.  As we 
can, the two techniques reach nearly identical results. 
In addition, we can now estimate how the client buffer size 
βopt D required to minimize the server bandwidth is affected 
by the request arrival rate λ.  As Fig. 3 shows, βopt is a 
monotonically deceasing function of λ: a buffer capable of 
containing 20 percent of the video suffices to achieve opti-
mal performance when λ exceeds 20 requests per hour 
while lower arrival rates require buffers capable of storing 
up to 62 percent of the video.   

3.2. Stream tapping with a small buffer 

We may encounter clients that can only store a fraction βmax 
of each video.  In that case, we need to replace βopt in all the 
previous equations by βeff = min (βmax, βopt).  This will result 
in a significant increase of the server bandwidth whenever 
βmax, is much smaller than βopt.  Returning to Fig. 3, we see 
that the impact of this restriction will mostly affect the per-
formance of the protocol at low arrival rates as βopt rapidly 
decreases when the arrival rate λ increases. 
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3.3. Stream tapping with partial preloading 

Stream tapping with partial preloading [8] requires each 
client to receive and store in its buffer ahead of time the 
first few γD minutes of each video with 0 < γ < 1.  Hence a 
complete stream will only have to transmit the remaining 
(1 − γ)D minutes of the video. 

As before, we will restart a new complete stream 
whenever the length of the next full tap will exceed βD 
where 0 < β ≤ 1 is a parameter to be determined.  The main 
difference is that all requests arriving within γD minutes 
after the request that prompted the complete stream will 
receive all the data they need from the complete stream.  As 
a result, only the requests arriving more than γ minutes after 
the first request but less than γ + β after it will require tap 
streams.  During this time interval, the server will process 
an average of λ(β + γ)D requests.  Hence the average num-
ber of requests sharing the same complete stream is now  

Dnavg )(1 γβλ ++= . 

Since the lengths of the corresponding full tap streams will 
be uniformly distributed over the interval (0, βD), the aver-
age duration of each of these streams will be βD/2.  The 
average request service time is 
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and the derivative of that expression with respect to β has a 
single positive root 
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From Tavg, we can compute the bandwidth require-
ments BSTPP of the stream tapping protocol with partial 
preloading by multiplying the average service time for a 
request by the request arrival rate, obtaining 

 
avgSTPP
TB λ= . (4) 

Fig. 4 displays the bandwidth requirements of the 
stream tapping protocol for a two-hour video when various 
fractions γ of the video is preloaded.  As we can see, partial 
preloading has most impact at high to very high request 
arrival rates.  For instance, preloading the first six minutes 
of a two-hour video reduces the server bandwidth by only 
13 percent when the video is requested 10 times per hour 
but would reduce the same bandwidth by at least 33 percent 
when the request arrival rate exceeds 60 requests per hour. 

3.4. Adding proactive streams 

Like all purely reactive video distribution protocols, stream 
tapping performs much better than proactive distribution 
protocols at low request arrival rates and much worse at 
very high request arrival rates.  As a result, stream tapping 
is especially vulnerable to flash crowds caused by a large 
number of customers suddenly deciding they want to watch 
a specific video, which could overload the server. 

Returning to Fig. 3, we notice the very low values of 
βopt at high arrival rates.  Consider, for instance, a server 
receiving one request per minute for a two-hour video.  Its 
βopt would be close to 0.125, which means that it would  
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Fig. 4.  Bandwidth requirements of the stream tapping protocol for 
a two-hour video when various fractions γ of the video are pre-
loaded. 

restart a complete stream every 15 minutes.  Let us assume 
that (a) customers always watch the video in sequence 
without fast-forwarding and (b) their set-top box can 
receive video data at at least three times the video 
consumption rate.  We could then halve the durations of 
these complete streams by introducing a single proactive 
channel that would continuously repeat the second half of 
the video.  As a result, a client serviced by a tap stream 
would simultaneously receive data from three sources, 
namely, the complete stream it is tapping, its dedicated tap 
stream and the channel broadcasting the last half of the 
video.  The bandwidth requirements of a stream tapping 
protocol with one proactive channel broadcasting the last 
half of the video is then given by 
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As we have shown previously [7], adding more 
proactive streams can further reduce the duration of the 
complete streams.  With two proactive streams, we could 
partition the video into four segments and broadcast three 
of them on the proactive streams.  Adding a third proactive 
stream would then allow us to partition the video into ten 
segments and broadcast nine of them on the proactive 
streams, leaving only the first ten percent of the video to be 
distributed reactively.  Fig. 5 displays the bandwidth 
requirements of the stream tapping protocol for a two-hour 
video and one, two or three proactive streams. 

3.5. Stream tapping with batching 

A simpler solution to this problem is to enforce a maximum 
request service rate λmax of, say, one or two requests per 
minute.  This would mean that a request arriving less than 
1/λmax minutes after the previous request would be delayed 
by at most 1/λmax minutes and that all requests arriving in 
that interval would be serviced by the same server stream. 

Hence, we define the effective request service rate λeff 

as the minimum of the request arrival rate λ and the maxi-
mum request service rate λmax, that is, 

),min( maxeff λλλ =  
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Fig. 5.  Bandwidth requirements of the stream tapping protocol for 
a two-hour video with and without proactive channels. 
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Fig. 6.  Bandwidth requirements of the stream tapping protocol for 
a two-hour video when the request service rate is limited to 20, 30 
or 60 requests per hour. 

As before, we will restart a new complete stream 
whenever the length of the next full tap exceeds βD where 
0 < β ≤ 1 is a parameter to be determined.  The main 
difference is that the λβD requests arriving on the average 
within βD minutes after the complete stream will never 
result in more than λmaxβD service streams.  In addition, 
that complete stream will now be likely to serve more than 
one request whenever λ  > λmax.  As a result, the average 
number of requests sharing the same complete stream will 
now be 

Dnavg λβλλ += )/,1max( max  

and the total duration of the streams required for processing 
these navg requests will be 

2/)2/( 22DDDDDW effeff βλββλ +=+= . 

Hence, the average request service time will be 
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When λ ≤ λmax, λeff is equal to λ, max (1,λ /λmax) is 
equal to one, and Eq. (5) becomes identical to Eq. (1): Since 
our model only considers average cases, it assumes that 
batching does not affect the performance of the protocol as 
long as λ ≤ λmax.  This not true in reality because actual 

request interarrival times fluctuate around their average 
1 /λ  and will occasionally exceed 1/λmax. 

When λ ≤ λmax, Eq. (5) becomes 
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and the derivative of that expression with respect to β has a 
single positive root 
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In that range of request arrival rates, the bandwidth 
requirements BSTB of the stream tapping protocol with 
batching is given by  
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which does not depend on λ. 
Fig. 6 displays the bandwidth requirements of the 

stream tapping protocol with batching for a two-hour video 
and selected values of λmax. 

4. CONCLUSIONS 

We can make three main conclusions from our study of 
stream tapping protocol.  First, the client buffer require-
ments of the stream tapping protocol rapidly decrease when 
the request arrival rate increases.  For instance, a buffer 
capable of containing 20 percent of the video suffices to 
achieve optimal performance when the request arrival rate 
exceeds 20 requests per hour while lower arrival rates 
require buffers capable of storing up to 62 percent of the 
video.  Second, partial preloading can effectively reduce the 
distribution costs of very popular videos but has little or no 
impact on the distribution costs of less popular videos.  
Finally, batching requests at high arrival rates can actually 
cap the bandwidth requirements of the protocol at a reason-
able value. 
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