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ABSTRACT 
    Packet size is one of the most important factors that would affect 
the user-perceived multimedia QoS in the wireless LAN 
environments.  The time-varying channel characteristics make it 
difficult to find the exact relationship between the packet size and 
the throughput and decide an optimal packet size in advance.  
Furthermore, every node would suffer different channel conditions.  
In this paper, we tackle this problem by an optimization approach.  

A context-aware framework is designed to optimize the packet size 
adaptively in order to maximize the throughput.  In this approach 
each node abstracts its specific context via the throughput from the 
time-varying wireless environments.  The obtained throughput 
information is the instantaneous integrated effect of all contexts in 
wireless LAN environments.  This approach adopts neural 
networks to learn the complex nonlinear function between the 
packet size and the throughput and adaptively adjusts the packet 
size.  Simulation results show that out method can cope with the 
time-varying wireless channel conditions and improve the 
perceived QoS of wireless multimedia services. 

1. INTRODUCTION 
    Providing multimedia services over wireless networks is 
challenging because of the time-varying channel characteristics 
and the scarce wireless resources.  Hence it is important to 
optimize the protocols and parameters in order to meet the 
multimedia QoS requirement.  In the error-prone wireless channels, 
the packet size is one of the important factors that would affect the 
user-perceived QoS.  However, deciding an appropriate packet size 
is not a trivial work.  If the packet size is too large, since merely a 
bit error would destroy the whole packet when there is no error 
correction mechanism, the packet success rate would be decreased 
and the throughput is degraded.  If the packet size is too small, the 

headers of the MAC and PHY layer would occupy a large 
proportion of the packet and make the transmission inefficient. 
    Some previous works try to analyze the relationship between the 
packet size and the throughput in 802.11 wireless LAN 
environments.  Bianchi proposes a Markov Chain model to analyze 
the relationship between the throughput and the various parameters, 
including the transmission probability, initial size of the backoff 
window, number of stations, maximum backoff stage, and packet 
size [1].  However, he assumes that the wireless channel is ideal, 
i.e., the transmission is always successful if there is no collision.  
His research results show that the throughput is a monotonically 

increasing function of the packet size, i.e., the larger the packet 
size, the better the throughput.  This assumption is not realistic 
since every node in the wireless channel would suffer different 
error-prone channel conditions.  Yin et al. analyze the performance 
of IEEE 802.11 DCF and consider the effects of several factors, 

including the number of contention nodes, packet size, the 
transmission collision and the packet error probability [2].  
Following this work, they analyze the effects of contention 
window and packet size on the energy efficiency of wireless LANs 
[3].  In their analytical works, all the nodes are assumed to be 
homogeneous with the same channel condition and transmission 
parameters.  This assumption is not realistic in real wireless LAN 
environments.  S. Ci and H. Sharif present an optimal packet size 

predictor in [4].  They derive the mathematical equation of 
throughput, which is a function of the packet size.  By 
differentiating this equation to the packet size and set the result 
equal to zero, the optimal packet size is obtained. 
    In brief, these previous works have some drawbacks that make 
them unsuitable for the packet size optimization problem in 
wireless multimedia environments.  First of all, in order to derive 
the mathematical equation of throughput, these analytical works 
have some simplistic assumptions.  For example, no hidden 
terminal problem, saturated traffic, homogeneous channel 
condition for all nodes, and no interference from other 

communication systems such as Bluetooth.  These assumptions 
make these works unrealistic for real world environments.  
Secondly, these approaches require the knowledge of channel 
conditions which are always changing.  Therefore, the timely 
measurement or estimation of all the necessary factors is another 
challenging problem.  Therefore, it requires other solutions to 
optimize the packet size. 
    In this paper we propose a context-aware approach that adjusts 
the packet size adaptively.  Context means what in the real world is 
captured, which is a subset of what is given in the real world [5].  
Context-awareness provides a way to compensate for the 
abstraction of real-world situations in time-varying environments.  

Instead of measuring or estimating all the parameters in the 
wireless multimedia environments, we adopt the context-aware 
approach to abstract the integrated information, and use this 
information to adjust the packet size.  The abstracted context may 
contain some noise.  Therefore, we adopt neural networks, which 
have been proved to be effective in modeling a system which 
contains some noise.  Our approach adopts on-line training to cope 
with the time-varying channel conditions, and to optimize the 
packet size adaptively based on the gradient information.  
Experiment results show that our method can effectively optimize 
the packet size and maximize the throughput for wireless 

multimedia services. 
    The paper is organized as follows.  In Section 2 we formulate 
the packet size optimization problem and present our context-
aware approach using neural networks.  In Section 3 we present the 
simulation and results to show the effectiveness of our approach.  
Finally, conclusions are given in Section 4. 
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2. THE CONTEXT-AWARE APPROACH USING NEURAL 

NETWORKS 
    In this section we present our context-aware approach to 
maximize the throughput.  First of all, we formulate the packet size 
optimization problem as follows.  Suppose that P is the packet size 
which does not include the headers of MAC and PHY layers.  The 
throughput T is defined as the successfully received amount of data 

normalized to the channel capacity C in a unit of time.  Therefore 
T can also be regarded as the efficiency of the wireless channel.  
Suppose that H is the header size including the MAC and PHY 
headers.  It is also assumed that the propagation time between the 
wireless transmitter and receiver is ignored.  Thus the time needed 
to transmit a packet including the headers is 
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The effective time that transmits useful information is defined as 
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However, for a successful transmission of one packet, it takes 
some ineffective time tineffective, including the DIFS, SIFS, random 
waiting time, RTS/CTS frames, the unavoidable retransmission 
time, and so on [6].  Therefore, the normalized throughput T can be 
expressed in time domain as 
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    There are many factors that would affect tineffective, including the 
packet size, number of nodes, noise, interference, and so on.  

Hence the throughput T also depends on these factors.  If we only 
concentrate on the packet size and set other factors as fixed, the 
throughput T is a complex nonlinear function of the packet size P, 
i.e., T = F(P).  Here comes the problem about how to maximize the 
throughput T based on the optimal packet size P.  We formulate the 
packet size optimization problem as 

( )PFmaxargTmaxargP
PP

optimal == . (4) 

Previous solutions focus on analyzing and obtaining the function 
F(P).  When the analytical formula F(P) is known, solving the 

equation ( ) 0PPF =∂∂  would get the optimal value of P.  However, 

as described above, the throughput T depends on many other 
factors such as the number of nodes, noise, interference, and so on.  
In wireless channels these factors vary greatly with time and it is 
difficult to measure or estimate them.  In other words, F(.) is a 

context-dependent function.  Besides, the previous solutions 
require some simplistic assumptions in order to derive the 
mathematical equation of F(P), as mentioned in Section 1.  These 
assumptions make these works unrealistic for real world 
environments.  Therefore, it requires other solutions to optimize 
the packet size. 
    We propose a context-aware approach that adjusts the packet 
size adaptively.  The contexts in wireless LAN environments, such 
as the number of nodes, the location and moving speed, the 
contention state, noise, and interference, are always changing with 
time.  Furthermore, the contexts encountered by the different nodes 

in the wireless LAN environments are also different.  In our 
context-aware approach each node abstracts its own context via the 
throughput from the wireless environments.  The obtained 
throughput information is the instantaneous integrated effect of all 
contexts in wireless LAN environments.  Assume that at the nth 
time of adjusting, the throughput is T(n) and the packet size is P 
(n).  At the next time of adjusting, the packet size is set as 

( ) ( ) ( )nPnP1nP ∆+=+ . (5) 

The P(n) depends on the gradient of T(n) with respect to P(n), i.e., 
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where  is the adjusting rate.  We use the context information, i.e., 

the local information of T(n), and neural networks learn the 
context-dependent function F(.) and then to obtain the gradient 

( ) ( )nPnT ∂∂ .  Neural networks have been proven to be effective in 

modeling the complex relationship between the input signal and 
the output signal in a noisy circumstance.  We adopt the multilayer 
perceptron (MLP) [7], one of the most popular neural networks, to 
model the relationship between the throughput and the packet size 
and get the gradient.  The back propagation algorithm is used to 
adjust this network and minimize the error between the actual 
response and the desired (target) response.  After the modeling is 
accomplished, the packet size is adjusted based on our modified 

multilayer perceptron and back propagation algorithm. 

Fig. 1. Architecture of a multilayer perceptron with two hidden layers.

i, j, k The indices of the neurons in the different layers of the 

network.  Neuron j is located in the right layer next to neuron i, 
and neuron k is located in the right layer next to neuron j 

n the identification of training patterns 

L The total number of layers.  Layer L means the output layer. 

E(n) the instantaneous sum of error squares 

ej(n) the error signal at the output of neuron j for iteration n 

dj(n) the desired response for neuron j 

yj(n) the function signal appearing at the output of neuron j at 

iteration n 

wji(n) the synaptic weight connecting the output of neuron i to the 

input of neuron j at iteration n 

wji(n) the weight correction applied to the synaptic weight wji(n) 

vj(n) the weight sum of all synaptic inputs plus bias of neuron j at 
iteration n 

fj(.) the activation function of neuron j 

bj(n) the bias applied to neuron j 

 learning rate 

ml the number of nodes in layer l 

T(n) the throughput of the nth training patterns 

P(n) the packet size of the nth training patterns 

Table. 1. The notation used in this paper 

    A multilayer perceptron consists of an input layer, one or more 
hidden layers, and an output layer.  The dashed rectangle of Fig. 1 
shows the architecture of a multilayer perceptron with two hidden 
layers.  The input signal (the packet size in this case) is applied to 
the input layer and propagates through the network layer by layer 
from left to right.  Each arrow in this figure represents an 
adjustable synaptic weight, and each node represents a 

computation neuron.  To ease the detailed description of the 
multilayer perceptron, we first summarize the notation in Table. 1. 
The original back propagation algorithm consists of two passes: a 
forward pass and the backward pass.  In order to adjust the packet 
size, we add the third pass: the adjusting pass.  The details of these 
operations are described in the following paragraphs. 

A. forward pass 
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    The purpose of the forward pass is to get the actual response to 
the specified input signal.  When the signal propagates through a 
synapse, its value is multiplied by the synaptic weight.  The input 
of a neuron is the synaptic weighted sum of the output of its 
previous layer plus the bias.  For example, the input of the jth 
neuron in the lth layer is 

( ) ( ) ( ) ( )nbnynwnv j

m
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ijij
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=

.

(7) 
The input of this neuron is applied to the activation function f j(.).  
Therefore, the output of this neuron is 

( ) ( )( )nvfny jjj = . (8) 

The activation function should be differentiable everywhere.  It is 
usually a linear function or a sigmoid function.  The output of this 
neuron propagates through the network to the next layer, and the 
same operation is performed again.  Finally the signal aggregates 
in the output layer, and the output signal (the throughput) is 
obtained.  During the forward pass the synaptic weights and the 

bias are all fixed. 

B. backward pass 
    The purpose of the backward pass is to adjust the synaptic 
weights and the bias in order to minimize the error between the 
actual response and the desired (target) response.  The 
instantaneous sum of error squares E(n) can be written as 
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where neuron j is an output node.  The back propagation algorithm 
applies a correction wji(n) to the synaptic weight wji(n), which is 

proportional to the gradient ( ) ( )nwnE ji∂∂ .  The correction wji(n) 

is defined by 

( ) ( )
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where  is the learning rate of the back-propagation algorithm and 

j(n) is the local gradient which is defined as ( ) ( )nvnE- j∂∂ .

When neuron j is located in the output layer, it is straightforward to 
compute the local gradient j(n) from its definition.  When neuron j 
is located in the hidden layer, by recursive back-propagation and 
chain rule manners, the back-propagation formula for the local 
gradient j(n) is 

( ) ( )( ) ( ) ( )=
k

kjkjjj n wnnv'fn δδ
(11) 

The bias could be adjusted with the similar manner.  The forward 
pass and the backward pass are executed recursively until E(n) 
falls below some level.  Then the adjusting pass is executed. 

C. adjusting pass 
    The purpose of the adjusting pass is to adjust the packet size in 
order to maximize the responding throughput.  The synaptic 

weights and the bias that have been adjusted well in the backward 
pass are set as fixed in the adjusting pass.  Following we show that 

how to obtain the gradient ( ) ( )nPnT ∂∂  so that the packet size P(n 

+ 1) can be adjusted based on Eq. (5) and (6).  We add a virtual 
input layer to the original architecture of the multilayer perceptron 
as Fig. 1 shows.  The input signal to the virtual input layer is set as 
1.  The activation function of the neuron in this virtual input layer 
is linear.  Therefore, the original input signal (packet size) to the 
input layer is equal to the synaptic weight between the virtual input 
layer and the input layer.  Therefore,  
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Now we calculate the partial derivative similar to the back 
propagation algorithm. 
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where j(n) is the local gradient which is equal to ( ) ( )nvnT j∂∂ .

When neuron j is an output node, it is obvious that j(n) is equal to 
fj’(vj(n)).  When neuron j is located in the hidden layer, j(n) would 
have to be determined recursively.  Assume that neuron k is 

located in the output layer and the neuron j is located in the hidden 
layer which is adjacent to the output layer.  When k(n) is known, 

j(n) can be derived as follows: 

( ) ( ) ( ) ( )( )
=

=
Lm

1k

jjkjkj nv'fn wnn λλ
(14)

Using Eq. (14) recursively can obtain the gradient ( ) ( )nPnT ∂∂ .

Apply this gradient to Eq. (5) and (6), and then the packet size can 
be adjusted adaptively. 
    In order to cope with the time-varying channel conditions, we 
use on-line training and operate the three passes iteratively to 
model the instantaneous (P, T) relationship and optimize the packet 
size. 

D. Considerations on Complexity 
    Our approach requires on-line training to learn the non-linear 
relationship between the throughput and the packet size.  Although 

it leads to additional computing cost, there are some parameters in 
our approach that can be adjusted in order to reduce the complexity 
and to meet the multimedia QoS requirement.  First, each training 
is stopped when one of these two conditions occurs: when the 
mean square error is lower than the pre-defined error threshold, or 
when the number of iteration exceeds the pre-defined maximum 
value.  Therefore, the error threshold and the maximum number of 
iteration can be designed to get the compromise between the 
performance and the complexity.  Secondly, the number of hidden 
layers, hidden nodes and most-recent training patterns would also 
affect the complexity, and they can be designed to reduce the 

complexity while keep the acceptable performance.  Finally, the 
computing process can be implemented on the more powerful 
wireless nodes, such as the access points.  For downlink 
transmissions from the access point to the wireless nodes, the 
access point directly executes the computing process; for uplink 
transmissions from the wireless nodes to the access point, the 
access point executes the computing process based on the 
information provided by the wireless nodes, and sends the 
computing results back to them.  This method is applicable to the 
low computing-power wireless nodes, but the performance may not 
be optimal due to the transmission delay of channel context 

information and computing results. 

3. SIMULATION AND RESULTS 
    In this section we show the simulation results based on two 
simple scenarios.  The packet size is set to be adjusted once every 
time interval t.  The simulation is kept for 100t, i.e., the packet size 
is adjusted for 100 times.  There are two nodes in this wireless 
channel.  The original bit error rate is set as 1e-5.  The training 
patterns are derived from the modified analytical model of 
Bianchi’s work.  In this modified analytical model, we consider 
more factors such as the error-prone channel conditions and the 
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retry limit.  For each time of modeling and adjusting, the most 
recent five (P, T) data sets are adopted as the training patterns.  The 
detailed simulation parameters are shown in Table. 2.  In the first 
scenario, the bit error rate changes from 1e-5 to 4e-5 at 50t in order 
to test the capability of our approach under the time-varying 
channel conditions.  The simulation results are shown in Fig. 2.  In 
this figure we also plot the theoretical curves of (P, T) relationships 

in different channel conditions in order to see that whether our 
approach can adjust the packet size to reach the maximum 
throughput.  In Fig. 2, the packet size is adjusted from the initial 
200 bytes to around 1250 bytes, which is the optimal packet size to 
get the maximum throughput.  At 50t, the channel condition 
changes, and our approach automatically responds to the change.  
The packet size is adaptively adjusted to around 600 bytes, which 
is the optimal packet size to get the maximum throughput in that 
specific channel condition. 
    In the second scenario, the bit error rate is kept in 1e-5, but one 
more node joins in this wireless channel at 50t, and the initial 

packet size is set as 1800 bytes.  The simulation result is shown in 
Fig. 3.  This result also shows that our approach can effectively 
adjust the packet size to the optimal value under time-varying 
channel conditions. 
    We list the performance improvement of our proposed approach 
versus the original transmission without packet size adaptation in 
Table. 3.  The percentages of throughput improvements before and 
after the change of channel conditions are all listed.  These results 
show that no matter what the channel characteristics are, our 
approach can significantly improve the throughput for almost all 
the cases.  This is because that the original transmission without 

packet size adaptation fails to guess an optimal packet size.  Even 
when the original setting of packet size is coincident to be near 
optimal, such as the case of 1800 bytes in scenario 1, its value 
would be out-of-date when the channel conditions vary with time. 

Data rate 

= 1Mbps 

MAC header 

= 34bytes 

DIFS 

= 50µs 

Initial window size 

= 32 

Slot time 

= 20µs 

PHY header 

= 16bytes 

SIFS 

=10µs 

Max. window size 

= 1024 

Learning rate 

= 0.01 

ACK 

= 64bytes 

Propagation delay 

= 1µs 

Increasing factor 

= 2 

# training patterns 

= 5 

# hidden layers 

= 1 

# hidden nodes 

= 4 

Retry limit 

= 5 

Table. 2. Simulation parameters 

4. CONCLUSION AND FUTURE WORK 
    In this paper we present a novel optimization framework under 

the time-varying wireless multimedia environments.  The packet 
size is adaptively adjusted in order to maximize the throughput.  In 
our approach each node abstracts its own context information and 
the neural network is adopted to model the complex nonlinear 
relationship between the throughput and the packet size.  After the 
appropriate modeling, the neural network can be used to optimize 
the packet size.  The supervised learning is kept on-line in order to 
deal with the time-varying channel conditions.  Simulation results 
show that our approach can effectively optimize the packet size 
and maximize the throughput. 
    This optimization framework can be further extended to jointly 

optimize the cross-layer parameters based on the multimedia QoS.  
For example, the modulation and coding schemes in the physical 
layer, and the backoff parameters and retry limit in the MAC layer, 
would affect the multimedia QoS.  Moreover, the delay is also an 
important performance metric that would affect the user-perceived 
QoS other than the throughput.  Our future work is to investigate 
the solutions of this joint optimization problem based on the 
optimization framework. 

Fig. 2. The simulation result for the first scenario.  The bit error rate 

changes from 1e-5 to 4e-5 at 50t.  The initial packet size is set as 200 

bytes. 

Fig. 3. The simulation result for the second scenario.  The number of nodes 

changes from 2 to 3 at 50t.  The initial packet size is set as 1800 

bytes. 

Throughput improvement (%) 
 Initial packet size (Bytes) 

Before After 

200 51.25 30.60 
Scenario 1 

1800 1.40 28.44 

200 51.25 48.84 
Scenario 2 

1800 1.40 1.39 

Table. 3. Throughput improvements of our approach before and after the 

channel condition changes for the two scenarios. 
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