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ABSTRACT

This paper presents a localized coarse-to-fine algorithm for

efficient and accurate pedestrian localization and silhouette

extraction for the Gait Challenge data sets. The coarse de-

tection phase is simple and fast. It locates the target quickly

based on temporal differences and some knowledge on the

human target. Based on this coarse detection, the fine detec-

tion phase applies a robust background subtraction algorithm

to the coarse target regions and the detection obtained is fur-

ther processed to produce the final results. This algorithm has

been tested on 285 outdoor sequences from the Gait Chal-

lenge data sets, with wide variety of capture conditions. The

pedestrian targets are localized very well and silhouettes ex-

tracted resemble the manually labeled silhouettes closely.

1. INTRODUCTION

Gait recognition [2], the identification of individuals in video

sequences by the way they walk, has recently gained signifi-

cant attention. This interest is strongly motivated by the need

for automated person identification system at a distance in

visual surveillance and monitoring applications in security-

sensitive environments such as banks and airports, where other

biometrics such as fingerprint, face or iris information are not

available at high enough resolution for recognition [3]. In

[4], Sakar et al. introduced the HumanID Gait Challenge

problem, providing a set of twelve experiments of increas-

ing difficulty, which examine the impact of five covariates on

performance. The challenge provided the means to measure

progress in the area and various researchers have reported

results on these data sets [4, 5, 6]. However, most of them

are using silhouettes obtained semi-automatically with man-

ual outlining of bounding boxes [4]. In [5], the silhouettes

are extracted automatically but under the assumption that the

paths of the silhouette centroid must be smooth to a second
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degree polynomial. Moreover, the Gait Challenge data sets

include difficult sequences with noise resulting from heavy

shadows, camouflaging effects, other subjects in the scene,

etc. Automatic handling of these difficulties is important to

the advancement of the gait recognition research.

There are a number of background subtraction algorithms

available but most of them are pixel-wise processing [7]. In

[1], a novel background subtraction algorithm using Markov

thresholds is proposed. This method extracts the silhouettes

of moving objects from a stationary background using Markov

random fields (MRF) of binary segmentation variates so that

the spatial and temporal dependencies imposed by moving

objects on their images are exploited. It is shown that their

method produces more accurate and visually appealing sil-

houettes that are less prone to noise and background camou-

flaging effects than traditional per-pixel based methods. Three

MRFs were proposed with increasing complexity. However,

since an annealing procedure is needed, it is a costly and slow

algorithm, especially when applied to high-resolution full size

color sequences, such as those in the Gait Challenge data sets.

In this paper, a coarse-to-fine approach is proposed for au-

tomatic pedestrian localization and silhouette extraction for

the Gait Challenge data sets, where only one pedestrian in the

view field is of interest. The coarse detection phase is simple

and fast to localize the subject roughly and the fine detec-

tion phase applies the background subtraction using Markov

thresholds (BSMT) algorithm [1] to get an accurate estima-

tion of the silhouettes. Domain knowledge (e.g., on the shape

and motion of the pedestrian) is incorporated to produce ro-

bust detection results. Experiments show robust pedestrian lo-

calization results and improved silhouette extraction by eval-

uation against manually labeled silhouettes (as the ground

truth), compared with the methods in [4] and [5].

2. THE PROPOSED ALGORITHM

The proposed pedestrian localization and silhouette extraction

algorithm consists of two phases, as shown in Fig. 1.
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Fig. 1. The coarse-to-fine pedestrian localization and silhou-

ette extraction algorithm.

2.1. Silhouette extraction difficulties

The Gait Challenge data sets are captured under various out-

door conditions. Since they are outdoor data sets, the exis-

tence of other pedestrians, slow-motion of pedestrians, heavy

shadows and flattering construction strips impose significant

difficulties in successful extraction of the pedestrian subject.

Fig. 2 shows some examples of the difficulties.

(a) Heavy shadow. (b) Other subjects in the scene.

(c) Slow motion (eight successive frames shown).

Fig. 2. Examples of difficulties in pedestrian silhouette ex-

traction for the Gait Challenge data sets.

Background subtraction algorithms [7] are commonly used

to generate silhouettes. In [4], bounding boxes around the

moving person are defined semiautomatically in each frame

of a sequence, and silhouettes are then extracted by adaptively

deciding on the foreground and background labels for each

frame by estimating the foreground and background likeli-

hood distributions using the iterative expectation maximiza-

tion (EM) procedure, with Gaussian Mixture Model (GMM)

for the observations. In [5], the walking path is assumed to be

smooth to a second degree polynomial, and bounding boxes

are obtained through repeated robust estimation, with Gaus-

sian model for background modeling. The algorithm pro-

posed in this paper is fully automatic and there is no specific

assumption made regarding the walking path of the pedestri-

ans. Furthermore, successful silhouette extraction by back-

ground subtraction is not always possible, especially for the

first a number of frames (since it takes time to learn the back-

ground model) and in the case of slow motion of the sub-

ject. Thus, pedestrian localization is another objective besides

silhouette extraction so that other algorithms such as model-

based solutions [8] can be applied in the case of silhouette

extraction failure.

2.2. Coarse detection: simple and fast

When a new frame arrives, the proposed algorithm first de-

tects its foreground pixels in a coarse region Rc centered at

the previous fine detection box Bf with an offset of α pixels

at each side.

A gray map M1 is used to record the maximum pixel

differences (across the color channels: red, green and blue).

Foreground pixels F1 are detected by thresholding the simple

frame differences with threshold Td.

If the number of foreground pixels detected exceeds a

threshold Tn1, the spatial distribution of these pixels is ex-

amined. Pedestrian silhouettes to be extracted are large ob-

jects with a roughly rectangular shape. Therefore, the human

subject is localized by searching for a rectangular box enclos-

ing sufficiently large number (Tn2) of foreground pixels F1,

with the left-top corner of the rectangular region being a fore-

ground pixel (in F1) with at least two connected pixels in F1.

All pixels in the rectangular box found are labeled as fore-

ground pixels in F2, resulting in a binary map M2.

Next, a bounding box is obtained for the target pedestrian.

For foreground pixels (F2) in M2, the box width and height

are obtained from the maximum and minimum row and col-

umn indexes and the box center is determined by the centroid

(xc, yc) of the foreground pixels in M2, with pixel frame dif-

ferences in M1 as the weight:

xc =

∑
(x,y)∈F2

x · M1(x, y)
∑

(x,y)∈F2
M1(x, y)

, (1)

yc =

∑
(x,y)∈F2

y · M1(x, y)
∑

(x,y)∈F2
M1(x, y)

. (2)

Through the weighting, the bounding box center is biased to-

wards locations with larger pixel frame differences that are

more confident to be true foreground pixels. A pedestrian typ-

ically results in a box with the height greater than the width,
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thus, only those boxes satisfying this constraint are consid-

ered as valid detection. When both the current detection and

previous detection are valid, the variation in box width and

height, and the changes of the four box side positions are lim-

ited to a small number, since silhouette sizes and positions are

expected to vary gradually in pedestrian walking. The output

of this coarse detection process is a coarse box Bc.

If the current detection is invalid (detection failure), the

current coarse detection box Bt
c is set to Bt−1

c , where the su-

perscript is the time index. This is especially useful when the

cause of detection failure is slow motion of the subject.

2.3. Fine detection: robust and accurate

The outputs of this procedure are the centered fine detection

region Rc
f , the fine detection box Bf , and the silhouette Sf .

The BSMT algorithm is applied to Rf , which is centered

at the detected coarse bounding box Bc, with offset of β pixels

(β < α), to get a raw silhouette Sr. The background model is

updated using the Gaussian mixture model [9], with the pixels

outside Rf considered as all background pixels and the pixels

inside Rf according to the BSMT results.

The resulted silhouette Sr is further processed to obtain

Bf and Sf . The vertical and horizontal projections of Sr are

obtained. From the horizontal projection, the top (minimum

row) and bottom (maximum row) of Bf are determined. Next,

based on connected region analysis of the vertical projections,

the silhouette Sr is separated into clusters, and the fine detec-

tion bounding box Bf of the pedestrian corresponds to the

cluster with the maximum vertical projection. The region Rf

is then horizontally re-centered at the foreground horizontal

centroid of the silhouette Sr to get Rc
f . The final silhouette

extracted Sf is the portion of Sr that is within Rc
f .

2.4. Initial detection

At the beginning of one gait sequence, no knowledge is avail-

able about the subject’s whereabouts. Therefore, for the first a

few frames, the coarse detection procedure is skipped and Rf

is set to be the whole frame in the fine detection procedure

until the number of foreground pixels in the fine detection

box Bf exceeds some threshold (e.g., 50) so that it is confi-

dent that a pedestrian is localized well in the frame. Thus, the

proposed algorithm has a “slow-start” feature.

3. EXPERIMENTAL RESULTS

The proposed algorithm is tested on 285 sequences from the

five Gait Challenge data sets (the gallery and probes B, D,

H and K), with an average of 630 frames in each sequence.

Each frame is a color (RGB) image of size 480 × 720 and

all the following parameters are determined experimentally,

with reference to the recommendations in [1] for background

subtraction. The rectangular box searched in step 2 of the

coarse detection is of size 100 × 50, and α = 100, β = 25,

Td = 15, Tn1 = 100 and Tn2 = 500. The sizes of the bound-

ing boxes (Bc, Bf ) are bounded by a maximum of 250 × 150
and minimum of 100 × 50. The background is modeled by 3

Gaussian mixtures [1, 9], with the weight learning rate set to

0.005 and the Gaussian learning rate set to 0.05. In the BSMT

algorithm, the M1 structure is used, with 30 iterations in the

annealing procedure.

3.1. Pedestrian localization results

Since it takes time to learn the background model, the target

subject is not expected to be localized well at the beginning of

a sequence. Thus, the localization performance is evaluated

on frames after it is confident that the subject is located well,

determined by the number of foreground pixels in the fine

detection bounding box Bf .

On average, approximately 50 frames are needed to local-

ize the pedestrian well (i.e., to gain confidence on the sub-

ject’s whereabouts). Denote the number of foreground pixels

in Sr as Fs and define the dislocation D as

D =
|XRf

cs − WRf
/2|

WRf
/2

, (3)

where X
Rf
cs is the foreground horizontal centroid of Sr (with

the origin at the left top corner of Rf ) and WRf
is the width

of Rf (so that WRf
/2 is the horizontal center of Rf ). An

error is logged if Fs < 50 or D > 0.25 (these threshold val-

ues are determined through visual examination of the results).

Experiments show that only 117 (≈ 0.07%) out of 165, 749
frames are in error. Furthermore, visual examination of the

results (especially frames in error) shows that the pedestrian

subjects are all located well except that in a few frames, some

(mostly lower) portions of the pedestrian bodies are cut and

missing, and sometimes only small portions of the complete

silhouettes can be obtained through background subtraction.

As mentioned before, pedestrian localization in case of

silhouette extraction failure is useful to further processing for

better silhouette extraction, e.g. by employing human body

model [8] and appearance modeling [10, 11, 12].

3.2. Silhouette extraction results

The silhouette extraction performance is evaluated by mea-

suring the resemblance between the extracted silhouettes and

the corresponding manually labeled silhouettes in [13], with

a total number of 10005 frames available. The metric used

measures the ratio of the intersection of the silhouettes to the

union of the silhouettes:

R(A,B) =
A

⋂
B

A
⋃

B
, (4)

where A and B are binary segmentations (silhouettes). This

metric is also called the Tanimoto similarity measure and used

in [4]. The performance comparison is shown in Fig. 3.
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In Fig. 3, number 1 on the horizontal axis represents the

Gallery set and numbers 2 to 5 represent probes B, D, H and

K, respectively. The last number 6 represents the average of

these five sets. The vertical axis represents the average of the

metric (4), measured against the manually labeled silhouettes

in [13]. The figure shows the results obtained by the semi-

automatic methods of USF (USF Semi-Auto), the proposed

coarse-to-fine algorithm (UT Coarse-to-Fine) and the silhou-

ette refinement algorithm of MIT (MIT Sil-Refine). The sil-

houettes for probes H and K are not available for the MIT

Sil-Refine algorithm. The proposed algorithm (UT Coarse-

to-Fine) is observed to have consistently better performance

than the other two methods.

Fig. 3. Performance comparison through resemblance with

the manually labeled silhouettes.

4. CONCLUSIONS AND FUTURE WORK

Recently, gait recognition has attracted much attention for

its potential to surveillance and security applications. The

release of the Gait Challenge data sets provides a common

database for testing and evaluation of gait recognition algo-

rithms. The difficulties in the data sets include noise resulting

from slow motion of subjects, heavy shadow, other moving

subjects and objects in the scene.

This paper proposes a coarse-to-fine automatic pedestrian

localization and silhouette extraction algorithm. The coarse

detection phase quickly locates the subject through frame dif-

ferencing and thresholding. The fine detection phase applies

a robust background subtraction (using Markov threshold) al-

gorithm [1] to get a more accurate detection, with further

post-processing to refine the results. Experiments show that

with localized coarse-to-fine processing, the proposed algo-

rithm achieves robust localization results and the silhouettes

extracted resemble better with the manually labeled silhou-

ettes (ground truth), compared with two algorithms in the lit-

erature.

Future work includes applying human body model such as

the layered deformable model developed recently [8] and ap-

pearance modeling [10, 11, 12] to help silhouette extraction,

especially in detection failure handling.
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