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ABSTRACT
Kernel-based tracking approaches have proven to be more ef-
ficient in computation compared to other tracking approaches
such as particle filtering. However, existing kernel-based track-
ing approaches suffer from the well-known “singularity” prob-
lem. In this paper, we propose a novel object tracking frame-
work to handle this problem by using a control-based observer
design. Specifically, we formulate object tracking as a re-
cursive inverse problem, thus unifying several approaches to
video tracking, including kernel-based tracking, into a con-
sistent theoretical framework. Moreover, we interpret the in-
verse equation as a measurement process and supplement it by
introducing state dynamics as a constraint. The augmented re-
cursive inverse equation forms a state-space model, which is
solved by using a control-based optimal observer. By exploit-
ing observability theory from control engineering, we extend
the current approach to kernel-based tracking and provide ex-
plicit criteria for kernel design and dynamics evaluation. The
tracking performance of our approach has been demonstrated
on both synthetic and real-world video data.

1. INTRODUCTION

Kernel-based tracking [1] has demonstrated its promising per-
formance compared to other tracking approaches such as op-
tical flow and particle filtering due to its much lower compu-
tational cost. However, in video sequences containing “com-
plex” scenes such as scale changes, fast motion, or occlusion
in cluttered scenes, the basic kernel-based tracking approach
suffers from the well-known “singularity” problem in which
the tracked object’s state cannot be uniquely determined from
the observations. This problem usually makes the tracker un-
stable and often results in complete failure.

Kernel-based tracking is achieved by first using a spatially-
weighted color histogram as the object model and then search-
ing its best matches by optimization schemes such as mean
shift [1]. Earlier efforts to handle the “singularity” problem
have focused on both aspects. Collins [2] proposed to use a
scale kernel in addition to the regular spatial kernel presented
in [1] in order to recover object scale changes. Multiple spa-
tially distributed kernels were used to increase the tracker’s
sensitivity by Hager et al. in [3]. Central to their development
is a Newton-style optimization method which has been shown

to be more efficient than mean shift. This approach was fur-
ther developed by Fan et al. in [4] who used multiple kernels
to enhance the “kernel observability” for articulated objects.
They viewed the linear formulation as an observation equa-
tion and expanded it by imposing constraints on the obser-
vations that satisfy the characteristics of articulated objects.
Despite the progress in the use of multiple kernels for object
tracking, the underlying principles of kernel design required
to solve the “singularity” problem remains an open problem.

Implicit in all approaches to object tracking is the solu-
tion to an inverse problem: determine the state of the tracked
object from the observations. The theory of inverse prob-
lems [5] has been applied in many applications. Many ear-
lier efforts in object tracking relied on control theory to pro-
vide a solution. In particular, a state space model representing
the state process and measurement process was hypothesized
based on physical and statistical models. An optimal observer
was used to estimate the state parameters using techniques
such as the Kalman filter [6]. This approach can be viewed as
a maximum-a-posteriori (MAP) estimate of the conditional
density function of the state given the observations. For ex-
ample, a kernel-based target localization integrated with a
Kalman filter has been presented by Comaniciu et al. in [1],
where the system and measurement matrices are assumed to
be known. More recently, particle filters were used to extend
Kalman filters for object tracking by simultaneously tracking
multiple samples of the conditional density function.

Unlike the classical formulation of the observation pro-
cess, a linear observation process is derived from the kernel
equation in [3] and [4]. Implicit in their presentation, al-
though not explicitly stated, is the solution of the linear equa-
tion as an inverse problem. The tracking parameters are es-
timated using a recursive optimization of a cost function in
[3]. This approach is extended by relying on regularization
theory to provide a solution to the constrained linear equation
for articulated objects in [4].

In this paper, we extend the kernel-based approaches by
formulating object tracking as a recursive inverse problem,
thus providing a unified mathematical framework for a class
of methods used for object tracking. Similar to the approach
presented in [4], we view the linear equation as a measure-
ment process. However, in our approach, we introduce the
state dynamics to augment the linear equation and form a
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state-space model. A Kalman filter-based observer is pro-
posed to estimate the state parameters, where the observation
and state transform matrices are dynamically estimated by the
observability analysis. System observability is analyzed by
the theory of linear control and used as an extended criterion
for both kernel design and dynamics evaluation.

2. OBJECT TRACKING AS AN INVERSE PROBLEM

An inverse problem for object tracking can be defined as fol-
lows:

Let xt represent the object’s state (position, velocity, shape
and so on) at time t. The observation (image resource such as
color, edge and so on) at time t is described by the equation

yt = gt(xt), gt : X → Y (1)

where X and Y are Banach spaces and gt is a linear/nonlinear
operator. The inverse problem is to determine the state xt

from observation yt, namely, the inverse of operator g−1
t . The

“singularity” problem discussed in the introduction is also
called “ill-posed” problem in the theory of inverse problem
[5] where if g−1

t does not exist, the solution of equation (1)
can not be uniquely determined.

If gt is nonlinear, it is usually hard to get an analytic solu-
tion of (1). To see the predominance of object’s state, we can
approximate gt by a linear operator. The linearization can be
achieved by dropping higher order terms of Taylor series.

gt(xt) = gt(x0) +
1
2
g′t(x0)(xt − x0) (2)

Thus we have the linear observation equation

ỹt = Ctx̃t (3)

where ỹt = yt − gt(x0), x̃t = xt − x0, and Ct = 1
2g′t(x0).

Since observation yt is noisy due to the measure error,
thus the solution of (1) is also equivalent to the least-square-
error optimization method.

x̂t = arg min ‖ yt − gt(xt) ‖2 (4)

A method deriving a solution to the kernel-based track-
ing problem has been introduced in [3] and reformulated in
[4]. We extend this approach to represent any object track-
ing problem as follows. Consider a cost function for object
tracking,

ρ[qt(x0), pt(xt)] = ‖
√

qt(x0) −
√

pt(xt) ‖
2

(5)

where ‖ · ‖ is the Matusita metric, qt(x0) is object’s prior
model, pt(xt) is a function of candidate object region. For
example, q(·) and p(·) can be feature histogram, template rep-
resentation, or probability density etc. Let yt =

√
qt(x0),

gt =
√

pt(xt), it can be proved that the optimal solution of

cost function (5) is the same as the solution of the linear equa-
tion ỹt = Ctx̃t, where ỹt =

√
qt(x0) −

√
pt(x0), the new

state is x̃t = xt − x0, and Ct = 1
2 (pt(x0))−

1
2 p′t(x0).

When limiting the state as object’s center x = c, and us-
ing a kernel-based color histogram for q(·) and p(·), it be-
comes the Newton-style approach with SSD presented in [3].
In this case, q(c0) = UT K(c0), p(c) = UT K(c), and C =
1
2diag[p(c0)]−

1
2 UT JK(c0)(c − c0) where U is a sifting ma-

trix indicating which object pixel belong to which bins, K is
a vector of the kernel function, JK is the Jacobian matrix of
kernel vector K, and diag[p] represents the matrix with p on
its diagonal.

2.1. Improving the tracking performance by enhancing
the rank of observation transform matrix Ct

Solving the inverse problem of equation (3) is not trivial. The
dimensionality of state and observation is usually different
and thus the matrix Ct is not square. This can be solved
by singular value decomposition [5] which gives a psuedo-
inverse of C. The primary difficulty with “ill-posed” problem
is that the state is undermined due to small (or zero) singular
values of Ct. In other words, if the rank(Ct)< n where n
is the dimensionality of state x̃, then C−1

t does not existed.
To improve the tracking performance, the earlier efforts of
kernel-based approaches [2], [3], [4] can be viewed as en-
hancing the rank(Ct) by the following two ways:

(1) Using multiple kernels to enhance the rank(Ct)
It has been shown in [2], [3] that multiple kernels can im-

prove the tracking performance. But it’s not clear why mul-
tiple kernels work better than only one in theory and how
multiple kernels should be designed. Fan et al. [4] inves-
tigated these issues in the context of articulated object. By
formulating as an inverse problems, now we can answer these
questions more explicitly: M kernels can construct M obser-
vation equations, ym

t = Cm
t xt,m = 1, . . . , M . By different

ways to combine them, rank(C) has potential to be increased.
For example, by stacking as [3], Ct = [C1

t , . . . , CM
t ]T , so

rank(Ct)≥rank(Cm
t ). Thus, the principle of kernel design is

that the additional kernel should help to enhance the rank(Ct).
(2) Tikhonov regularization to enhance the rank(Ct)
A kernel-based method using joint state representation and

a length constraint among states has been presented in [4]
for articulated object tracking. We extend this approach for
any object tracking with constraints by using the well-known
Tikhonov regularization [5]. To cope with the “ill-posed”
problem, additional prior information of the state may allow
us to select the solution from several feasible estimates. As
mentioned, solving the inverse problem can also be viewed as
minimizing a cost function such as (4). Tikhonov regulariza-
tion instead introduces other constraints into the cost function,
for example,

x̂ = arg min{‖ yt − Cxt ‖2 +λ ‖ b − Gxt ‖2} (6)
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where the regularization parameter λ > 0.
By using generalized singular value decomposition, it can

be shown that (6) has the same solution with linear equation
[5],

CT
t yt + λGT b = (CT

t Ct + λGT G)xt (7)

Thus the new observation matrix C̃t = (CT
t Ct + λGT G).

By selecting λ, it is expected rank(C̃t)≥rank(Ct). There-
fore, Tikhonov regularization has the potential to improve the
tracking performance.

As we can see, all the analyzed kernel-based approaches
[2], [3], [4] did not exploit the state dynamics to cope with the
“ill-posed” problem. Although multiple kernels have shown
the efficiency to improve the tracking performance, this solu-
tion is not good enough. In the experiments, we found that
in case of fast motions (in other words, the low frame rate
video) or occlusions, the kernel-based approaches usually still
suffer from the “ill-posed” problem and can not track object
robustly. This further inspired us to formulate object track-
ing as a recursive inverse problem which can include object’s
state dynamics to solve the “ill-posed” problem better.

3. CONTROL-BASED OBSERVER DESIGN FOR
EFFICIENT OBJECT TRACKING

Video tracking can be formulated by a recursive linear in-
verse problem when using the state dynamics. Consider the
stochastic system represented by the state and observation
equations,

xt+1=Atxt + wt (8)

yt=Ctxt + vt (9)

where the system is corrupted by an additive random noise
signal w; and the observation is corrupted by noise v.

When matrix At and Ct are known and noise term wt and
vt are both Gaussian, this system can be solved by Kalman
filter [7]. A method of Kalman filter based tracking approach
was presented in [6]. Comaniciu used this approach with a
kernel-based target model in [1]. In both of them, the trans-
form matrices are assumed to be known and fixed. However,
these conditions are not satisfied for practical video tracking
problems where the state dynamics is usually unknown and
may be time-variant. Different motion estimation techniques
and scene-based prior knowledge can be used to roughly ap-
proximate the dynamics. For example, we can assume A is an
identity matrix according to the inertia. To select the best mo-
tion estimate for handling the “ill-posed” problem, we need a
criterion to evaluate which one can most increase the possi-
bility of uniquely “observing” the state? This inspired us to
introduce the observability theory in control engineering [7].
It has been proved that the observability of a linear system
describe by (8) and (9) can be determined as follows [7]:

Observability Theorem: A system is observable if and
only if its observability matrix Ot has full rank, i.e., rank(Ot)

= n, where Ot = [Ct, CtAt, . . . , CtA
n−1
t ]T ∈ R

pn×n,
At ∈ R

n×n and Ct ∈ R
p×n.

This theorem is consistent with our earlier analysis for
non-recursive inverse problem where the observability matrix
Ot degrades to matrix Ct since there is no state equation at
all in that case. It is obvious that by exploiting state dynam-
ics, rank(Ot)≥rank(Ct), namely the observability of recur-
sive system is not less than the system of (3). Thus, the recur-
sive system can cope with the “ill-posed” problem better than
the approach without state dynamics. Guided by the observ-
ability theorem, we show a paradigm of solving the recursive
inverse problem by a control-based observer.

3.1. A Paradigm of Control-Based Observer

Different from the regular Kalman filter tracking approaches
[1], [6], we use prior knowledge and/or different motion esti-
mation methods to estimate the dynamics, {A1

t , . . . , A
J
t }. At

each time, we select the optimal Aj
t which can make rank(Ot)

highest. It can make the observer have more possibilities to
determine the state uniquely. If several ones have the same
highest rank, we choose the one most similar to the previous
time step. Then the selected Aj

t can construct a Kalman-Bucy
filter and the estimate of state can be given by [7, p.480-495],

x̂t = [I − LtCt]Atxt−1 + Ltyt (10)

where I is the identity matrix, Lt is the filter gain matrix.
We briefly refer to this approach as TUCO (Tracking Using
Control-based Observer).

4. EXPERIMENTAL RESULTS

The performance of the proposed TUCO has been demon-
strated on both synthetic and real-world video sequences. They
are captured by a resolution of 320× 240 pixels with a frame
rate of 30fps. In all the experiments, we use a multiple kernel-
based color histogram similar to MKT-SSD [3] for better com-
parison, which has 10 bins for RGB channels respectively.

The synthetic video has a book moving according to pre-
defined state dynamics in a clutter scene. The changing back-
ground prevents background subtraction from easily object
tracking. We have tested our approach and MKT-SSD [3] on
sequences with original frame rate of 30fps and a lower frame
rate of 10fps where object’s motion becomes much faster.
Fig. 1 presents the tracking trajectories of object’s center. As
we can see, for the 30fps-sequence, although MKT-SSD can
achieve comparably tracking results as our approach for most
part of the sequence, it fails after frame number 332 due to
the “ill-posed” problem. For the 10fps-sequence, MKT-SSD
suffers from the fast motion and loses the object after frame
number 90. However, due to exploiting the state dynamics
and coping the “ill-posed” problem, our approach achieves
more robust performance in both cases. Fig. 2 illustrates the
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Fig. 1. The tracking trajectories of object’s center using our TUCO and
MKT-SSD [3] for the synthetic sequence with different frame rate.

tracking results for the 10fps-sequence where 1st row was im-
plemented by MKT-SSD and 2nd row used our approach.

We further compare the performance of our TUCO to MKF-
SSD [3] and the regular Kalman filter tracking approach (KF)
[1], [6] on a real-world video sequence. It has a crowded
scene presenting various motions and different occlusions.
We use two independent trackers for two pedestrians with re-
markable color features. Two matrices A1 and A2 are used
to estimate the state dynamics where A1 is assumed to be an
identity matrix and A2 is estimated by background subtrac-
tion and object matching. The tracking results are illustrated
in Fig. 3 where we use ellipses of different colors to show
the results of different approaches. As we can see, KF (black)
is helpful to handle the fast motion. But this approach badly
suffers from the background clutter and can not observe the
change of object’s scale. MKT-SSD can handle object’s scale
change and the tracking results are more accurate when there
is no occlusion and fast motion. However, both of them suf-
fer from the “ill-posed” problem and fail to track object ro-
bustly and consistently. Our approach can achieve more ro-
bust tracking results handling both partial occlusion, fast mo-
tion in the crowded scene.

Fig. 2. The tracking results using MKT-SSD [3] (1st row) and our TUCO
(2nd row) respectively.

Fig. 3. Tracking results using KF [1], [6] (black), MKT-SSD [3] (green)
and our TUCO (white) for multiple object tracking in a crowded scene. The
first image is the initial frame.
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