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ABSTRACT

In this work, we model speech samples with the generalized 

Gamma distribution and evaluate the efficiency of such 

modelling for voice activity detection. Using a 

computationally inexpensive maximum likelihood approach, 

we employ the Bayesian Information Criterion for 

identifying the phoneme boundaries in noisy speech. 

1. INTRODUCTION 

A common problem in many areas of speech processing is 

the identification of the presence or absence of a voice 

component in a given signal, especially the determination of 

the starting and ending boundaries of voice segments. In this 

work, we are interested in offline multi-pass voice activity 

detection (VAD) algorithms suitable for speech 

communication applications applications such as automatic 

transcription and speech segmentation. Our goal is to 

implement and evaluate a robust algorithm for noisy 

environments, various classes of noise, and short frames. 

Categorisation of audio signal at a small scale has 

applications to phoneme segmentation and consequently, to 

speech recognition and synthesis. 

The detection principles of conventional VADs are 

usually energy-based approaches, which have been proved 

computationally efficient to such an extent that they allow 

real-time signal processing [1]. Moreover, these methods 

work relatively well in high signal to noise ratios (SNR) and 

for known stationary noise. But in very noisy environments 

the performance and robustness of energy-based voice 

activity detectors are not optimal. Because they rely on 

simple energy thresholds, they are not able to identify 

unvoiced speech segments like fricatives satisfactorily, since 

the latter can be masked by noise. They may also 

misclassify non-stationary noise such as clicking as speech 

activity. Furthermore, they are inefficient in real-world 

recordings where speakers tend to leave “artifacts” 

including breathing/sighing, teeth chatters, and echoes. 

Recently, much research has been done with respect to 

the exploration of the speech and noise signal statistics for 

VAD. Statistical model-based methods typically employ a 

decision rule derived from the likelihood ratio test (LRT) 

applied to a set of hypotheses [2]. These approaches can be 

further improved by incorporating soft decision rules [3] 

and high-order statistics (HOS) [4]. The main disadvantage 

of statistical model-based methods is that they are more 

complicated than the energy-based detectors with respect to 

the computation time and storage requirements, so they have 

a limited appeal in online applications. 

In this paper, we present a statistical model-based 

method for VAD using the generalised version of the 

Gamma distribution, which offers more efficient parametric 

characterisation of the speech spectra than the Gaussian 

distribution (GD). We evaluate the system performance in 

the identification of phoneme boundaries. From the results 

presented in Sect. 5 we attest that the proposed method 

yields significant improvements in noisy environments. 

2. BAYESSIAN INFORMATION CRITERION 

The Bayesian Information Criterion (BIC) is an 

asymptotically optimal method for estimating the best 

model using only an in-sample estimate [5]. It can be 

viewed as a penalized maximum likelihood technique. BIC 

can also be applied as a termination criterion in hierarchical 

methods for clustering of audio segments: two nodes can be 

merged only if this increases the BIC value. 

In BIC, adjacent signal segments are modelled using 

different multivariate GDs while their concatenation is 

assumed to obey a third multivariate GD, as in Fig. 1.  The 

problem is to decide whether the data in the large segment 

fit better a single Gaussian or whether a two-segment 

representation describes it more accurately. A sliding 

window moves over the signal making statistical decisions 

at its middle. The step-size of the sliding window indicates 

the resolution of the system. For the purpose of VAD, we 

need to evaluate the following statistical hypotheses: 

- H0: (x1,x2,...,xB)~N( Z, Z): the data sequence comes from 

one source Z (i.e., noisy speech) 

- H1: (x1,x2,...,xA)~N( X, X) and (xA+1,xA+2,...,xB)~N( Y, Y):

the data sequence comes from two sources X and Y,

meaning that there is a transition from speech utterance 

to silence or vice versa 

where xi are K-dimensional feature vectors in a transformed  

domain such as Mel Frequency Cepstral Coefficients 
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(MFCCs). Let Z,, X,, and Y be the covariance matrices of 

the feature vectors over the complete sequence Z and the 

two subsets X and Y, while A and B-A are the numbers of 

feature vectors in X and Y, respectively. 

Fig.1. Models for two adjacent speech segments. 

Using the log-value of the Generalized Likelihood Ratio 

Test (GLRT), associated with the defined hypothesis test the 

distance between the two segments in Fig. 1 is: 
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where, for example, ( , ; )x xL x  represents the likelihood 

of the sequence of feature vectors X given the multi-

dimensional Gaussian process ( , ; )x xN x . ( , ; )y yL y

and ( , ; )z zL z  can be similarly defined. The variation of 

the BIC value between the two models is given by [6] 
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where P is the penalty for model complexity and  a tuning 

parameter for the penalty factor. Negative BIC values 

indicate that the multi-dimensional Gaussian mixtures best 

fit the data, meaning that t is a change point from speech to 

silence or vice versa. BIC does not involve thresholds, but 

there is still the factor  that depends on the type of analysed 

data and must be estimated heuristically [7]. Also, BIC 

tends to choose oversimplistic models due to the heavy 

penalty on the complexity. Nevertheless, BIC is a consistent 

estimate and various algorithms have extended the basic 

method combining it with other metrics such as Kullback-

Leibler (KL) distance, sphericity tests, and HOS [4], [6]. 

Such a variant of BIC that attempts to deal with some of 

the problems mentioned above is DISTBIC [6]. The 

algorithm performs two steps. First, it uses a distance 

computation to choose the possible candidates for a change 

point. Different criteria such as KL or GLRT can be applied 

to the first step of DISTBIC. In the second step, BIC

values are used in order to validate or discard the candidates 

determined in the first step. 

3. SPEECH DISTRIBUTIONS 

A common assumption for most VAD algorithms that 

operate in the DFT domain is that both noise and speech 

spectra can be modelled satisfactorily by GDs. Using a 

transformed feature space, it is possible to assume that these 

two Gaussian random processes are independent of each 

other and maximum a posteriori estimators can be used to 

determine the signal parameters. Nevertheless, previous 

work in speech processing has demonstrated that Laplacian 

(LD) and Gamma ( D) distributions are more suitable than 

GD for approximating active voice segments for most frame 

sizes [8]. In specific, LD fits well the highly correlated 

univariate space of the speech amplitudes as well as the 

uncorrelated multivariate space of the feature values after a 

Karhunen-Loeve Transformation (KLT) or Discrete Cosine 

Transformation (DCT) [9]. While some reports attest that 

LD offers only a marginally better fit than GD, this is not 

valid when silence segments are absent from the testing [8]. 

The reason is that while clean speech segments best exhibit 

LD or D properties the silence segments are Gaussian 

random processes. [10] have also asserted that LDs and Ds

fit better the voiced speech signal than normal distributions. 

4. DISTBIC USING GENERALIZED GAMMA 

DISTRIBUTION

Our goal is to identify phoneme boundaries without any 

previous knowledge of the audio stream while achieving a 

robust performance under noisy environments. For this 

purpose we propose an improved version of the DISTBIC 

algorithm, DISTBIC- , where the signal is modelled using 

the generalized D (G D) [11]. Considering the 

experimental findings mentioned in Sect. 3 we modify the 

first step of the DISTBIC algorithm by assuming a G D

distribution model for our signal in the analysis windows. 

The G D is an extremely flexible distribution that is 

useful for reliability modelling. It is defined as 
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where (z) denotes the gamma function and , ,  are real 

values corresponding to location, scale and shape 

parameters. GD is a special case for =2 and =0.5, for =1

and =1 it represents the LD, while for =1 and =0.5 it 

represents the common D. The parameter estimation of this 

family of distributions can be achieved using the maximum 

likelihood estimation (MLE) method. Unfortunately, 

estimating the parameters in an analytic way is difficult 

because the MLE results in nonlinear equations. A 

computationally inexpensive online MLE algorithm for 

G D, based on the gradient ascent algorithm, is introduced 

in [12]. The location parameter is numerically determined 

by using the gradient ascend algorithm according to the 

MLE principle. Using a learning factor, we can then re-

estimate the location value that locally maximizes the 

logarithmic likelihood function L, until L convergences. 

Using this value and the data samples, we can determine the 

scale and shape parameters. Given N data 

1 2{ , ,... } Nx x x x of a sample and assuming the data are 

t
X~N( X, X)

1 2 A A+1 A+2 B

A feature vectors B-A feature vectors 

Z~N( Z, Z)

Y~N( Y, Y)
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mutually independent, we iteratively update the following 

statistics over the frame N values 
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updating each time the parameter  as 
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where  is a forgetting factor and  is the learning rate of the 

gradient ascent approach. Using appropriate initial estimates 

for the parameter  (e.g. (1) 1 , which corresponds to GD 

or LD), we can recursively estimate the remaining 

parameters by solving the equations: 

0 2 1( ( )) - log ( ) ( ) - log ( )n n S n S n (9)

1

( )
( )

( )

n
n

S n
(10)

where 0 is the digamma function. The left part of (9) is 

monotonically increasing function of ( )n , so we can 

determine uniquely the solution by having an inverse table. 

The proposed algorithm, DISTBIC- , is implemented in 

two steps. First, we select a sufficiently big sliding window, 

model it and its adjacent sub-segments using G D instead 

of GD, and calculate the distance dR associated with the 

GLRT using (1). Here, as in [9], we are making the 

assumption that both noise and speech signals have 

uncorrelated components in the DCT domain.  Depending 

on the window size, this assumption gives a reasonable 

approximation for their multivariate PDFs using the 

marginals. A potential problem arouses when using MLE 

for short segments but we can relax the convergence 

conditions of the gradient ascend method and still yield 

improved results [11]. Then, we create a distance plot as 

output with respect to time and filter out insignificant peaks 

using the same criteria as [6]. In the second step, using the 

BIC test as a merging criterion, we compute the BIC

values for each change point candidate in order to validate 

the results of the first step. Because small frame lengths 

suggest a GD according to [8] and due to the length 

limitation of the gradient ascend method for G D parameter 

estimation, we can use GDs in this step. 

5. EXPERIMENTS 

In order to evaluate the performance of the proposed 

method, two sets of preliminary experiments on VAD were 

conducted on two different corpora. In the first experiment 

we compare the efficiency of the proposed method using 

samples from the M2VTS audio-visual database [13]. In our 

tests we used 15 audio recordings that consist of the 

utterances of ten digits from zero to nine in French. We 

measured the mismatch between the manual segmentation 

of audio performed by a human transcriber and the 

automatic segmentation. The human error and accuracy of 

visually and acoustically identifying break points were taken 

into account. In the second set of experiments we used 25 

utterances from the TIMIT dataset [14] totalling 100 

seconds of speech time. For both experiments we used the 

same set of parameter values and features (500ms initial 

window, 5ms shift of analysis window, first 12 MFCCs for 

GD, 10 DCTs for G D, =7). White and babble noise from 

the NOISEX-92 database [15] was added to the clean 

speech samples at SNR levels ranging from 20 to 5 dB. 

The detection performance of the system is described by 

precision (PRC) and recall (RCL) rates 

100%     100%
CFC CFC

PRC RCL
DET ACP

(11)

where CFC denotes the number of correctly found changes, 

DET is the number of changes detected by the system, and 

ACP is the actual change points. The overall effectiveness 

of the system can be measured by the F1-measure:

2

1

PRC RCL
F

PRC RCL
(12)

The results of our tests are illustrated in Table 1, 2, 3, and 4. 

For each case, we calculate the average PRC, RCL, and F1

rates over the test samples. Examining the average F1-

measure for each case using a two-sample one-tailed t test 

we see that the DISTIBIC-  performance is superior to 

DISTBIC at a confidence level of 0.05 for every case since 

the t values are larger than the corresponding critical values 

(t0=1.701 for M2VTS and t0=1.677 for TIMIT). The 

improvement is notable especially at low SNR levels. We 

can also indicate the improvement in the recognition of 

unvoiced speech elements. [16] have also used G D

recently for modeling speech and noise in the DFT domain. 

Their LRT-based VAD obtained better results under 

vehicular and office noise than conventional methods. In our

work we have presented a more robust threshold-tuning 

method based on DISTBIC and asserted that we can operate 

in the DCT domain as well with similar success. In both 

works, the improved experimental results over existing GD-

based methods denote the higher representation power of 

the G D.

Table 1. Performance of VAD in M2VTS (voiced phonemes). 

  DISTBIC-  DISTBIC  

Noise SNR PRC RCL F1 PRC RCL F1 t 

(clean) - 76.3 83.5 79.6 71.2 80.8 75.6 4.65 

white 20 73.1 80.4 76.5 68.0 76.5 71.9 5.52 

white 10 72.6 79.6 75.9 67.0 75.7 70.8 6.04 

white 5 68.8 76.5 72.3 61.0 70.2 64.5 9.11 

babble 20 70.4 78.8 74.3 65.0 75.3 69.7 5.52 

babble 10 68.0 75.7 71.6 62.0 71.8 66.3 6.52 

babble 5 65.0 73.3 68.8 57.0 67.5 61.8 8.98 
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Table 2. Performance of VAD in TIMIT (voiced phonemes). 

  DISTBIC-  DISTBIC  

Noise SNR PRC RCL F1 PRC RCL F1 t 

(clean) - 71.4 82.2 76.4 68.4 78.5 73.1 6.57 

white 20 70.7 81.0 75.0 65.0 75.9 70.3 5.68 

white 10 68.0 76.9 72.2 60.7 71.3 66.3 7.31 

white 5 62.9 74.4 68.3 54.5 65.1 60.6 9.84 

babble 20 69.9 79.0 73.5 63.7 73.8 68.4 6.25 

babble 10 67.4 76.9 70.5 57.4 67.7 62.3 9.46 

babble 5 60.9 71.8 66.0 51.0 62.1 56.6 12.3 

Table 3. Performance of VAD in M2VTS (voiced + unvoiced). 

  DISTBIC-  DISTBIC  

Noise SNR PRC RCL F1 PRC RCL F1 t 

(clean) - 73.6 82.9 77.9 68.3 80.4 73.8 4.86 

white 20 72.0 81.4 76.4 66.1 76.8 70.1 6.48 

white 10 68.2 77.3 72.4 63.5 73.2 67.9 5.51 

white 5 64.9 75.0 69.6 57.1 68.1 62.1 9.44 

babble 20 68.3 79.3 73.3 63.8 74.4 68.6 5.75 

babble 10 65.6 75.5 70.2 60.6 70.6 65.2 6.24 

babble 5 61.9 72.3 66.7 54.0 64.7 58.8 10.1 

Table 4. Performance of VAD in TIMIT (voiced + unvoiced). 

  DISTBIC-  DISTBIC  

Noise SNR PRC RCL F1 PRC RCL F1 t 

(clean) - 71.0 81.3 76.3 68.1 77.7 73.1 6.37 

white 20 69.7 80.5 74.9 64.7 75.1 70.3 5.54 

white 10 67.3 77.4 72.4 60.5 71.2 66.3 7.51 

white 5 62.4 72.8 68.3 54.6 65.7 60.9 9.41 

babble 20 68.7 77.7 73.5 62.7 72.7 68.3 6.26 

babble 10 65.2 74.8 70.5 57.5 66.5 63.3 9.06 

babble 5 60.0 71.7 65.6 51.2 61.8 56.7 12.1 

6. CONCLUSIONS 

The identification of phoneme boundaries in continuous 

speech is an important problem in areas of speech synthesis 

and recognition. We have demonstrated that by representing 

the signal samples with a G D we are able to yield 

statistically more significant results than the normal 

distribution for offline 2-step VAD. 
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