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ABSTRACT

Content-based image retrieval (CBIR) systems have been ac-

tively investigated over the past decade. Several existing CBIR

prototypes claim to be designed based on perceptual charac-

teristics of the human visual system, but even those who do

are far from recognizing that they could benefit further by in-

corporating ongoing research in vision science. This paper

explores the inclusion of human visual perception knowledge

into the design and implementation of CBIR systems. Partic-

ularly, it addresses the latest developments in computational

modeling of human visual attention. This fresh way of revis-

iting concepts in CBIR based on the latest findings and open

questions in vision science research has the potential to over-

come some of the challenges faced by CBIR systems.

1. INTRODUCTION

In this paper we consider recent developments in vision re-

search – particularly visual attention – and how they apply

to content-based image retrieval (CBIR). Our fundamental

motivation is the realization that – in spite of more than 10

years of active research in this field – most CBIR research

has primarily approached the problem from a preferred angle,

particularly computer vision, using traditional techniques that

have worked well in the past for problems in related domains.

Since CBIR ultimately caters to the end user and the success

of CBIR solutions hinges on capturing the essence of an im-

age and how relevant it may be to a user’s query, we postulate

that a more detailed study of the latest vision research could

lead to improved results.

2. BACKGROUND AND CONTEXT

2.1. Content-based image retrieval

CBIR is essentially different than the general image under-

standing problem. More specifically, it is usually sufficient
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that a CBIR system retrieves similar – in some user-defined

sense – images, without fully interpreting its contents. CBIR

provides a new framework and additional challenges for com-

puter vision solutions, such as: the large data sets involved,

the inadequacy of strong segmentation, the key role played

by color, and the importance of extracting features and using

similarity measures that strike a balance between invariance

and discriminating power [1].

Ultimately, effective CBIR systems will have overcome

two great challenges: the sensory gap and the semantic gap.

The sensory gap is “the gap between the object in the world

and the information in a (computational) description derived

from a recording of that scene” [1]. The sensory gap is com-

parable to the general problem of vision: how one can make

sense of a 3D scene (and its relevant objects) from (one of

many) 2D projections of that scene. CBIR systems usually

deal with this problem by eliminating unlikely hypotheses,

much the same way as the human visual system (HVS) does,

as suggested by Helmholz and its constructivist followers [2].

The semantic gap is “the lack of coincidence between the

information that one can extract from the visual data and the

interpretation that the same data have for a user in a given sit-

uation” [1]. This problem has received an enormous amount

of attention in the CBIR literature (see for example [3] and

[4]) and is not the primary focus of the paper.

2.2. Vision Science

Vision science is an interdisciplinary field concerned with un-

derstanding how humans see, which considers phenomena of

visual perception, the nature of optical information, and the

physiology of the visual nervous system [2]. Vision science

is a subset of cognitive sciences and shares many of the same

concerns and interests. Of particular importance to this pa-

per and the CBIR research community are the interdependent

aspects of attention, perception, and memory [5].

Among the current research topics in vision science that

may impact CBIR are:

• Attention: Is attention useful to CBIR as it has recently
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been proven to be for object recognition? Can we fac-

tor the results of computational models of human visual

attention into the design of CBIR systems? Which ben-

efits can we expect from doing so? Which types of im-

ages or retrieval needs will be better addressed by this

additional knowledge?

• Perception: CBIR systems must rely on each image’s

raw pixel values as if they contained the truth about how

the image will be perceived by its viewers. Numerous

experiments in vision science – ranging from optical

illusions to inattentional blindness – show that this is

hardly the case, and that the HVS, for the most part,

cannot trust what it sees.

• Memory: Vision science research shows that the hu-

man brain builds different types of memory of visual

events, depending on a number of factors, ranging from

the duration of the stimuli to prior knowledge about the

content of the scene, to the context in which it occurs.

Moreover, the process of visual imagery – the building

of mental images – maps closely to the way a CBIR

user must behave in certain types of queries and there-

fore should be studied in more detail.

• Contextual effects: It has been proven that the per-

ception of a scene or one of its components is strongly

influenced by context information, ranging from recent

stimuli to the expected position of an object within a

scene. How much can CBIR systems learn about con-

textual influences and factor them into the system’s de-

sign?

• Function, category, language, and semantic mean-
ing: CBIR may benefit from looking at the roles played

by perception of function and utility, perception of cat-

egory, category prototypes, organization of categories

into taxonomies or ontologies, and the role of language

and cultural influences.

3. ATTENTION

There are many varieties of attention, but in this paper we

are interested in what is usually known as attention for per-
ception: the selection of a subset of information for further

processing by another part of the information processing sys-

tem. In the particular case of visual information, this can be

translated as “looking at something to see what it is” [5].

It is not possible for the HVS to process an image entirely

in parallel. Instead, our brain has the ability to prioritize the

order the potentially most important points are attended to

when presented with in a new scene. The result is that much

of the visual information our eyes sense is discarded. De-

spite this we are able to quickly gain remarkable insight into

a scene. The rapid series of movements the eyes make are

known as scanpaths [6]. This ability to prioritize our atten-

tion is not only efficient, but critical to survival.

Broadbent states that cognitive processing, including at-

tention, occurs sequentially [7]. Styles clarifies: when a new

stimulus is presented attention is used to select the perceptual

information that is stored in short-term memory. Later this

may be moved to long-term memory [5].

There are two ways attention manifests itself. Bottom-

up attention is rapid and involuntary. In general, bottom-up

processing is motivated by the stimulus presented [5]. Our

immediate reaction to a fast movement, bright color, or shiny

surface is performed subconsciously. Features of a scene that

influence where our bottom-up visual attention is directed are

the first to be considered by the brain and include color, move-

ment, and orientation, among others [8]. For example, we im-

pulsively shift our attention to a flashing light. Complement-

ing this is attention that occurs later, controlled by top-down

knowledge – what we have learned and can recall. Top-down

processing is initiated by memories and past experience [5].

Looking for a specific letter on a keyboard or the face of a

friend in a crowd are tasks that rely on learned, top-down

knowledge.

Both bottom-up and top-down factors contribute to how

we choose to focus our attention. However, the extent of

their interaction is still unclear. Unlike attention that is influ-

enced by top-down knowledge, bottom-up attention is a con-

sistent, nearly mechanical (but purely biological) process. In

the absence of top-down knowledge, a bright red stop sign

will instinctively appear to be more salient than a flat, gray

road. Computational modeling of visual attention has made

the most progress interpreting bottom-up factors that influ-

ence attention whereas the integration of top-down knowl-

edge into these models remain an open problem.

3.1. Computational models of human visual attention

This section discusses several recently-proposed computation-

al models of visual attention.

The Itti-Koch model of visual attention considers the task

of attentional selection from a purely bottom-up perspective,

although recent efforts have been made it incorporate top-

down impulses [8]. The model generates a map of the most

salient points in an image. Color, intensity, orientation, mo-

tion, and other features may be included as features. This map

can be used in several ways. The most salient points can be

extracted and individually inspected. Alternatively, the most

salient regions can be segmented using region-growing tech-

niques [9]. Another option is to use the most salient points

as cues for identifying regions of interest [10]. Navalpakkam

and Itti have begun to extend the Itti-Koch model to incor-

porate top-down knowledge by considering the features of a

target object [11]. These features are used to bias the saliency

map. In other words, if we want to find a red object in a

scene the saliency map will be biased to consider red more
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than other features.

Draper et al. have shown that a simple implementation of

visual attention (in their case, finding corners) can yield pro-

ductive results [12] in the context of a CBIR system. They

have modeled and implemented the expert object recognition
pathway, the part of the brain that is responsible for recogniz-

ing specific objects.

Stentiford also uses a biologically-inspired model of vi-

sual attention for CBIR tasks [13]. It functions by suppress-

ing areas of the image containing colors and shape that are

repeated elsewhere. Flat surfaces and textures are suppressed

while unique objects are given prominence. Regions are mark-

ed as high interest if they possess features not present else-

where. The result is a visual attention map that is similar in

function to the saliency map generated by Itti-Koch.

Machrouh and Tarroux have proposed using attention for

interactive image exploration [14]. Their model uses past

knowledge to modulate the saliency map to aid in object recog-

nition.

Several other computational models of visual attention

have been proposed and are described in [15].

3.2. Attention and similarity

Retrieval by similarity is a central concept in CBIR systems.

Similarity is based on comparisons between several images.

One of the biggest challenges in CBIR is that the user seeks

semantic similarity but the CBIR system can only satisfy sim-

ilarity based on physical features [1].

The notion of similarity varies depending on whether at-

tentional resources have been allocated while looking at the

image. Santini and Jain [16] distinguish pre-attentive similar-

ity from attentive similarity: attentive similarity is determined

after stimuli have been interpreted and classified, while pre-

attentive similarity is determined without attempting to inter-

pret the stimuli. They postulate that attentive similarity is lim-

ited to the recognition process while pre-attentive similarity is

derived from image features [16].

Their work anticipated that pre-attentive (bottom-up) sim-

ilarity would play an important role in general-purpose image

databases before computational models of (bottom-up) visual

attention such as the ones described in Section 3.1 were avail-

able. For specialized, restricted databases, on the other hand,

the use of attentive similarity could still be considered ade-

quate, because it would be equivalent to solving a more con-

strained recognition problem.

3.3. Attention, perception and context

Perception is sensory processing [5]. In terms of the visual

system, perception occurs after the energy (light) that bom-

bards the rods and cones in the eyes is encoded and sent to

specialized areas of the brain. Perceptual information is used

throughout to make important judgements about the safety of

a scene, to identify an object, or to coordinate physical move-

ments.

“Although the perceptual systems encode the environment

around us, attention may be necessary for binding together the

individual perceptual properties of an object such as its color,

shape and location, and for selecting aspects of the environ-

ment for perceptual processes to act on” [5].

In a limited variety of tasks, such as determining the gist

of a scene, perception can occur without attention [17]. How-

ever, for most other cases, attention is a critical first step in

the process of perception.

Perception is not exclusively based on what we see. What

we perceive is also a direct result of our knowledge and what

we expect to see [18]. Many research studies have shown that

the perception of a scene or the recognition of its components

is strongly influenced by context information.

Two of the most notable ways by which the influence of

context can be perceived are the influence of recent stim-

uli (priming) and the expected position of an object within

a scene. In a classic experiment, Palmer [19] showed that

participants were more successful in identifying objects when

these were preceded by brief visual presentation of a context-

appropriate scene, than if no scene was shown. For exam-

ple, because of their shape similarities, when preceded by a

picture of a kitchen table laid for breakfast, a US mailbox

was identified as a loaf. In another classic experiment, Bie-

derman [20] showed that subjects took longer to find a given

target object in a randomly rearranged scene in which the ob-

ject’s positions did not match the users’ expectations (e.g., a

hydrant placed on top of a mailbox).

Even on a visual level (no semantics involved), the con-

text in which an object of interest appears may influence our

perception of it. An example is the simultaneous contrast ef-

fect – in which a gray object is perceived as darker or brighter

depending on the surrounding background – and some of its

variants (e.g., the Benary cross and White’s illusion).

3.4. Global and local influences on attention

When we attend to a visual object we do so at different levels.

Research by Navon [21] concluded that attention is directed to

coarse-grained global properties of an object prior to analysis

of fine-grained local details. A few years later, Stoffer [22]

suggested that attention not only has to change spatial extent,

but also has to change between representational levels. Stoffer

suggests that the global level is usually attended to first but an

additional step is required to reorient attention to the local

level of representation.

4. CONCLUSION

The HVS is proof that in the majority of cases only a frac-

tion of a scene must be attended to in order to make sense of
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the entire scene. CBIR systems, armed with the same facil-

ity, would be able to give more weight to salient parts of an

image. To a human it would be both impractical and naive to

study all parts of an image equally. Not only is the knowl-

edge gained from studying non-salient features incremental,

it distracts from the true meaning of the image.

CBIR systems will benefit by incorporating knowledge of

human visual attention and perception. Attention can serve as

a guide to portions of an image that require more specialized

processing. Certain parts of an image contain more meaning

than others. Using a model of perception would allow CBIR

systems to analyze images in a fashion that is more intuitive

to the user.

We expect that some of the ideas proposed in this paper

will stimulate interest and awareness of the potential of in-

corporating knowledge of human visual perception research

– which has been mostly overlooked and still has a number

of open problems of its own – into the design of better CBIR

systems.

In the future we expect that a further study of other com-

ponents of vision science will yield similarly productive re-

sults. In particular, perception, memory, contextual effects,

and semantic meaning hold promise for further study.
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