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ABSTRACT 

This paper presents a new spatio-temporal motion 

estimation algorithm for video coding. The algorithm is 

based on optimization theory and consists of the strategies 

including 3D spatio-temporal motion vector prediction, 

modified one-at-a-time search scheme, and multiple update 

paths. The simulation results indicate our algorithm is better 

than other recently proposed ones under the same 

computational budget and is very close to full search. The 

low-cost feature and regular demand of computational 

resource make our algorithm suitable for VLSI 

implementation. The algorithm also makes single chip 

solution for high-definition coding feasible.  

1. INTRODUCTION 

Motion estimation (ME) produces motion vectors (MV’s), 

which indicate the potential scene displacement, and thus 

removes the temporal redundancy for video compression. 

The video coding standards, such as MPEG-2 and H.264, 

adopt block-based motion estimation. The traditional coding 

standards perform ME on each 16x16 block, whereas recent 

popular coding standard, H.264, supports variable block 

size motion estimation (VBSME), which further enhances 

the coding efficiency.  

ME demands much more computation than other 

modules in video encoders, making it the most crucial 

module. To reduce the complexity, sub-optimal solutions 

generally sacrifice the coding efficiency and save the 

complexity. The quality of ME algorithm directly affects 

chip area, power consumption, bus bandwidth, and the 

coding efficiency of encoders. Research of decades focuses 

on reducing the complexity of ME and maintaining the 

performance as much as possible. Comprehensive surveys 

are available in [1][2]. 

Intuitively, the algorithm that gives the best 

performance is to evaluate every search position in the 

predefined search range. This algorithm is full search (FS) 

[3]. Although this method finds the MV with the minimum 

distortion, the extremely high complexity raises difficulty in 

hardware implementation and is almost impossible to code 

high-definition (HD) video sequences with single chip.  

In our previous work, we introduced a 3D recursive 

motion estimation algorithm and its architecture [4]. In this 

paper, we propose a ME algorithm in the 3D spatio-

temporal sense by exploiting the optimization theory. We 

also propose a modified one-at-a-time search (OTS), which 

achieves fast convergence and saves computational resource. 

Multiple update paths are also the essence of our algorithm, 

providing good matching performance. We tested our 

algorithm against others with several critical test sequences 

and verified the low cost and high performance 

characteristics of our algorithm. The algorithm design is 

coherent with the corresponding architecture and is suitable 

for VLSI implementation.  

2. THE PROBLEM OF ME AND ITS SOLUTION 

The assumptions in deriving the simplified ME algorithms 

include: 1) rigid translation of objects; 2) Only one object in 

a block; 3) unimodal error function. These assumptions are 

very helpful to reduce the complexity of ME algorithms.  

Unfortunately, the video sequences in real world contain the 

following imperfection:  1) occlusion on objects and picture 

boundaries; 2) image deformation; 3) multi-objects in a 

block; 4) multi-modal in the error function of ME. FS 

outperforms other algorithms upon the fourth problem. The 

complexity-reduced ME algorithms commonly suffer from 

being trapped into local minimum. Spatio-temporal-styled 

algorithms overcome this difficulty by searching with good 

initial points, which are predicted by spatial and temporal 

neighboring blocks, along with some update scheme. 

Unfortunately, problems remain under inconsistent MV 

fields especially at rapidly changed motion. There is no clue 

to jump to the global minimum far away from the current 

search center. Several peaks in the error function usually 

exist on between the search center and the global optimum, 
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and thus block the update scheme from moving to the global 

optimum location. The occlusion problem is solved more 

efficiently by bidirectional ME instead of FS. Limited by 

the currently prevailing ME model of coding convention, 

the deformation and multi-objects cannot be modeled by 

more than two parameters, yet the problem can be solved 

elegantly by VBSME. Therefore, the principle objective of 

general simplified algorithms should be the robustness 

under fast motion or scenes with multi-modal error function.  

The spatial-temporal predicted ME algorithm is 

considered to be the most efficient approach in producing 

accurate MV’s with quite simple computation. To remain 

robust under fast motion scenes, more clues are helpful to 

start with the best initial point. Hence, we inspected the 

property of video objects and obtained an important 

phenomenon. As illustrated in Fig.1, consider a rigid object 

traveling through block A, block B, and block C in the 3D 

motion trajectory. Due to the very short interval of time 

between successive pictures, the movement is assumed to be 

very regular. In this case, MV prediction from the co-

located block D gives no help. On the contrary, the MV of 

block C is predicted from that of block B. The small 

fluctuation in velocity can be compensated by the 

subsequent update scheme. The temporal MV’s from the 

enlarged prediction window give a key to jump to the global 

minimum of fast motion, which is the hardest problem in 

ME. This strategy benefits the prediction of inconsistent fast 

motion, which can be hardly predicted from traditional 

prediction manners. To design our ME algorithm from this 

observation, all of the temporal blocks within the search 

range are possible to be the candidates of initial search 

center. 

3. PROPOSED ALGORITHM 

Our proposed algorithm consists of spatio-temporal MV 

prediction, prioritized candidate list generation, modified 

OTS strategy, and multiple update paths. Each step is 

explained in the following. 

First, a set of initial candidates are predicted from the 

spatio-temporal neighbors. These candidates include CZ, CS,

and CT, where the suffixes respectively denote zero, spatial, 

and temporal prediction. CZ is the zero MV, which is 

important for stationary background. CS are the MV’s of 

immediate left and immediate top blocks. Adding the 

prediction of immediate top-right MV did not help much 

according to our experiment and it was hence discarded. 

These two spatially predicted MV’s possess the highest 

correlation over other prediction blocks [2]. The spatially 

right and bottom MV’s are unavailable due to causality. CT

are temporally predicted from all blocks within the search 

range in the reference picture. From the optimization’s 

perspective, the key idea in the 3D spatio-temporal 

prediction is that extensive computation is reduced since we 

start the updating process from the highly correlated 

neighboring spatial and temporal blocks, which contain the 

results of optimization on error functions already minimized 

to a certain extent.  

In the second stage, the candidates predicted in the 

first stage are sorted for further update.  The most precious 

and expensive resource in ME is the SAD calculation and 

bus access, which need to be controlled and saved very 

carefully. The first stage produces more candidates than 

conventional methods to achieve good performance under 

formidable cases. Under frequently occurring stationary 

background and smooth motion field, it is not cost effective 

to compute the SAD of duplicate candidates. Hence, every 

incoming candidate from the first stage is compared with the 

candidate arrived earlier and is eliminated in case of 

duplication. The great amount of temporal candidates 

should also be filtered such that irrelevant prediction is 

eliminated and more search steps are saved for other update 

paths. The farther the temporal prediction block is from the 

center, the larger motion vector it should have. Otherwise 

this prediction is not considered. After the candidate 

filtering, every surviving candidate is then evaluated for its 

SAD and sorted. The smaller the SAD is, the more likely 

the candidate could be the final solution. We have to update 

the candidate earlier with limited computational resource. 

In the third stage, the update strategy refines the initial 

MV candidates as shown in Eq. 1.  
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We propose a modified OTS by exploiting the local gradient 

of error function. Traditional OTS [5] initially tests the two 

points next to the search center in opposite directions at the 

same time, which is not efficient from the local gradient’s 

point of view. Hence, we propose to explore exact one of 

the following update directions at a time. 
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Fig. 1. 3D motion trajectory for motion prediction 
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The update engine randomly picks an update direction as d(k) 

and evaluates the SAD of x
(k+1). The random pick avoid 

update biasing and can be implemented with linear feedback 

shift register. Smaller SAD manifests the fitness of the 

selected direction and we accordingly disable the opposite 

direction, which is supposed to be the ascent direction, from 

being chosen later on. Otherwise we disable the current 

direction and the opposite direction is possibly a descending 

direction. The update process continues until all of the four 

update directions are disabled or the search point touch the 

boundaries of search range. Furthermore, a lookup table is 

responsible for keeping the SAD of MV’s in order to avoid 

SAD recalculation in the update stage. 

The overall ME process is depicted in Fig. 2. The 

sorted MV candidates are placed in the priority queue and 

updated independently. The update steps that follow a 

certain candidate make up an update path. Whenever an 

update path is terminated, the MV and SAD are kept for 

final decision and the optimization process moves to the 

next candidate. Various lengths of update paths correspond 

to different numbers of update steps. Since hardware design 

looks for regularity, we setup a maximum number of search 

points (MNSP) for a block. ME for a block completes as 

soon as all of the update paths are evaluated or the MNSP is 

run out. The final MV is chosen among  

{MV(Pi)|i=1,2, …, n}                                 (3) 

with the smallest SAD.  

The overhead of our algorithm lies in the irregular 

MV matching, which seems to place extra burden on bus 

bandwidth. In practice, the bus bandwidth requirement is 

greatly reduced as a result of significant reduction of search 

steps. The update scheme also results in the spatial locality 

of memory access. Hence the data reusability is quite high. 

Sorting operation can be easily solved by conditioned shift 

registers and will not cause problems in hardware design. 

4. SIMULATION RESULTS 

We analyzed the cost and performance of the algorithms 

considered in this paper from the hardware’s viewpoint. We 

first determined the MNSP per block for our algorithm. The 

MNSP per block with good compromise between cost and 

performance is 20 for CIF sequences and 35 for HD 

sequences. This implies that the complexity of our algorithm 

in terms of search step is 0.107% to 0.977% of that in FS. 

To validate the performance of our algorithm, it is compared 

to FS, and two recently proposed algorithms, namely, 

adaptive irregular pattern search (AIPS) [6], and enhanced 

hexagonal search (EHS) [7]. The search steps of AIPS and 

EHS vary from blocks to blocks and are not suitable for 

hardware implementation. Hence we slightly modified AIPS 

and EHS so as to make their MNSP the same as ours and 

left FS unchanged. The MNSP of all algorithms are shown 

in Table I. We excluded the video coding engine and 

calculated the PSNR alone so that the performance of 

various algorithms is directly observed by qualitative 

analysis.

Table II shows the setup of our simulation. The 

algorithms were simulated on several sequences and the 

results of those highly vivid sequences, including Foreman, 

Stefan, Vectra color, Silent, Highway, Pedestrian area, and 

Traffic, are favored to differentiate the performance of the 

algorithms. To eliminate the interference of occlusion on the 

picture boundaries, MV’s over picture boundaries are 

permitted in our simulation. This feature is supported by 

modern coding standard H.264. 

Table III shows the simulation results in terms of 

PSNR. Our computational budget is the same as that of 

AIPS and EHS. However, our matching performance is 

obviously better than that of AIPS and EHS. If we further 

inspect the PSNR difference frame by frame as shown in 

Fig 3, the PSNR difference of ours and EHS can go up to 

5dB in the sequence “Stefan”. Although FS achieves the 

best matching result, a great deal of computation is further 

interpreted as bus bandwidth and power consumption in 

hardware, making FS in HD application almost infeasible. 

Table II 

Simulation Setup 

Items Setting 

block size 16x16 

horizontal search range (CIF) [-32,32) 

vertical search range (CIF) [-16,16) 

horizontal search range (HD) [-128,128) 

vertical search range (HD) [-64,64) 

PSNR calculation without residue 

MV over picture boundaries valid 

Table I 

Number of Search Steps 

Algorithm Resolution Search Steps

CIF 2048FS 

HD 32768

CIF 20Ours, AIPS, EHS

HD 35

Priority 

Candidate list       C1     C2        C3   ………..……      Cn

Update process 

(Update paths) 

Fig. 2. Illustration of overall algorithm 

MV(P1)

MV(P2)

MV(P3)
MV(Pn)

Highest Lowest
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Fig  3. Frame-by-frame PSNR comparison of Stefan 

Table III 

Average PSNR of the Algorithms

Sequences Algorithms Average 

PSNR(dB)

PSNR

Drop(dB)

Ours 32.11 -0.41

FS 32.52 0

AIPS 31.89 -0.63

Foreman  

352x288@30fps 

 300 frames 

EHS 31.87 -0.65

Ours 25.42 -0.31

FS 25.73 0

AIPS 25.26 -0.47

Stefan 

352x288@30fps 

300 frames 

EHS 24.67 -1.06

Ours 26.73 -0.44

FS 27.17 0

AIPS 26.39 -0.78

Vectra color 

352x288@30fps 

142 frames 

EHS 26.05 -1.12

Ours 35.61 -0.52

FS 36.13 0

AIPS 35.22 -0.91

Silent 

352x288@30fps 

300 frames 

EHS 35.43 -0.7

Ours 35.28 -0.7

FS 35.98 0

AIPS 34.58 -1.4

Highway 

352x288@30fps 

300 frames 

EHS 34.82 -1.16

Ours 35.05 -0.69

FS 35.74 0

AIPS 34.44 -1.30

Pedestrian  area
1920x1080@30fps

375 frames 

EHS 34.26 -1.48

Ours 32.79 -0.16

FS 32.95 0

AIPS 32.45 -0.50

Traffic 
1920x1080@30fps

480 frames 

EHS 32.37 -0.58

5. CONCLUSION 

In this study, we present a new spatio-temporal ME  

algorithm based on optimization theory. The uniqueness of 

our algorithm includes: 1) low cost implementation against 

FS; 2) special spatio-temporal MV prediction with large 

temporal reference window; 3) maximum likelihood 

selection for predicted candidates; 4) modified one-at-a-time 

search for update; 5) multiple update paths; 6) scalable 

complexity for various application; 7) suitable for hardware 

implementation; 8) better matching performance in terms of 

PSNR than other recently proposed algorithms under the 

same computational budget. 
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