
A 3D SPATIO-TEMPORAL MOTION ESTIMATION ALGORITHM FOR

VIDEO CODING

Gwo Giun Lee, Ming-Jiun Wang, He-Yuan Lin, Drew Wei-Chi Su, and Bo-Yun Lin

Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

{ clee, n2894155, n2894157, n2693238, n2694447}@mail.ncku.edu.tw

ABSTRACT

This paper presents a new spatio-temporal motion

estimation algorithm for video coding. The algorithm is

based on optimization theory and consists of the strategies

including 3D spatio-temporal motion vector prediction,

modified one-at-a-time search scheme, and multiple update

paths. The simulation results indicate our algorithm is better

than other recently proposed ones under the same

computational budget and is very close to full search. The

low-cost feature and regular demand of computational

resource make our algorithm suitable for VLSI

implementation. The algorithm also makes single chip

solution for high-definition coding feasible.

1. INTRODUCTION

Motion estimation (ME) produces motion vectors (MV’s),

which indicate the potential scene displacement, and thus

removes the temporal redundancy for video compression.

The video coding standards, such as MPEG-2 and H.264,

adopt block-based motion estimation. The traditional coding

standards perform ME on each 16x16 block, whereas recent

popular coding standard, H.264, supports variable block

size motion estimation (VBSME), which further enhances

the coding efficiency.

ME demands much more computation than other

modules in video encoders, making it the most crucial

module. To reduce the complexity, sub-optimal solutions

generally sacrifice the coding efficiency and save the

complexity. The quality of ME algorithm directly affects

chip area, power consumption, bus bandwidth, and the

coding efficiency of encoders. Research of decades focuses

on reducing the complexity of ME and maintaining the

performance as much as possible. Comprehensive surveys

are available in [1][2].

Intuitively, the algorithm that gives the best

performance is to evaluate every search position in the

predefined search range. This algorithm is full search (FS)

[3]. Although this method finds the MV with the minimum

distortion, the extremely high complexity raises difficulty in

hardware implementation and is almost impossible to code

high-definition (HD) video sequences with single chip.

In our previous work, we introduced a 3D recursive

motion estimation algorithm and its architecture [4]. In this

paper, we propose a ME algorithm in the 3D spatio-

temporal sense by exploiting the optimization theory. We

also propose a modified one-at-a-time search (OTS), which

achieves fast convergence and saves computational resource.

Multiple update paths are also the essence of our algorithm,

providing good matching performance. We tested our

algorithm against others with several critical test sequences

and verified the low cost and high performance

characteristics of our algorithm. The algorithm design is

coherent with the corresponding architecture and is suitable

for VLSI implementation.

2. THE PROBLEM OF ME AND ITS SOLUTION

The assumptions in deriving the simplified ME algorithms

include: 1) rigid translation of objects; 2) Only one object in

a block; 3) unimodal error function. These assumptions are

very helpful to reduce the complexity of ME algorithms.

Unfortunately, the video sequences in real world contain the

following imperfection: 1) occlusion on objects and picture

boundaries; 2) image deformation; 3) multi-objects in a

block; 4) multi-modal in the error function of ME. FS

outperforms other algorithms upon the fourth problem. The

complexity-reduced ME algorithms commonly suffer from

being trapped into local minimum. Spatio-temporal-styled

algorithms overcome this difficulty by searching with good

initial points, which are predicted by spatial and temporal

neighboring blocks, along with some update scheme.

Unfortunately, problems remain under inconsistent MV

fields especially at rapidly changed motion. There is no clue

to jump to the global minimum far away from the current

search center. Several peaks in the error function usually

exist on between the search center and the global optimum,

7411­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

and thus block the update scheme from moving to the global

optimum location. The occlusion problem is solved more

efficiently by bidirectional ME instead of FS. Limited by

the currently prevailing ME model of coding convention,

the deformation and multi-objects cannot be modeled by

more than two parameters, yet the problem can be solved

elegantly by VBSME. Therefore, the principle objective of

general simplified algorithms should be the robustness

under fast motion or scenes with multi-modal error function.

The spatial-temporal predicted ME algorithm is

considered to be the most efficient approach in producing

accurate MV’s with quite simple computation. To remain

robust under fast motion scenes, more clues are helpful to

start with the best initial point. Hence, we inspected the

property of video objects and obtained an important

phenomenon. As illustrated in Fig.1, consider a rigid object

traveling through block A, block B, and block C in the 3D

motion trajectory. Due to the very short interval of time

between successive pictures, the movement is assumed to be

very regular. In this case, MV prediction from the co-

located block D gives no help. On the contrary, the MV of

block C is predicted from that of block B. The small

fluctuation in velocity can be compensated by the

subsequent update scheme. The temporal MV’s from the

enlarged prediction window give a key to jump to the global

minimum of fast motion, which is the hardest problem in

ME. This strategy benefits the prediction of inconsistent fast

motion, which can be hardly predicted from traditional

prediction manners. To design our ME algorithm from this

observation, all of the temporal blocks within the search

range are possible to be the candidates of initial search

center.

3. PROPOSED ALGORITHM

Our proposed algorithm consists of spatio-temporal MV

prediction, prioritized candidate list generation, modified

OTS strategy, and multiple update paths. Each step is

explained in the following.

First, a set of initial candidates are predicted from the

spatio-temporal neighbors. These candidates include CZ, CS,

and CT, where the suffixes respectively denote zero, spatial,

and temporal prediction. CZ is the zero MV, which is

important for stationary background. CS are the MV’s of

immediate left and immediate top blocks. Adding the

prediction of immediate top-right MV did not help much

according to our experiment and it was hence discarded.

These two spatially predicted MV’s possess the highest

correlation over other prediction blocks [2]. The spatially

right and bottom MV’s are unavailable due to causality. CT

are temporally predicted from all blocks within the search

range in the reference picture. From the optimization’s

perspective, the key idea in the 3D spatio-temporal

prediction is that extensive computation is reduced since we

start the updating process from the highly correlated

neighboring spatial and temporal blocks, which contain the

results of optimization on error functions already minimized

to a certain extent.

In the second stage, the candidates predicted in the

first stage are sorted for further update. The most precious

and expensive resource in ME is the SAD calculation and

bus access, which need to be controlled and saved very

carefully. The first stage produces more candidates than

conventional methods to achieve good performance under

formidable cases. Under frequently occurring stationary

background and smooth motion field, it is not cost effective

to compute the SAD of duplicate candidates. Hence, every

incoming candidate from the first stage is compared with the

candidate arrived earlier and is eliminated in case of

duplication. The great amount of temporal candidates

should also be filtered such that irrelevant prediction is

eliminated and more search steps are saved for other update

paths. The farther the temporal prediction block is from the

center, the larger motion vector it should have. Otherwise

this prediction is not considered. After the candidate

filtering, every surviving candidate is then evaluated for its

SAD and sorted. The smaller the SAD is, the more likely

the candidate could be the final solution. We have to update

the candidate earlier with limited computational resource.

In the third stage, the update strategy refines the initial

MV candidates as shown in Eq. 1.
)()()1(k

k

kk
dxx (1)

We propose a modified OTS by exploiting the local gradient

of error function. Traditional OTS [5] initially tests the two

points next to the search center in opposite directions at the

same time, which is not efficient from the local gradient’s

point of view. Hence, we propose to explore exact one of

the following update directions at a time.

)1,0(),0,1(),1,0(),0,1((2)

 picture n-2 picture n-1 picture n

Fig. 1. 3D motion trajectory for motion prediction

A

B

CD

MVC

MVB
Search

range

742

The update engine randomly picks an update direction as d(k)

and evaluates the SAD of x
(k+1). The random pick avoid

update biasing and can be implemented with linear feedback

shift register. Smaller SAD manifests the fitness of the

selected direction and we accordingly disable the opposite

direction, which is supposed to be the ascent direction, from

being chosen later on. Otherwise we disable the current

direction and the opposite direction is possibly a descending

direction. The update process continues until all of the four

update directions are disabled or the search point touch the

boundaries of search range. Furthermore, a lookup table is

responsible for keeping the SAD of MV’s in order to avoid

SAD recalculation in the update stage.

The overall ME process is depicted in Fig. 2. The

sorted MV candidates are placed in the priority queue and

updated independently. The update steps that follow a

certain candidate make up an update path. Whenever an

update path is terminated, the MV and SAD are kept for

final decision and the optimization process moves to the

next candidate. Various lengths of update paths correspond

to different numbers of update steps. Since hardware design

looks for regularity, we setup a maximum number of search

points (MNSP) for a block. ME for a block completes as

soon as all of the update paths are evaluated or the MNSP is

run out. The final MV is chosen among

{MV(Pi)|i=1,2, …, n} (3)

with the smallest SAD.

The overhead of our algorithm lies in the irregular

MV matching, which seems to place extra burden on bus

bandwidth. In practice, the bus bandwidth requirement is

greatly reduced as a result of significant reduction of search

steps. The update scheme also results in the spatial locality

of memory access. Hence the data reusability is quite high.

Sorting operation can be easily solved by conditioned shift

registers and will not cause problems in hardware design.

4. SIMULATION RESULTS

We analyzed the cost and performance of the algorithms

considered in this paper from the hardware’s viewpoint. We

first determined the MNSP per block for our algorithm. The

MNSP per block with good compromise between cost and

performance is 20 for CIF sequences and 35 for HD

sequences. This implies that the complexity of our algorithm

in terms of search step is 0.107% to 0.977% of that in FS.

To validate the performance of our algorithm, it is compared

to FS, and two recently proposed algorithms, namely,

adaptive irregular pattern search (AIPS) [6], and enhanced

hexagonal search (EHS) [7]. The search steps of AIPS and

EHS vary from blocks to blocks and are not suitable for

hardware implementation. Hence we slightly modified AIPS

and EHS so as to make their MNSP the same as ours and

left FS unchanged. The MNSP of all algorithms are shown

in Table I. We excluded the video coding engine and

calculated the PSNR alone so that the performance of

various algorithms is directly observed by qualitative

analysis.

Table II shows the setup of our simulation. The

algorithms were simulated on several sequences and the

results of those highly vivid sequences, including Foreman,

Stefan, Vectra color, Silent, Highway, Pedestrian area, and

Traffic, are favored to differentiate the performance of the

algorithms. To eliminate the interference of occlusion on the

picture boundaries, MV’s over picture boundaries are

permitted in our simulation. This feature is supported by

modern coding standard H.264.

Table III shows the simulation results in terms of

PSNR. Our computational budget is the same as that of

AIPS and EHS. However, our matching performance is

obviously better than that of AIPS and EHS. If we further

inspect the PSNR difference frame by frame as shown in

Fig 3, the PSNR difference of ours and EHS can go up to

5dB in the sequence “Stefan”. Although FS achieves the

best matching result, a great deal of computation is further

interpreted as bus bandwidth and power consumption in

hardware, making FS in HD application almost infeasible.

Table II

Simulation Setup

Items Setting

block size 16x16

horizontal search range (CIF) [-32,32)

vertical search range (CIF) [-16,16)

horizontal search range (HD) [-128,128)

vertical search range (HD) [-64,64)

PSNR calculation without residue

MV over picture boundaries valid

Table I

Number of Search Steps

Algorithm Resolution Search Steps

CIF 2048FS

HD 32768

CIF 20Ours, AIPS, EHS

HD 35

Priority

Candidate list C1 C2 C3 ………..…… Cn

Update process

(Update paths)

Fig. 2. Illustration of overall algorithm

MV(P1)

MV(P2)

MV(P3)
MV(Pn)

Highest Lowest

743

Fig 3. Frame-by-frame PSNR comparison of Stefan

Table III

Average PSNR of the Algorithms

Sequences Algorithms Average

PSNR(dB)

PSNR

Drop(dB)

Ours 32.11 -0.41

FS 32.52 0

AIPS 31.89 -0.63

Foreman

352x288@30fps

 300 frames

EHS 31.87 -0.65

Ours 25.42 -0.31

FS 25.73 0

AIPS 25.26 -0.47

Stefan

352x288@30fps

300 frames

EHS 24.67 -1.06

Ours 26.73 -0.44

FS 27.17 0

AIPS 26.39 -0.78

Vectra color

352x288@30fps

142 frames

EHS 26.05 -1.12

Ours 35.61 -0.52

FS 36.13 0

AIPS 35.22 -0.91

Silent

352x288@30fps

300 frames

EHS 35.43 -0.7

Ours 35.28 -0.7

FS 35.98 0

AIPS 34.58 -1.4

Highway

352x288@30fps

300 frames

EHS 34.82 -1.16

Ours 35.05 -0.69

FS 35.74 0

AIPS 34.44 -1.30

Pedestrian area
1920x1080@30fps

375 frames

EHS 34.26 -1.48

Ours 32.79 -0.16

FS 32.95 0

AIPS 32.45 -0.50

Traffic
1920x1080@30fps

480 frames

EHS 32.37 -0.58

5. CONCLUSION

In this study, we present a new spatio-temporal ME

algorithm based on optimization theory. The uniqueness of

our algorithm includes: 1) low cost implementation against

FS; 2) special spatio-temporal MV prediction with large

temporal reference window; 3) maximum likelihood

selection for predicted candidates; 4) modified one-at-a-time

search for update; 5) multiple update paths; 6) scalable

complexity for various application; 7) suitable for hardware

implementation; 8) better matching performance in terms of

PSNR than other recently proposed algorithms under the

same computational budget.

 REFERENCES

[1] A. Chimienti, C. Ferraris, and D. Pau, “A complexity-

bounded motion estimation algorithm,” IEEE Trans.

Image Processing, vol. 11, pp. 387-392, Apr. 2002.

[2] B. Montrucchio and D. Quaglia, “New sorting-based

lossless motion estimation algorithms and a partial

distortion elimination performance analysis,” IEEE

Trans. Circuits Syst. Video Technol., vol. 15, pp.210-

220, Feb. 2005.

[3] J. R. Jain and A. K. Jain, “Displacement measurement

and its application in interframe coding,” IEEE Trans.

Commun., vol. 29, pp. 1799-1808, Dec. 1991

[4] G. G. Lee, K. A. Vissers, and B. Liu, "On a 3D

recursive motion estimation algorithm and architecture

for digital video SoC," Midwest Symposium on

Circuits and Systems, vol. 2, pp. II449-II451, 2004.

[5] R. Srinivasan and K. R. Rao, “Predictive coding based

on efficient motion estimation,” IEEE Trans. Circuits

Commun, vol. COM-33, pp. 888-896, Aug. 1985.

[6] Y. Nie and K. Ma, “Adaptive irregular pattern search

with matching prejudgment for fast block-matching

motion estimation,” IEEE. Trans. Circuits Syst. Video

Technol., vol.15, pp. 789-794, June 2005.

[7] C. Zhu, X. Lin, L. Chau, and L. Po, “Enhanced

hexagonal search for fast block motion estimation,”

IEEE. Trans.Circuits Syst. Video Technol., vol 14, pp.

1210-1214, Oct. 2004.

744

