
A FAST VIDEO MOTION ESTIMATION ALGORITHM FOR THE H.264 STANDARD

P. Nasiopoulos, M. von dem Knesebeck

Department of Electrical and Computer Engineering

University of British Columbia, BC, Canada

2356 Main Mall, Vancouver BC, Canada

{panos, matthiask}@ece.ubc.ca

ABSTRACT

Video applications are becoming an essential component for

mobile devices. H.264, the latest video-coding standard,

shows significant potential in terms of bandwidth savings at

the cost of substantially increased complexity compared to

former standards. The computing power currently available

on mobile devices is not sufficient to allow high quality

real-time encoding using H.264. Our algorithm uses on

average only 0.41% of the computational complexity of the

full search method used by H.264, leading to a significant

reduction in computational requirements and enabling real-

time applications for mobile devices with the efficiency of

H.264.

1. INTRODUCTION

Video applications are becoming an essential component of

mobile devices. The requirement, however, of low power

consumption coupled with limited processing power are

challenges that prevent us from achieving real-time high

quality applications. H.264 is the latest and most advanced

video coding standard to date [1]. It yields a 50%

improvement in compression efficiency compared to

previous video standards such as MPEG-2 and MPEG-4. A

number of different applications such as broadcasting and

HD-DVD have already adopted H.264 as their new video

codec. Although H.264 shows significant potential in terms

of coding efficiency and thus bandwidth savings, its

computational complexity causes a considerable challenge

for real-time encoding on mobile applications. Fig. 1

represents the run time analysis of a typical H.264 encoder

[2]. The encoder spends up to 52% of the overall

computational time on Motion Estimation (ME), clearly the

most time consuming process of video compression. For

this reason, a lot of research has been done in this area and a

number of different methods have been proposed for

improving the speed of the motion estimation search.

The Full Search Method (FS) evaluates each

displacement position within a limited search area (usually

±7 pixels) and chooses the point with the minimum

distortion. Although this method will identify the match

with the global minimum distortion (within the search area),

it requires an unjustifiable amount of computational load.

Mode Decision

1,5%

Intra Prediction

0,5%

Interpolation

8,1%

Integer ME

52,0%

DCT+Q+IDCT+MC

0,4%

VLC + CAVALC

0,1%

Deblocking

0,0%

Sub-Pixel

Residual/

Hadamard

37,2%

Fig. 1: Run time analysis of the H.264 encoder

In order to remedy this significant drawback, several

fast search algorithms have been proposed reducing the

number of search points to the ones with the highest

probability. The most popular approaches are summarized

in [3]. These fast methods are often center-biased, since the

best match in natural video sequences is likely to be found

within an area centered on the current macroblock position

[4].

Among these, one of the most popular search

algorithms is the Diamond Search (DS) method employing a

diamond-shaped pattern and multiple refinement stages.

This method reduces the computational load to 6% of the

FS method [5].

A new approach that uses Sum of Absolute Differences

and spatial and spatial-temporal search schemes (SADME)

has recently been proposed by [6] which reduces the

computational cost of the ME process drastically compared

to all other existing techniques. Only 0.5% of the

computational load is required compared to FS. Although

SADME’s performance evaluations confirm its suitability

for real-time mobile applications, this method was

specifically designed for H.263, a video standard with a

motion estimation process much simpler than that supported

by H.264.

In this study we present a new motion estimation

method that uses concepts borrowed from the SADME

method and is specifically designed for the H.264 standard.

This new method aims at optimizing H.264’s computational

complexity in an effort to make it practical for mobile

applications.

7011­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

The paper is organized as follows: Section 2. gives a

brief discussion of the ME procedure in H.264, Section 3.

illustrates the proposed motion estimation method for H.264

and Section 4 elaborates on the experimental results.

Conclusions are presented in Section 5.

2. NEW FEATURES OF H.264 MOTION

ESTIMATION

It is well established that H.264 offers significant

performance improvements over other existing video

standards. These improvements are due to several new

features, one of which is a much more flexible and efficient

motion estimation process. Motion estimation

improvements in H.264 include the number of reference

frames, accuracy and block sizes. A summary of H.264’s

motion estimation features which are relevant to our

implementation is presented in the following subsections.

2.1 Variable block-size selection

Variable motion estimation block sizes of 16x16, 16x8,

8x16 and 8x8 pixels are supported by H.264. In the case of

8x8, further partitions, which include 8x4, 4x8, or 4x4,

might be used. Fig. 2 shows the various block sizes that are

supported by H.264.

Blocks with more motion details can be encoded using

smaller block sizes. This can improve the prediction and

results in better compression rates, but at the cost of

increasing computational complexity. Several variable

block-size selection algorithms have been proposed to

reduce the encoding time, such as the signal to noise ratio

(SNR)-based algorithm [7, 8], adaptive threshold cost-based

algorithm [7, 8], 3D recursive search scheme-based

algorithm [7, 8], and the complexity measurement-based

algorithm [9].

Fig. 2: Macroblock partitions for motion estimation

2.2 Motion Vector Prediction

Motion vectors (MVs) of neighboring macroblocks are

often highly correlated. H.264 predicts an initial motion

vector from the MVs of surrounding blocks in order to have

a better starting point for the motion vector search. Then,

only the difference between the predicted motion vector and

the best-match motion vector is subsequently encoded in the

bitstream. The challenge introduced by H.264, is that

neighboring partitions may be different in size, since

various block sizes are supported. Figure Fig. 3 illustrates a

MV prediction pattern when all the neighboring partitions

have the same size (e.g., 16x16) and Figure 4 shows a case

with a current 16x16 block surrounded by blocks of various

sizes.

Fig. 3: Current (grey) and neighboring macroblocks (white) for

MV prediction with same partition size

Fig. 4: Current and neighboring partitions with different partition

sizes

The predicted MV is determined dependent on partition

size and on the availability of nearby vectors [1]. As an

example, the predicted MV in Fig. 3 is computed by taking

the median of three surrounding MVs from areas A, B, and

C.

2.3 Multiple reference picture motion compensation

While MPEG-2 and MPEG-4 use only one previous frame

for motion compensation, H.264 supports multi-picture

motion-compensated prediction. Fig. 5 illustrates this

concept.

Fig. 5: Multi-frame motion compensation for H.264

It has been shown that using multiple reference frames

for prediction can yield 5-20% in bit rate savings as

compared to using only one reference frame [10]. However,

both the encoder and decoder have to store multiple

reference pictures in order to implement multi-frame

motion-compensated prediction which consequently

increases the encoding and decoding complexity.

Multiple reference frames are especially beneficial for

situations with repetitive motion, uncovered background,

camera shaking and sampling [10]. Many of these situations

are pertinent for applications in mobile devices and should

prove advantageous in related use-case scenarios.

702

3. OUR NEW MOTION ESTIMATION ALGORITHM

FOR H.264

The SADME method is based on the distinct relationship

between the sum of the absolute difference (SAD) for each

macroblock and the corresponding motion vector (MV).

SAD and MV values are highly correlated with each other;

smaller SAD values indicate that the corresponding motion

vector will also be smaller. SADME uses this correlation to

avoid unnecessary steps in the motion estimation process

and thus to reduce the computational load. This is achieved

by separating the macroblocks into three categories with

different search requirements, and optimizing the search

schemes used for each category subsequently.

As a first step, we calculate the difference between the

current and the previous frame by direct subtraction. The

resulting difference frame is subdivided into 16x16

macroblocks and we calculate the SAD value for each of

these macroblocks. In a second step we predict the current

frame by using the motion vectors of the previous frame.

We calculate the difference between the predicted frame and

the current frame and compute the SAD values for each

macroblock. Then, for each macroblock, the two SAD

values are compared and since the smaller one will yield a

better approximation for the motion vector, a new SAD

array is generated using the smaller of the two values. This

SAD array is the basis for classifying the macroblocks into

three categories.

The thresholds that define these three categories are the

mean (m) and the sum of the mean (m) plus the standard

deviation () of the SAD values, as shown in Table 1.

Category 1 SAD > mean + std.dev.

Category 2 mean < SAD <= mean + std.dev.

Category 3 SAD <= mean

Table 1: Category thresholds for macroblocks in SADME

One of H.264’s main features is the use of variable

motion estimation block sizes. Although every search starts

with a 16x16 block, every other possible combination down

to 4x4 blocks (e.g., 16x8, 8x16, 8x8, 8x4 and 4x8) is also

searched. The block or combination of blocks that yields the

smallest residual is chosen to represent that portion of the

frame and the corresponding MVs are calculated. This is a

departure from the standard macroblock size used in all

previous video codecs. For simplicity reasons and reduction

in complexity, our method uses only the 16x16 prediction

from the previous macroblock to obtain the difference for

the temporal case. This way the resulting SAD arrays, one

from direct difference and the other from prediction, have

the same size. We found that in the case of H.264, using the

macroblock classification in 3 categories can significantly

reduce the number of search paths performed by an H.264

encoder. Performance evaluations have shown that for

macroblocks belonging to category 3, the search can be

limited to the 16x16 block size. It turns out, with a very

high degree of accuracy, that this is also the size that the

encoder would chose at the end of its tree-structured search.

For macroblocks in category 2, we stop the macroblock size

search at 16x8 and 8x16; these levels preserve a very high

level of accuracy for this category. Finally, for category 1,

all possible block sizes are tested.

SADME reduces the computational load by estimating

motion vectors using only a subset of the total 256 pixels

available in each 16x16 macroblock. Two of these pixel

subset patterns are shown in Fig. 6.

Fig. 6: Two pixel subsets covering ¼ of the MB pixels

We investigated the suitability of using subsets for the

motion estimation process in H.264. Our tests have shown

that, for 16x16 MBs, only one of the subsets is needed for

accurately estimating the corresponding motion vector,

resulting in 75% reduction in pixel-related computations.

For smaller partitions, however, the accuracy of using only

¼ of the MB pixels is lacking the required accuracy.

Instead, a combination of two pixel subsets is required for

all other block sizes down to 4x4 pixels. The subset that

yields the best results for our implementation is illustrated

in Fig. 7. This approach cuts the number of pixel

computations to half.

Fig. 7: Subset covering ½ of the MB pixels (combinat. from Fig. 6)

In SADME, the SAD values are sorted in ascending

order and the search requirements for category 2 and

category 3 are reduced by assuming that if the motion

vectors of several successive macroblocks are (0,0), then the

rest of the motion vectors are also (0,0). This approach,

however, introduces two other drawbacks along with some

unwanted distortion. One is additional time needed for

sorting the SAD array. The second is that an initial search

point has to be calculated for each MV (using a new scheme

introduced by SADME) because of the spatially random

order of the macroblocks within the array. Performance

evaluations have shown that, for the case of H.264, the

above assumption yields even higher levels of distortion

than H.263 and MPEG. We also observed that the reduction

in number of point calculations is less than 1%. For this

reason, we depart from the SADME approach in our

implementation by avoiding the sorting of the SAD values

and macroblocks. Consequently, we entirely eliminate the

additional calculations required for sorting and initializing

MVs in the SADME method.

703

When multiple reference frames are used, our algorithm

must be modified to take advantage of this temporal

redundancy. First, for each macroblock of the present frame

we calculate the difference between this macroblock and

each of the corresponding macroblocks of all the previous

reference frames. The frame that yields the smallest SAD

value is chosen as the most appropriate frame for initial

search. This SAD value is saved in one array along with

information about the reference frame. In addition to the

above direct difference approach, the information of the

previous motion vector for the macroblock is used to

determine which of the previous reference frame was used

for deriving the value of that MV. Then, the difference

between the present macroblock and the predicted

macroblock of that specific frame is calculated and used in

another SAD array; the information about the previous MV

and the corresponding reference frame is also saved. For

each macroblock, the smallest SAD value of the two values

is used for generating the final SAD array. The rest of the

process for estimating the motion vectors is the same as in

the case of one reference frame (which has been described

above). The Diamond Search pattern is used for estimating

the motion vectors in all three categories.

4. EXPERIMENTAL RESULTS

The new motion estimation algorithm was implemented

using the T264 software codec [11]. Although T264 is still

in development, it features a distinguished encoding speed

compared to other H.264 codecs such as JM [12].

Several test video sequences were encoded for our

performance evaluations. The following parameter set was

used: GOP: IPPP, I-frame interval: 15, Resolution QCIF,

Ref.frames 5, QP 30.

Table 2 shows the average PSNR value for seven video

streams, the size of test sequences before and after

encoding, the resulting compression ratio and the number of

pixel comparisons performed by H.264 using Full Search

motion estimation and our method.

We observe that, for the same picture quality, our

proposed algorithm is about 200 times faster than the full

search (FS) method, using on average only 0.41% of its

computational complexity.

5. CONCLUSION

We presented a novel motion estimation algorithm

specifically designed for the H.264 standard. This algorithm

takes advantage of special features of H.264 and the

relationship between the Sum of Absolute Differences

(SAD) value of the Macroblock (MB) and its corresponding

motion vector (MV) as well as of temporal and spatial

correlation present in video streams. Our method is

computationally very efficient without sacrificing the

quality of the video, as required for low bit rate video

coding in battery powered mobile devices such as personal

digital assistants and cellular telephones. For the same

picture quality, the proposed algorithm is about 250 times

faster than the full search method used by H.264.

6. REFERENCES
[1] I.E.G. Richardson, H.264 and MPEG-4 Video Compression:

Video Coding for Next Generation Multimedia, West Sussex,

England: John Wiley & Sons, 2003.

[2] T. Chen, T. Huang and L. Chen, "Analysis and design of

macroblock pipelining for H.264/AVC VLSI architecture," in

Proc. of the Int. Symposium on Circuits and Systems, ISCAS

'04, 2004, pp. 273-76.

[3] T. Kuo, T. Chan and H. Chen, "Efficient variable block size

motion estimation for H.264 based on motion distribution

likelihood," Proc. of SPIE, vol. 5960, pp. 19-29, Jul. 2005.

[4] R. Li, B. Zeng and M.L. Liou, "A new three-step search

algorithm for block motion estimation," IEEE Transactions

on Circuits and Systems for Video Technology, vol. 4, pp.

438-42, Aug. 1994.

[5] S. Zhu and K. Ma, "A new diamond search algorithm for fast

block matching motion estimation," in Proc. of the Int. Conf.

on Inform. Commun. and Signal Processing, 1997, pp. 292-6.

[6] H.-J. Lee, P. Nasiopoulos and V.C.M. Leung, "Fast Video

Motion Estimation Algorithm for Mobile Devices," in IEEE

Int. Conf. on Multimedia and Expo, 2005, pp. 370-73.

[7] A. Ahmad, N. Khan, S. Masud and M.A. Maud, "Selection of

variable block sizes in H.264," in IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing, 2004, pp. 173-76.

[8] A. Ahmad, N. Khan, S. Masud and M.A. Maud, "Efficient

block size selection in H.264 video coding standard,"

Electron. Lett., vol. 40, pp. 19-21, Aug. 2004.

[9] A.C. Yu, "Efficient block-size selection algorithm for inter-

frame coding in H.264/MPEG-4 AVC," in IEEE Int. Conf. on

Acoustics, Speech, and Signal Processing, 2004, pp. 169-72.

[10] Y. Huang, B. Hsieh, T. Wang, S. Chien, S. Ma, C. Shen and

L. Chen, "Analysis and reduction of reference frames for

motion estimation in MPEG-4 AVC/JVT/H.264," in IEEE Int.

Conf. on Accoustics, Speech, and Signal Processing, 2003,

pp. 145-48.

[11] T264 Open-Source Video Coding Framework,

http://sourceforge.net/projects/t264/

[12] JM Reference Software v10.1, Aug. 2005.

Table 2: Comparison after encoding test sequences using original and modified T264 CODEC

Test sequence

Name Format # of frms kbits/s # of cmp/MB* PSNR kbits/s # of cmp/MB* %of FS PSNR

Foreman QCIF 399 132.6 3,114,898 34.02 134.8 18,264 0.59% 33.99

Carphone QCIF 382 145.8 3,113,268 35.15 148.1 14,680 0.47% 35.07

Salesman QCIF 448 39.2 3,321,638 33.79 40.9 12,545 0.38% 33.75

Mother & Daughter QCIF 960 68.9 3,122,341 35.15 70.2 10,612 0.34% 35.08

News QCIF 299 98.3 3,115,169 35.23 100.1 10,427 0.33% 35.13

Akiyo QCIF 299 48.4 3,115,169 37.00 48.8 9,557 0.31% 36.92

Full Search Method in H.264 Proposed Method in H.264

Suzie QCIF 150 60.5 3,308,151 35.64 60.5 16,050 0.49% 35.54

84.8 3,172,948 35.14 86.2 13,162 0.41% 35.07

* Number of pixel comparisons per Macroblock

Average

704

