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ABSTRACT

Captured CFA data by image sensors like CCD/or CMOS are often
corrupted by noises. To produce high quality images acquired by
CCD/CMOS digital cameras, the problem of noise needs
addressing. In this paper, we propose a novel demosaicking
algorithm with the ability to handle noisy CFA data directly. By
utilizing the proposed spatial filter which can characterize the
similarity likelihood in local structure accurately, the noisy pixel is
then filtered depending on the degree of similarity between the
current pixel and a weighted average of its neighboring pixels.
Therefore the edge information can be preserved without the
blurring artifacts while the capacity of noise reduction can be
adjusted to the maximum degree in the smooth region. Our
algorithm is the first one that can accomplish the demosaicking
processing and noise removal simultaneously, which contributes to
the reduction of hardware cost since one module can achieve two
functions efficiently at the same time.

1. INTRODUCTION

Most digital still cameras capture images by using color
filter array (CFA), organized in a mosaic pattern. The
most commonly used CFA is Bayer pattern [1] (Fig. 1).
Observe that green pixels are sampled twice than red or blue
ones. To obtain full-resolution color images, missing color
pixels must be estimated from neighboring captured data.
This process is known as demosaicking.

Various demosaicking techniques have been proposed
[2-7,14]. All of these techniques observed the drawbacks
of using the traditional bilinear interpolation, which
introduces visible color bleeding artifacts, referred to as the
zipper effect, around sharp or fine edges. Zipper effect is
caused when the used demosaicking scheme cannot
adaptively estimate the missing pixels according to the local
image structure. Schemes [12] are proposed to exploit
spatial correlation of images and to interpolate missing
colors by a weighted-sum approach. The weights should be
adaptively changed according to the image local structure as
the edge indicator. However existing methods are capable of
detecting either vertical or horizontal edge but fail to detect
other sophisticated edges efficiently. In addition, existing
methods’ discussion is limited to the assumption of
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noise-free environment, which is evidently not the case in
real situations. To produce high quality images acquired by
CCD/CMOS digital cameras, the problem of noise needs
addressing. Noise is caused mainly by mean dark current
and shot/read noise produced during the exposure process.
Basically the statistic characteristic of such noise can be
modeled as zero mean additive white Gaussian noise
(AWGN), as pointed by Khaled et al [8].

Figure 2 dativeness of the
noise reduction filter.

Kalevo [10] tried to use multistage median filter and
median rational hybrid filters to solve this problem.
However, their approach did not take the demosaicking
algorithm into account and cannot generate high-quality
color images.

In this paper, our focus is geared toward designing a
demosaicking algorithm with the ability to handle noisy
CFA data directly. We have previously reported [9] an
adaptive spatial filter that can exploit local image structures
more efficiently compared to other existing methods [2-5].
We extend previous filter design to estimate the missing
color pixels by taking more captured pixels into account.
The accuracy of the estimation can be improved accordingly
because more information is utilized. Additionally, the
weighting function is modified based on the noise statistical
characteristics [12]. Therefore, to our best knowledge, our
algorithm is the first one that can accomplish the
demosaicking processing and noise removal simultaneously,
which contributes to the reduction of hardware cost since
one module can achieve two functions efficiently at the
same time. Simulation results demonstrate the effectiveness
of the proposed algorithm.

2. AN ADAPTIVE FILTER OF DETECTING ALL
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ORIENTATION EDGES

2.1. Non-cross Directional Weighting

We have previously reported [9] a spatial filter that is
capable of accurately detecting complicated local image
structures. Unlike traditional approaches [3, 11], which can
only detect either horizontal or vertical edges, our filter can
detect edges with all orientations efficiently. Our approach is
based on a non-cross weighting mechanism. The weighting
function should accurately estimate the similarity between
the missing color pixel and its neighbors. [9] proposes the
function should be inversely proportional to the Euclidean
distance between the interpolated pixel and its neighboring

pixels in this direction.
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Figure 3. Error comparison between cross and non-cross method,
x-axis is the difference between two sides of a 45 degree edge.

Consider missing pixel G44 is to be interpolated. Our
edge detector in mnorth direction is specified as
1/ Jvar(R44, R24) + var(G34,G14) > Where var(a,b) measures the
variance between a and b in statistical way. That is,
(a—u)* +(b— p)?» W is the arithmetic mean between a and b.

Fig. 3 shows the error analysis for a CFA image with the
simple geometry of a diagonal edge. Traditional filters [3, 11]
work well on vertical and horizontal edges; however, the
estimated error is linearly proportional to the image gradient
as shown in Fig. 3. On the other hand, the proposed filter [9]
is capable of detecting local structures with all orientations
efficiently.

2.2. The Proposed Algorithm
It has been reported [10] previously that red and blue
channels are highly correlated to green channels in real
word images. That is, the contrast of the color difference
plane is quite flat over the local image region. Based on this
observation, it is reasonable to estimate the missing pixels
by the weighted-sum approach in the color difference
domain instead of the original pixel value domain.

Step 1: Green plane interpolation: In Bayer pattern,

green pixels (the luminance channels) are sampled at higher
rate than red or blue pixels (the chrominance channels). This
is because the human visual system is more sensitive to the
luminance information than to the chrominance. To better
estimate the missing G values, our method differs from
previous approaches by incorporating more information
from a 5x5 kernel since neighboring pixels possess strong
correlation within a local image. To estimate G(m, n) on an
existing red pixel R(m,n), let’s denote i the ith of the eight
directions around the center pixel R(m,n) (north, south, east,
west, northwest, northeast, southwest, and southeast for i =
1 to 8). Then the weighing function associated with each
direction i can be calculated as:
1

J1+var(R(m,n),R,) +var(G,,G,,)
W= 1

\/1 +var(R(m,n),R,)+var(B,,B,,)
R; denotes the pixel R(m+v;, n+h) where the relative
position(v;, /;) is listed in Table 1. Similar notation for G and
B pixels can also be found in Tablel.
After the weights in all of the eight directions are calculated,

the planar expected value within the 5x5 kernel can then be
calculated as
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The coefficient /¥ indicates the degree of similarity for each
captured data within the 5x5 window. The expected value
can be regarded as the arithmetic output of a geometric
adaptive filter which captures the local characteristics.

G44=R44+(G-R) (5)
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Table 1. The positions of nearby pixels used for directional
weighting calculation in Eq. 3~5.

Step 2: Interpolate R values on existing B pixels, and
B values on existing R pixels:
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Use equation (2), and then use the following equation to
find B(m,n) on existing R(m,n) :

iVV: '(Gis _Bil)
B(m,n)=G(mn)—=— ©)

i=5

where Gjs have the same values as B;; for all i.
blue pixels follow similar way.

Step 3: Interpolate R and B values on existing green
pixels: Find R(r,s) and B(r,s) on G(r,s).

iVVi '(Gil - Ri2)
R(r,s)=G(r,s)— % (7

The values of v and /4 for G;; are the same as listed in Table
1. R;; has the same value as G;;. Blue value follows the
same way.

Existing

3. NOISY BAYER IMAGE

3.1. Noise Removal in CFA
Captured CFA data by image sensors like CCD/or CMOS
are often corrupted by noises. Noises are mainly brought
about by the dark current, read noise, and the variation of
pixel output voltage associated with the variation in the
diode capacitance [8]. Such a disturbance is commonly
referred as granular noise. Basically the statistical
characteristic of such noise can be modeled as zero mean
additive white Gaussian noise [12] as follows
2
1= el 1] ®

, where z is the image level and o is the standard deviation.

The simplest noise-reduction filter is the arithmetic
mean filter. However, the smooth filter degrades the image
quality by blurring the sharp edges and fine details. In this
paper, we propose an adaptive noise removal filter. The
weighting function introduced in Section 2.2 accurately
characterizes the similarity likelihood in the local structure.
The noisy pixel is then filtered depending on the degree of
similarity between the current pixel and a weighted average
of its neighboring pixels. Additionally, the noise-reduction
process is applied directly in the captured CFA data as
follows:

X (i, j) = X, /)= W (i, j)(X (i, j) - M) ©)

Where X is the captured color pixels (R,G, B) in CFA data,
W is the weighting function calculated according to
Eq.(1)~(2), and amis the planar expected value calculated
according to Eq.(3)~(5). From Eq. 9, it is easily observed
that the proposed filter is equivalent to the arithmetic
smooth filter when the W(i,j) is equal to one, which occurs
when the pixel X and planar expected value p» have high
degree of similarity.

Since the similarity of the local image structure is
based on the weighting function, it is important to modify
the function according to the statistical characteristic of the
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granular noise. According to Eq. 1 and 2, the value of the
weight is calculated based on the distance function between
R(m,n) and R; in a noise-free environment. However, in a
noisy environment, the distance may not be zero, due to the
noise, even when the two pixels are the same. Therefore, the
curve of the weighting function should be increased to
compensate the phenomenon that the distance is caused by
the noise, not the image structure. The adaptive approach of
the proposed filter is clearly visible in Fig. 2 where the light
gray zones represent heavily filtered areas and the dark gray
zones represent lightly filtered areas. After the noisy CFA
data is filtered, the 24-bit full resolution image can be
obtained based on the procedures of Sec 2.2.

4. EXPERIMENTAL RESULTS

Twenty benchmark images from the Kodak photo sampler
are evaluated for both noise-free and noisy environments.
These images are first sampled with Bayer CFA to produce
mosaic images, and then used as the input for interpolation.
For noise simulation, the noise (with standard deviation
from 1 to 15) is added into the CFA data. In the noise-free
environments, the PSNR results and its comparison with
other existing methods [5] are shown in Table 2. We
compare results of3 best pre-filter mechanisms discussed in
[10] for the noisy environments. Fig 4 shows the proposed
mechanism outperforms the methods [10] in all R, G B
planes in the noisy environments. The results of real images
comparison with the noise (6=10) are demonstrated in Fig. 5
and Fig. 6.

5. CONCLUSION

In this paper, we propose a novel demosaicking algorithm
with the ability to handle noisy CFA data directly. By
utilizing the proposed spatial filter which can characterize
the similarity likelihood in local structure, the noisy pixel is
then filtered depending on the degree of similarity between
the current pixel and a weighted average of its neighboring
pixels. Therefore the edge information can be preserved
without the blurring artifacts while the capacity of noise
reduction can be adjusted to the maximum degree in the
smooth region. Simulation results demonstrate the
effectiveness of the proposed mechanism for both noise-free
and noisy environments.
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Table 2. Comparison of our algorithm with existing techniques, YPT stands for Yap-Peng Tan’s method in proposed in [5].
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