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ABSTRACT 

Different denoising schemes show dissimilar types of artifacts. 
For example, certain transform-based denoising schemes could 
introduce artifacts in smooth regions while others eliminate 
texture regions. Using different schemes for denoising a noisy 
image, we can consider the denoising results as different 
estimates of the image. Through linear combination of the 
results, we minimize the 2

�  norm of the error to find the 
optimum coefficients in a least-square-error sense. We employ 
the wavelet transform, contourlet transform, and adaptive 2-D 
Wiener filtering as our denoising schemes. Then we apply the 
proposed method to the denoising results of the individual 
schemes. This approach eliminates most of the artifacts and 
achieves significant improvement in the PSNR values. We also 
propose averaging of the denoising results as a special case of 
linear combination and show that it yields near-optimal 
performance. 

1. INTRODUCTION 

Wavelets have proven their capability in removing noise from a 
piece-wise smooth signal  [12]. In wavelet denoising using hard 
thresholding, one simply set to zero the transform coefficients 
of a noisy signal that are below a threshold and reconstruct the 
resulting coefficients to obtain the denoised signal. 

 Recently, several new image transform schemes have been 
introduced, where most of them take advantage of the 
important feature of directionality  [6]. Following a similar 
procedure to the wavelet denoising scheme, one can employ 
other transforms for denoising  [9].  

Owing to the characteristics of a transform, a transform-
domain denoising scheme introduces some artifacts in the 
denoising results that are different from those of other schemes. 
Furthermore, each denoising scheme may have some 
advantages over the others and also some drawbacks. As a 
consequence, combination of different schemes would be a 
solution to reduce artifacts and compensate for the drawbacks. 
Taking advantage of the same idea, the authors in  [5] proposed 
translation-invariant (TI) wavelet denoising, where it is, in fact, 
equivalent to the average of all denoised images resulting from 
the cycle-spinning algorithm. In  [9] we have shown that the 
pseudo-Gibbs phenomena artifacts that usually appear in the 

denoising results when we use the contourlet transform 
denoising scheme, can be significantly reduced. In this paper, 
however, we use a different strategy that is based on a linear 
optimization approach in conjunction with employing different 
denoising schemes. Further, in this case, averaging is a special 
case of linear combination. 

The remainder of the paper outline is as follows. In the 
next section we briefly highlight some of the related work. 
Section 3 provides problem formulation for our proposed linear 
combination method. In Section 4 we present the denoising 
schemes that we use in our experiments and examine their 
characteristics. The experimental results are provided in 
Section 5 and finally we provide our main conclusions in 
Section 6. 

2. RELATED WORK 

In a general framework, when one wishes to find an optimal 
representation over a dictionary of bases functions, a few 
algorithms have been proposed  [10]. Suppose that 

1=[ ,... ]KD B  B  is the dictionary of the bases functions, where 

iB  is the matrix corresponding to the ith basis and we want to 
decompose a signal x  (given in a column vector of length N ) 
using the dictionary  D . Therefore, we have  

x α= B  ( 1[ ,..., ]T
Nα α α= ), 

where α  is the array of the coefficients and ( )T
⋅  denotes the 

transpose operation. The method of frames  [12], provides an α

with a minimized 2
�  norm. Basis pursuit  [4] is another 

algorithm, which optimizes α  subject to 1
�  norm; and hence, 

results in a linear programming approach. Matching pursuit
 [13] attempts to find a best basis in D  utilizing a greedy 
algorithm. It sequentially adds elements from D  that are most 
correlated with the residual. The above methods, however, are 
computationally expensive. 

Total variation is a technique employed to denoising  [15] 
and later was combined to the wavelet scheme to reduce 
artifacts in wavelet denoising  [3] [8]. Using the same idea, the 
authors in  [2] applied the curvelet transform in conjunction 
with total variation to improve the denoising results of 
curvelets. Starck et al.  [16] proposed an algorithm to combine 
several transforms, where they used an iterative approach to 
minimize an 1

�  norm instead of total variation norm. 
Our approach, however, is based on a linear combination 

of the denoising results and thus is not complex. Meanwhile, 
the proposed approach provides improvement in the PSNR 
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values and, more importantly, in visual quality due to 
significant reduction of the artifacts. 

3. PROBLEM FORMULATION 

We wish to find an analytical solution to the following 
problem. Suppose that V is a normed linear vector space and 

0 1 1{ , ,..., }KS x x x −=  is a set of linearly independent vectors in 
space V. Given a vector s ∈ V , we would like to find the 
coefficients 0{ }i i Kc ≤ <  in such a way to minimize the error 

ˆe s s= − , where 
1

0
ˆ

K
i ii

s c x
−

=
=∑  is the estimation of s. If we 

use the 2
�  norm, it leads to minimizing the MSE (mean-

squared error). We achieve the minimum error if it is 
orthogonal to span(S), i.e., it is orthogonal to the data used to 
estimate the signal s:  

1

0
, , 0, for 0,1,..., 1

K
j i i ji

e x s c x x j K
−

=
= − = = −∑ , 

where ,< >  denotes the inner product. 
This leads to =Rc P , where R is the Grammian matrix 

and P is the cross-correlation matrix as defined below  [14]: 
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and 0 1 1[ ] .T
Kc c c −=c �

If the vectors in the set S are linearly independent, the 
Grammian matrix R is positive-definite and hence, is invertible. 
Therefore, we have the solution 1−

=c R P  for the unknown 
coefficients in c.  

For our problem, we consider s as the original image, and 
z s ν= +  as the image corrupted with additive Gaussian noise 
ν . Then we apply K different image denoising schemes to 
obtain 0 1 1{ , ,..., }KS x x x −=  as the set of different denoised 
images and obtain ŝ  as the denoised image using the above 
least mean-squared (LMS) approach. 

Note that here, to find the coefficient vector c, we need to 
have the original signal s to compute P. That is, the above 
optimal approach is an oracle method, which gives the lower 
bound of the estimation error. Meanwhile, since z  is the 
maximum likelihood estimation of s  [1], we can use this noisy 
image instead of the original. In that case, the elements of P
will be 

.

, , (0 )
, ,

i i

i i

z x s x i K

s x x

ν

ν

= + ≤ <

= +

If we define the inner product for random variables as 
expectation, we have , [ ]i ix E xν ν= , which is not zero 
because the remaining noise in the estimates 0{ }i i Kx ≤ <  is 
colored and correlated with ν . However, when the power of 
input noise is low, this term is close to zero. 

The other way to omit the role of s in P is to weight all 

denoised images, equally: 
1

0
ˆ (1/ )

K
ave ii

s K x
−

=
= ∑ . Indeed, if the 

remained noise in 0{ }i i Kx ≤ < , i.e. i ix sν = −� , (0 )i K≤ < , were 
white and they were independent from each other, the 
maximum likelihood estimation of s given 0{ }i i Kx ≤ <  would 
become ˆaves  [11 p. 569]. Nevertheless, although 0{ }i i Kν ≤ <

�  do 
not satisfy the above conditions, our results show that 
averaging is an efficient approach when the denoised images 
are of comparable quality. 

4. CHARACTERISTICS OF SOME IMAGE DENOISING 
SCHEMES 

In our experiments, we use three different denoising 
techniques1: the wavelet denoising  [12], the contourlet 
denoising  [9], and the adaptive Wiener filtering [11 p. 536]. In 
the case of wavelets and contourlets, we also consider their 
translation-invariant schemes  [5] [9]. Below, we briefly describe 
the characteristics of these schemes for image denoising. 

4.1 Wavelet Denoising Scheme 

The wavelet transform has shown its capability for denoising 
piece-wise smooth images  [12]. Wavelets, indeed, provide 
unconditional bases of 2

�  and also of many smoothness spaces 
 [7]. As a result, wavelet shrinkage is a smoothing operation for 
a wide variety of signal classes. Wavelet shrinkage in 
comparison to other older methods such as convolutional 
smoothers and Fourier-domain damping is much simpler, and 
offers many broad near-optimality properties not achievable by 
the older methods  [7]. 

An important problem that arises in a transform-domain 
denoising is the artifacts introduced when one thresholds the 
transform coefficients. The artifacts are in fact due to pseudo-
Gibbs phenomena, which occur near edges and discontinuities 
and resemble the basis functions of the transform. Fig. 1(a) 
shows some of the basis functions of the wavelet transform. 
Since this transform is efficient in capturing point-wise 
singularities, the basis functions are like points. Therefore, the 
artifacts in a denoised image will look like the basis functions 
as shown in Fig. 1(b), which depicts an example, where the 
standard deviation of input noise is 20. Notably, this denoising 
scheme is incapable of capturing some textures and fine details. 

4.2 Contourlet Denoising Scheme 

The contourlet transform, one of the geometrical image 
transform, is introduced to better capture directional features of 
an image  [6]. It is constructed using two filter bank stages: 
Laplacian pyramids and directional filter banks. The Laplacian 
pyramid is a multiresolution scheme, which acquires the feature 
of directionality in the contourlet transform using the 
directional filter banks. Owing to the directionality of this 
transform, the basis functions are in the form of needle-shaped 
segments, which can be oriented in different directions as 

                                                
1 Note that the proposed approach is applicable to any set of 
denoising schemes. 
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Fig. 2(a) shows. Consequently, the denoising artifacts will look 
like arbitrarily-oriented needle-shaped segments that are more 
visible in the smooth regions (see Fig. 2(b)). To have sufficient 
directional resolution, one has to use directional filters with 
large support. As a result, the basis functions and thus the 
artifacts appear in the form of long segments, which severely 
degrade the quality of the denoised image. Nevertheless, the 
contourlet denoising scheme outperforms the wavelet approach 
in retaining textures and fine details in the denoising results 
(compare Figs. 1(b) and 2(b)). 

4.3 Adaptive Wiener Filtering 

The Wiener filtering is a traditional denoising method, which 
usually leads to a lowpass filtration. This approach would be 
the optimal linear minimum mean square error estimate of the 
signal if [ ]s n  and [ ]v n  ( 1 2( , )n n n= ) are samples of stationary 
random processes that are linearly independent from each other 
and their power spectral densities (PSD) are known  [11]. 
Practically, however, the above assumptions do not hold. To 
improve the performance of this scheme, we can use adaptive 
filtering, where one locally estimates the PSDs of the signal and 
noise and estimates the signal. As a result, if ( )

zm Ω  and 2( )
zσ Ω

denote the local minimum and variance of the noisy image z in 
the window Ω , respectively, the local estimate ( )ŝ Ω  is  [11] 

( )
2( ) 2

( ) ( ) ( ) ( )
2( )

ˆ z
z z

z

s m z mνσ σ

σ

Ω
Ω Ω Ω Ω

Ω

−
= + − , 

where we assumed that ν  is a zero-mean white Gaussian noise. 

Since this approach is a locally filtering task, it introduces 
artifacts, which resemble speckle noise (Fig. 3(a)). As we 
enlarge the window size, the artifacts reduce, but more edges 
are smeared in the denoised image. 

Compared with the wavelet and contourlet denoising 
schemes, this approach provides competitive results. In 
comparison with the translation-invariant (TI) wavelet and 
contourlet schemes  [9], however, this scheme yields poor 
performance. Consequently, we merely take advantage of the 
wavelet and contourlet schemes for linear combination when 
we use TI denoising. 

5. EXPERIMENTAL RESULTS 

To test our proposed LMS approach, we selected a variety of 
images and used additive Gaussian noise with 20νσ =  and 40. 
We employed the same wavelet and contourlet schemes as in 
 [9] and applied hard thresholding with a threshold equal to 
3 νσ . For adaptive Wiener filtering, we used a window size of 
(5,5). We also utilized our approach for TI denoising. Note that 
we obtain better results in this case at the expense of more 
computational complexity.   

Table I provides the PSNR values when 20νσ = . As seen, 
the proposed LMS method achieves more than one dB 
improvement in some cases. The results where the noisy image 
is used as the estimate of the original signal in the LMS 
algorithm (LMS_N) are comparable with the LMS_O (LMS 
with oracle) results. Interestingly, the averaging approach 
(AVE) provides near-optimal PSNR values (recall that the 
LMS_O provides optimal results). Note that although the PSNR 
values achieved using adaptive Wiener method are usually 
higher than those of the wavelet and contourlet schemes, it 
introduces more visible artifacts in the results. That is due to 
the fact that the PSNR measure treats the low-frequency 
artifacts similar to the high-frequency ones; while, eyes are 
usually more sensitive to the low-frequency artifacts. 

Table II shows the PSNR results when 40νσ = . Since the 
noise power is higher in this case, the noisy image is a poor 
estimate of the original image and hence, the LMS_N approach 
results in poor performance. Remarkably, the averaging method 
yields near-optimal performance again.  

Fig. 3 depicts the visual results of the Barbara image 
where we already observed the denoising results using wavelets 
and contourlets schemes in Figs. 1 and 2. In this figure ((b), (c), 
and (d)), we see that the artifacts introduced by the individual 
denoising schemes are significantly reduced while the salient 

       (a)                 (b) 
Fig. 1. (a) Some basis functions of wavelets. (b) The denoising
result of the Barbara image using wavelets
where 20νσ = . 

       (a)                 (b) 
Fig. 2. (a) Some basis functions of contourlets. (b) The denoising
result of the Barbara image using contourlets where 20νσ = . 

TABLE I 
PSNR VALUES OF THE DENOISED IMAGES WHEN 20νσ =

Method Noisy WT CT AWF LMS_O LMS_N AVE 
Barbara 22.15 25.70 26.31 26.43 27.86 27.69 27.81

Boats 22.18 27.14 26.83 28.38 29.20 28.91 29.06
GoldHill 22.18 26.87 26.66 28.65 29.03 28.81 28.72
Mandrill 22.13 22.98 22.66 23.55 24.41 24.38 24.38
Peppers 22.32 28.41 27.69 30.12 30.67 30.22 30.30

  WT: Wavelet Transform,                 LMS_O: LMS with oracle, 
  CT: Contourlet Transform,              LMS_N: LMS using noisy image,  
  AWF: Adaptive Wiener Filter,        AVE: Averaging  
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advantages of these schemes are preserved. Further, the 
LMS_N and AVE (averaging) methods provide competitive 
results to those of the optimal LMS_O approach. Another 
example is demonstrated in Fig. 4, where we used TI wavelet 
(TIWT) and contourlet (TICT) denoising schemes  [9] with 

40νσ = . As shown, the averaging performance is almost the 
same as the LMS_O method. The result of the proposed 
approach shows fewer artifacts and better PSNR values. 

6. CONCLUSION 

In this paper we proposed a method based on the least mean-
squared approach to linearly combine different denoising 
schemes in an optimal sense. We found the proposed scheme to 
be efficient in improving denoising results through significant 
reduction in the artifacts and hence an increase in the PSNR 
values. We also proposed averaging as a special case of linear 
combining, where we achieved near-optimal results while 
maintaining low complexity. 
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TABLE II 
PSNR VALUES OF THE DENOISED IMAGES WHEN 40νσ =

Method Noisy WT CT AWF LMS_O LMS_N AVE 
Barbara 16.39 22.48 23.04 23.65 24.61 22.94 24.49

Boats 16.43 23.93 23.67 25.13 26.03 23.66 25.86
GoldHill 16.42 23.98 23.85 25.55 26.28 23.68 25.98
Mandrill 16.37 20.21 20.14 21.81 22.03 21.57 21.73
Peppers 16.60 24.70 24.26 25.81 26.77 23.59 26.56

    (a)                 (b) 

       (c)                    (d) 
Fig. 3. The denoising results of the Barbara image when 20νσ =

using methods: (a) AWF. (b) LMS_O. (c) LMS_N. (d) AVE. (see 
also Figs. 1(b) and 2(b) for the results of other schemes). 

   LMS_O – PSNR = 27.344                 AVE – PSNR = 27.341 

Fig. 4. The denoising results of the Peppers image when 40νσ =

using translation-invariant schemes. 

    TIWT – PSNR = 27.00               TICT – PSNR = 27.10 
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