
MODIFIED LAPLACIAN FILTER AND INTENSITY CORRECTION TECHNIQUE  

FOR IMAGE RESOLUTION ENHANCEMENT

Day-Fann Shen , Chui-Wen Chiu, Pon-Jay Huang 

Department of Electrical Engineering,  

National Yunlin University of Science and Technology, Douleo 640, TAIWAN 
E-mail: shendf@yuntech.edu.tw

ABSTRACT 

By analyzing the deterministic relationship between the lower-
resolution and the corresponding higher resolution images, we 
propose two core techniques namely MLF (Modified Laplacian 
Filter) and IC (Intensity Correction) for image resolution 
enhancement, by which the image size can be increased revealing 
better details of the image contents. The simple 3x3 MLF is 
designed for properly restoring the frequency components 
attenuated in the averaging and down-sampling degradation 
process. The IC process iteratively refines the image quality for 

any resolution enhanced (enlarged) image. Experiments show that 
the proposed techniques can effectively improve the image 
qualities than bilinear or bicubic interpolation alone. It outperforms 
other recently developed algorithms both in perceptual quality 
(especially in the texture areas) and in objective quality in terms of 
PSNR. Both MLF and IC are simple in computations, which is 
quite desirable in many time sensitive applications.   

Keywords: image resolution enhancement, image enlargement, 
super-resolution (SR), Modified Laplacian Filter (MLF), Intensity 
Correction (IC).  

1. INTRODUCTION 

Images of higher resolutions are highly desirable in many 
applications, such as medical imaging, law-enforcement,  satellite 
imaging. However, there are fundamental limitations on acquiring 
high-resolution images by simply increasing the image sensors[1]. 
Alternately, the image resolution can be increased to exceed the 
hardware limitation through image-processing algorithms, which 
are normally referred to as (still) image super-resolution (SR) or 
simply image enlargement. 

In most SR algorithms [2-9], the interpolation technique 
(bilinear, bi-cube etc.) is the fundamental technique to obtain the 
extra pixels, however, the interpolation alone normally generates 
blurry images especially in the edges and texture areas. Many 
researchers have developed edge-preserving techniques in order to 
remove the annoying blurry and blocky edges. Li and Orchard [2] 
proposed a new edge-directed interpolation algorithm to interpolate 
pixel values based on the local covariance coefficients. To reduce 
the complexity in [9], Huang et al. [3] classified pixels in the 
image into homogenous areas and edges; the edge pixels are then 
interpolated based on the edge direction. Shi et al. [4] used the 

Canny Edge detector to locate and interpolate the edges; 
furthermore, they modified the neighboring pixels around the 
edges to make the edges look sharper. The above-mentioned 

techniques, which focus on improving the annoying blurry and 
blocky edges, are referred to as the edge-enhancement approach. 
The training-based or learning-based approach [15-20] is another 
approach, by enhancing both edged and textures. Given a training 
set, the algorithm learns the fine details that correspond to various 
image regions seen at a low-resolution image, and then uses the 
learned relationships to predict fine details in the higher-resolution 

images. Freeman et al. [5,6] claimed a fast and simple one-pass 
training-based algorithm for creating plausible high frequency 
details in the zoomed images. Hertzmann et al. [7] also used a 
training-based method to perform super-resolution, in the context 
of analogies between images. Baker and Kanade [8] focused on 
enlarging images of a known model class, such as faces. 

In many serious applications, such as medical, satellite, aerial, 
law-enforcement, space probing, etc., the detailed contents of a 
scene are even more interesting than the artificial sharp looking. In 
this paper. Our analysis shows that the high frequencies 
components are attenuated by the averaging process in the digital 

image acquisition process. Thus, our goal is to properly recover 
these suppressed high frequency components (details and edges), 
which in turn may  
improve the blurry phenomenon due to up-sampling and bilinear 
(or bi-cubic) interpolation in the enlarging process.  

Based on the above-mentioned analysis, we derive a modified 
3x3 spatial Laplacian filter, which we refer to as the Modified 
Laplacian Filter (MLF) to properly restore the mid to high 
frequency components in the input low resolution (LR) image; it is 
noted that the direct inverse filtering to the degradation process 
may improperly amplify the noises and the aliased frequency 

components. The MLF filtered image is then bilinear (or bi-cubic) 
interpolated as initial higher resolution (HR) image. We also 
exploit the ideal relationship between the input LR image and the 
corresponding HR image, an Intensity Correction (IC) process is 
derived for correcting the initial HR image toward the ideal 
relationship. The IC process can be applied iteratively for 
increasing the objective image quality at the cost of more 
computations. 

Experiments show that the proposed MLF+Bilinear+IC 
approach can effectively improve the image quality both 
objectively (PSNR) and subjectively for all test images. 
Furthermore, the proposed algorithm is relatively simple in 

computation, thus, is quite desirable to many real-world 
applications. 

The paper is organized as follows. Section 2 briefly defines 
the SR problem. Section 3 analyzes the SR problem and derives 
the proposed algorithm. Experiments and performance 
comparisons are presented in Section 4. Further improvements by 
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bi-cubic and iterative IC process are presented in section 5. Finally, 
Section 6 concludes the paper. 

2. THE SUPER-RESOLUTION PROBLEM 

The original high-resolution (HR) image is normally not available 
for the performance evaluation In many practical applications. 

Thus, the resulting super-resolution (SR) image can only be 
evaluated subjectively. However, it would be more convenient to 
have the original HR image available for the comparison and 
evaluation of various SR algorithms. In this paper, we formulate 
and simplify the SR problem as follows: 

Given a 
2 2N M× high-resolution image (original HR), obtain 

the corresponding 
1 1

N M× (
1 2

/ 2N N= ,
1 2 / 2M M= ) low-

resolution image (LR) by applying the degradation process. The 

SR algorithm is to derive the best approximation both subjectively 
and objectively of the original HR from the LR.

The degradation process in the image acquisition device is 
shown in Figure 1. 
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Figure 1. The degradation process in the image acquisition device 

3. THE SUPER-RESOLUTION ALGORITHM 

3.1 The Analysis 
We derive the ideal relationship between high and low density 

CCD sensor module in Figure 1 as follows: 
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 (Eq.1) 

Where fLR (m, n) and fHR (m, n) are the intensity of a low-
resolution pixel and its four corresponding high resolution pixels 
(k=1). For simplicity without losing generality in the analysis, we 
consider the two cascaded processes that converting 1-D discrete 
HR signal x[n] of length 2N to its LR version z[n] of length N,   
P1: The averaging process 
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d[n] is the impulse function, i.e.  
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P2: The sub-sampling process 

[ ] [ ]n 2 1 , 0,1, 2, , 1.z y n for n N= + = −
In most practical conditions, the sub-sampling process P2 is non-
invertible, for recovering the high-resolution signal, the spatial 
bilinear (or bi-cubic) interpolation is commonly used to estimate 
the additional samples.  For the inverse of P1 process, let g[n] be 
the impulse response of the inverse P1 process, where g[n] can be 

obtained by solving the simple equation [ ] [ ] [ ]*h n g n nδ= , which 

is an inverse filtering problem. We apply the frequency domain 

analysis to find the solution, that is, ( ) ( )1G Hω ω= , where 

G( ω ) and H(ω ) are the Fourier transforms of g[n] and h[n]

respectively. We have: 
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Thus, 
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(Eq.3) 

The Eq.2 gives us an important insight that frequency 
components in the original HR image still exist in its degraded LR 
version. However, they are attenuated accordingly by H(ω ) and 

contaminated by the aliasing.  
Two relatively naïve attempts to recover the attenuated 

components by (1) Direct inversing with the 2-D version of Eq.3 
and (2). The 2-D Laplacian filtering in Eq.4 is shown in Figure 2, 
both generate unacceptable quality. 

       
(a)  Direct Inversing        (b) Laplacian Filtering 

Figure 2 the experimental results of Lena 256x256 (a) Direct 
Inversing (Eq.3) PSNR only 6.5B (b) Laplacian filter (Eq. 4) + 
Bilinear, PNSR=19.8dB  
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3.2 The Modified Laplacian Filtering (MLF) 
Observation shows that the naïve Laplacian filtering by Eq.4 yields 
only 19.8dB, however, it does enhance (too strong) the edges and 
textures. For the possibility of further improvements, we proceed 
to analyze the impulse response of the 1-D Laplacian filter: 

])1[][2]1[(][][ +−+−−+= ndndndndngL
. Its frequency 

response ( ) ( )1 2 1 cosLG ω ω= + − , is shown in Figure 3 (with 

A=1). Note that the ( )LG ω  deviates significantly from sec(ω )

(the inverse filter). Our strategy is to modify ( )LG ω  so that it 

approximates the sec(ω ) (the inverse filter) for the mid and the 

lower frequency range, while provides moderate gains for the 
higher frequencies to avoid amplifying too much on the aliased 
components and noises. By introducing a parameter “A” as the 
gain attenuator, we have:

( ) ( )2 1 c o s
1

L A
G

A

ω
ω

−
= + .        (Eq.5) 

The frequency response of ( )LAG ω  matches the sec(ω ) curve 

quite well for ω  < 1.5 and moderates gains for higher frequencies, 

if we choose A=6, as shown in Figure 3. Then, 

[ 1] 2 [ ] [ 1]
[ ] [ ] ( )L A

d n d n d n
g n d n

A

− − + − += +    (Eq.6) 

Experiments show that the G LA (ω ), which has much lower 

gains than the sec(ω /2) for  ω > 1.5, still produces degradations 

due to the fact that the aliased components are amplified. In order 

to reduce such degradations, we apply ( )LAG ω  to the LR image 

right before the up-sampling and the bilinear interpolation, such 
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that these over-amplified components are suppressed by the 
bilinear operation. 

Figure 3. sec(ω ) approximated by G LA (ω ) with A=1, 3, 6 and 

12 , A=6 best matches sec(ω ) forω < 1.5. 

   We modify the 2D Laplacian filter by introducing a filter gain 
attenuator “A”. The proposed MLF is as follows, 
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    (Eq.7) 

3.3 Intensity Correction (IC)
Eq.1 models the ideal relationship between a LR pixel and the 

corresponding 4 pixels in the original HR image. By exploiting 
Eq.1, the initial SR image after MLF and bilinear interpolation can 
be compensated toward the original HR by a process called 
intensity correction (IC). We define the following terms before 
describing the IC process.  
fHR (m,n): The original HR image.  
fLR(m,n): The LR image obtained by Eq.1 from HR fHR ( m,n).
gSR(m,n):The initial SR image by (MLF+Bilinear) from fLR(m,n) 

before the IC process.
gLR(m,n): The LR image derived from gSR(x,y ) through Eq.1 by 

replacing HR with gSR(m,n).
eLR(m,n) : The difference image gLR(m,n)-fLR(m,n).
eSR(m,n): Obtained by applying up-sampling and the bilinear (or bi-

cubic) interpolation to eLR(m,n).
gIC(x,y): The SR image after applying the IC correction on gSR(x,y). 
The intensity correction (IC) process is described as follows. 
Given  fLR(x,y) and gSR(x,y):
Step 1: Obtain gLR(x,y) by Eq.1 from gSR(x,y). 
Step 2: Obtain  eLR(x,y) = gLR(x,y) - fLR(x,y). 

Step 3: Obtain eSR(x,y) by applying up-sampling and the bilinear 
(or bi-cubic) interpolation.

Step 4: The SR image after IC gIC(x,y)=gSR(x,y)- eSR(x,y) 

3.4 The Proposed Super-Resolution Algorithm 
For gray-level LR image fLR(x,y), the proposed SR algorithm: 
Step 1 (MLF+BI): Obtain gSR(x,y) by applying MLF to fLR(x,y)
followed by bilinear interpolation (BI). Step 2 (IC): Obtain SR 
image gIC(x,y) by the Intensity Correction (IC) process. Step 1 and 
2 can be summarized as (MLF+BI+IC). 
     For color images, the proposed SR algorithm is described below: 

Step1: Converts the input LR color image from the RGB domain to 
the YCbCr domain. Step2: For the Y component, apply 

(MLF+BI+IC) to obtain the super resolution Y SR . Step3: For the 

Cr and the Cb components, apply only bilinear interpolation (BI 

only, no MLF and IC) to obtain the super-resolution Cb SR and 

Cr
S R

. Step4: Complete the process by converting 

Y SR Cb
S R

Cr SR  back into the RGB domain.  

4. EXPERIMENTS AND EVALUATIONS 

4.1 SR Performance Evaluation Criteria: 
Two criteria are adopted to evaluate the performance of various 

SR algorithms, that is, the subjective (perceptual) and objective 
quality of the reconstructed SR image. For color images, 

( )
C olor

4
PSNR

6

Y U VPSNR PSNR PSNR× + +
= .

4.2 Determination of Attenuator A 
   The value of attenuator A is determined based on PSNR with 4 
test images (Satellite 1026x1024, Moon 463x538, Lena 512x512 
and Baboon Color, 256x256). The best A values are slightly 
varying from images, we recommend a fixed A value of 16 (power 
of 2) and is used in the rest of the paper. We also observe that it is 
MLF that improves the visual quality and it is IC that improves the 

PSNR. The computation time (MATLAB) required by the 
proposed (MLF+BI+IC) is twice of BI alone, but only about 1/7 
and 1/10 of CIE and FEI respectively. 

 4.3 SR Image Quality Evaluations 
     In this Section, we compare and evaluate both the objective and 
the subjective image quality of the 4 test images generated by the 
proposed SR algorithms. The objective image quality is measured 
by PSNR, while the subjective quality is judged by best human 
efforts on examining the contents of zoomed partial images. 

Table 1 show that the proposed algorithm achieves significant 

improvements in PSNR than BI or bi-cubic interpolation only. 
Table 1 also shows that the proposed algorithm can be used 
together with more sophisticated Bi-cubic (BC) interpolation for 
better performance than with bilinear interpolation, at the cost of 
more computations. The proposed MLF+IC can be used together 
with other interpolation techniques. 

Figure 4(a) is the input LR image; Figure 4(b) is the partially 
zoomed image in original HR image as the golden reference for 
perceptual examination. Figure 4(c) is the result by MATLAB 
bilinear interpolation alone and Figure 4(d) is the results by the 
proposed SR algorithm, which provides the best approximation of 

the golden reference in Figure 4(b) and results in sharper looking 
in the texture area. Figure 4(e)(f) shows error images between the 
SR images and the original Moon image. The restored SR image 
by the proposed SR algorithm yields the smallest error image than 
BI alone. Although the improvement in PSNR for test image 
baboon is trivial, the perceptual improvement is significant! 

Table 1 Comparison of PSNR between bilinear and bi-cubic 
interpolation 

     SR Algorithms 
 Test Images 

BI/ MLF+BI+IC BC/MLF+BC+IC

Moon  37.0/ 41.2 dB 38.3/ 42.3 dB 

Lena  32.9/  34.8dB 33.8/ 35.2 dB 

Satellite  25.47/ 26.9dB 26.3/27.21 dB 

Baboon (color) 256 32.37/ 32.68 33.29/33.43
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(a) Moon 269x232, 8bits, 
gray (input LR)

(b) The zoomed partial 
image in the original Moon

(538x464)

(c) Bilinear (d) MLF+BI+IC (Proposed)

(e) Error by Bilinear (f) Error by MLF+BI+IC 

(Proposed) 

(c) Partial by BI (d) Partial by 

Proposed 

 (e) Error by BI (f) Error by Proposed

Figure 4. The subjective comparison of Moon/Baboon  partial 
zoomed and error images  

Further improvements in PSNR can be achieved by applying the 
IC process iteratively for 2~3 time and PSNR saturated thereafter 
as shown in Figure 5. 
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                Figure 5 Effects of applying IC iteratively.  

6. CONCLUSIONS  

By analyzing the relationship between an LR image and its 
corresponding HR image, we derive MLF and IC which forms the 
core techniques in the propose MLF+BI+IC algorithm for super-
resolution enhancement. Compared to bilinear interpolation alone, 
the proposed algorithm restore the attenuated high frequency 
components properly, thus yields better image quality both PSNR 
and in perception. Furthermore, the proposed algorithm is quite 

simple in computation, which is highly desired in many real-world 
applications. 
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