
A LANGUAGE AND ARCHITECTURE FOR AUTOMATING

MULTIMEDIA CONTENT PRODUCTION ON GRID

P. Bellini, I. Bruno, P. Nesi

DISIT LAB, Department of Systems and Informatics, University of Florence

Via S. Marta, 3 -- 50139 -- Florence, Italy

Tel:+390554796567, +390554796523, fax: +390554796363

pbellini@dsi.unifi.it, ivanb@dsi.unifi.it, nesi@dsi.unifi.it

ABSTRACT

Possible solutions to the management of multichannel

delivering, production on demand, and containment of sale

prices in the digital multimedia content production could be

the automating, accelerating and restructuring the

production process. The proposed solution provides

innovative methods and tools to speed up and optimize

content production and distribution based on the GRID

technology supported by a specific programming language

that allow defining the automatic procedure for content

processing, production, adaptation, protection, DRM

managing, distribution, etc. This paper describes the GRID

architecture of the AXMEDIS Content Processing Area and

the language adopted to define algorithms executed into the

GRID environment.

Keywords: multimedia production, Grid computing,

content processing

1. INTRODUCTION

GRID computing is a paradigm of distributed computing

that involves coordinating and sharing computing,

application, data, storage, and network resources across

dynamic and geographically dispersed organizations ([1],

[2]). GRID computing is an evolving area of computing,

where standards and technology are still being developed to

enable this new paradigm. GRID is already being

successfully used in many scientific applications where

huge amounts of data have to be processed and/or stored.

One of the possible new application fields for the GRID

Computing is the production and management of

multimedia content. It is envisaged that a large number of

multimedia services (music, video, radio, television, etc.)

will become suitable very soon for real-time (on-demand)

public access. Crucial technical issues of providing access

to such services are user-friendliness, universal access to

services, as well as an efficient service GRID middleware

that enables the dynamic service discovery and composition,

distributed resource management and adaptive media

delivery ([3]). To cope with these goals, a specific solution

has been designed in AXMEDIS project as a distributed

environment based on the GRID computation.

The AXMEDIS (Automating Production of Cross

Media Content for Multi-channel Distribution) IST

European Commission R&D Project involves leading

European digital content producers, integrators, distributors

and researchers and wants to create the AXMEDIS

framework to provide innovative methods and tools to

speed up and optimize content production and distribution,

for production-on-demand, for leisure, entertainment and

digital content valorization and exploitation in general ([4],

[5]).

The AXMEDIS Content Processing Area is the

subsystem of AXMEDIS framework based on GRID

computing and aims at realizing an efficient, scalable and

flexible solutions for massive content retrieval, adaptation

and transcoding, production and distribution on demand,

packaging and formatting, protection, licenses production,

recognition and tracking of content for broadcast audio

visual monitoring. The GRID solution in multimedia

content processing and delivering allows meeting the

challenges of market demand and providing benefits: (i)

reducing costs for content production, indexing, retrieval

and management by applying techniques for content

composition, representation (format), metadata generation

and manipulation, and workflow; (ii) reducing distribution

and aggregation costs; (iii) integrating methods and tools for

Digital Rights Management (DRM), including the

exploitation of emerging standard as MPEG-21.

This paper is partially focused on the architecture of the

AXMEDIS Content Processing Area and mainly describes

the language adopted to define activities and algorithms for

digital content manipulation that are executed into the GRID

environment. The paper is organized as follows. In Section

2, the AXMEDIS Content Processing Area inside the

AXMEDIS Framework is described. Section 3 describes the

concept of Processing Rule that governs all the content

processing activities. Section 4 reports the language used in

the distributed AXMEDIS Content Processing Rule Engine

and describes an example of its use. Finally, conclusions

and future work are reported in Section 5.

4411­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

2. AXMEDIS CONTENT PROCESSING AREA

The architecture of the AXMEDIS Content Processing

Area, also called in short AXCP Area (see Figure 1) is

based on a GRID infrastructure constituted of an AXCP

Rule Scheduler and several AXCP Rule Executors for

executing AXCP Rules. AXCP Rules are formalized in

AXMEDIS Content Processing Rule Language. The Rules

are procedure to be executed according to some constraints

which are the conditions for the execution of the AXCP

Rule. They are used to script/program and plan the activities

to be performed for producing, processing and protecting

digital contents in automatic manner and according to

possible DRM associated with the content usage.

The AXCP Rule Scheduler performs the rule

firing/activation, discovering of Rule Executors and

management and dispatching of Rules to be executed. The

scheduler may receive commands (to invoke a specific rule

with some parameters) and provide reporting information

(e.g. notifications, exceptions, logs, etc…) to external

workflow and tools by means of a WEB service. Rule

Executor receives the Rules to be executed from the

Scheduler, and performs the initialization and the launch of

the script program execution of the Rule. During the run,

the Executor could send notifications, errors and output

messages to the Scheduler. Moreover, the Executor could

invoke the execution of other Rules sending a specific

request to the Scheduler so as to divide a complex

Rule/procedure into sub rules/procedure running in parallel

and rationally use the computational resources accessible in

the content factory, on the GRID. This solution maintains

advantages of a unified solution and allows enhancing the

capabilities and the scalability of the AXMEDIS Content

Processing Area ([6], [7]).

The processing tools in the AXCP Area are supported

by the AXMEDIS Plugin technology that allows each

AXCP Rule Executor to dynamically link any content

processing tool and algorithm (e.g. audio, video and image

adaptation, transcoding, encryption) and coping with

possible customized algorithms and tools.

3. AXCP RULE GENERAL FORMAT

An XML formalization of AXCP Rules is reported in Figure

2 and it is comprised of three main sections. The Header

contains general metadata such as: rule name, AXRID (Rule

ID), rule version, rule type, software name, version of

software, date of production, time of production, author,

affiliation, URL, comment, last modification date and time.

Schedule section contains temporal constraints describing

the rule status (“active” or “inactive”) and conditions for

firing it such as: start date, start time, periodicity (monthly,

daily, weekly, etc.), expiration date and expiration time.

Such information is used by the AXCP Rule Scheduler in

the GRID environment for planning the activity and

associating active rules with available computational

resources. Definition is the section that contains the rule

signature in terms of list of arguments (parameters and

selections), list of dependences (required AXMEDIS plug-

ins in terms of plugin name and version) and the rule body

(the script code to run). Dependences define constrains on

plugins that a Rule Executor has to have installed to run the

script (e.g., plugins for fingerprint estimation, audio/video

transcoding, descriptors extraction).

Formally, the rule signature of the AXCP Rule is:

R = f(S1,S2,..,Sn,P1,…,Pm)

Where:

Si is a Selection (sequence of queries), to be sent to the

AXMEDIS Database to retrieve digital object (content)

IDs or a set of object IDs to AXMEDIS objects or a

mix of them; such parameter is exploded in terms of list

of objects IDs during the execution of f(.).

Pi is a parameter (basic type as integer, common string,

XML string, Boolean, etc.), it could represent, for

example, the scale factor or the MIME type of the

output format, the number of objects collections to be

created, name of the author, etc.

f is the identifier of rule (e.g., the ID of rule);

R is the consumptive result of the rule application. It

could be a status, a new AXMEDIS object, or a

metadata manipulation result, the license of an

AXMEDIS object, a message to be returned to the

AXMEDIS Content Processing Area, etc.

Other results are resulting objects processed and/or

produced during the execution of the Rule and they can be

directly posted into the file system or database.

Figure 2 – XML schema of the AXCP rule

Figure 1 – The AXMEDIS Content Processing Area

Workflow

manager

AXCP Rule

Scheduler

AAXXDDBBFFaaccttoorryy

LLAANN

AAXXCCPP RRuullee EExxeeccuuttoorrss

442

4. THE AXMEDIS SCRIPT LANGUAGE

The script language used in the body of the AXCP Rule is

based on the Javascript. The Rule Executor uses the

SpiderMonkey Javascript Engine v.1.5 released by Mozilla

([8], [9], [10]) to execute scripts. The JavaScript built-in

objects were extended by wrapping partially or totally

AXMEDIS data types (AXMEDIS JS Classes) and adding

functions (JS Functions) deriving from the AXMEDIS

Framework. Both could provide direct services or serve as

interfaces to external services. For example, an AXMEDIS

JS Class for direct services might be one that handles the

network access, while a JS Class interfacing an external

service might be an intermediary broker of database

services. In this terms, the script language was enriched to

provide several data types, operators and accessible

algorithms to manipulate any digital resources in a large

number of formats for: images, audio files, video,

documents, multimedia (including MPEG-4, HTML, LOM,

etc.), plus MPEG-21 aspects, MPEG-21 REL, MPEG-21

IPMP, etc. Therefore, the script language allows writing

simple procedures and combining them to: (i) import and

retrieve from other sources (e.g., existing CMSs) content

and metadata using different channels/interfaces (e.g.

ODBC, Http, ftp, web services); (ii) bind the structure of

content and content collection to presentation and

formatting styles by means of the SMIL languages and

features; (iii) find/produce alternatives/adaptations for

components that present potential distribution problems (too

big files); (iv) format/adapt content and metadata for

publication on different distribution channels; (v) protect

digital content according to MPEG-21 models and related

AXMEDIS tools, including license production and

adaptation; (vi) process and produce metadata and

managing the estimation of fingerprint and descriptors; (vii)

interact with commercial tools and custom dynamic libraries

for exploiting their functionalities ([6]). For the sake of

completeness, a brief description of the most relevant

AXMEDIS JS Classes is reported ([5], [6], [7]):

The AxmedisObject class wraps the AXMEDIS Object

Model. It is responsible of AXMEDIS object

management in terms of: creation, embedding digital

resources and metadata, storing/retrieving into/from

database, etc.

The AxInfo class maps and allows managing the B2B

set of metadata for AXMEDIS objects.

The AxDublinCore class maps the metadata related to

the Dublin Core in the script.

The AxResource class allows managing different raw

digital content in the script.

The AxCPPlugin class is a meta JS class that allows

dynamic access to AXMEDIS Plugins providing

several functions and algorithms for: Fingerprinting,

Digital Resource Adaptation, Metadata Adaptation,

Transcoding, Watermark, Descriptors extraction, etc…

The AxSelection class allows using Selection objects to

manage the access and making queries to the

AXMEDIS database.

The AxSearchBox class interfaces with the Searchbox

Crawling application which is used to ingest content

from the a large set of factory CMSs. It allows querying

and retrieving content and metadata for creating

AXMEDIS objects.

The License class allows creating and managing

licenses associated with AXMEDIS objects. It wraps

the MPEG-21 REL license model and provides access

to Principal, Grants and Resource items.

The IPMPInfo class wraps the IPMP information

necessary for protecting AXMEDIS object. It is used to

indicate the kind of protection algorithm and the related

parameters to be used.

The SMIL classes allows selecting on the basis of the

user profile and device capabilities, the best SMIL

template and the style to be applied on the content of a

specific AXMEDIS object.

The NetConnection classes model different types of

connection/protocol (e.g. http and ftp protocols, ODBC,

WebService, WebDav) and provide primitive methods

for accessing and retrieving metadata and digital

resources.

Finally, JS Functions includes a set of auxiliary

functions for different purposes: Statistical, Combinatorial,

Set Management, Generic (e.g., file system functions),

External Calls (e.g., invoking an AXCP Rule at runtime)

([6], [7]).

4.1. Using the AXMEDIS Script Language

In Figure 3, an example of AXMEDIS script for

composition and adaptation of AXMEDIS objects is

reported. The script shows the use of some classes

mentioned above and produces different AXMEDIS objects

constituted of a video and at most maxDoc documents. The

list of videos and documents are provided by two

AxSelection objects: videoSel and docSel. They are used

to retrieve the array of AXOIDs from the database creating

instances of AxmedisObject. Each instance is able to retrieve

the corresponding video or document. The maxDoc

parameter is a global variable and it is used to store and fix

the maximum number of documents to retrieve from the

documents selection and associate with a video resource.

The Dublin Core metadata are generated by the

createDublinCoreTitle() function for each new

composite AXMEDIS object associated with the axObj

instance of AxmedisObject by adding an AxDublinCore

object with the title. The video resource adaptation is

performed by the VideoProcessing plugin object by means

of the Converting method: each video is converted in the

format specified by the outFormat rule parameter. The

VideoProcessing plugin is a dependency for the script and

has to be included in the XML description in order to

443

instantiate the AxCPPlugin object in charge to load the

plugin and provide its functions. All new AXMEDIS

objects are successively formatted using the SMILTemplate

and SMILStyle objects to find the best template and style to

be used as input to the SMILFormat object. Finally, the

SMIL description is added as resource to the AXMEDIS

objects and then they are stored in the AXMEDIS Database

by the uploadToDB() method of AxmedisObject class.

5. CONCLUSIONS

In this paper, the aims and the script language of the

AXMEDIS Content Processing Area have been described.

This Area is a flexible and scalable core subsystem of the

AXMEDIS Framework and architecture. Such subsystem is

involved in the automatic content production, protection,

formatting, metadata adaptation, etc., in AXMEDIS. The

adopted solution is based on GRID Computing and on a

script language. The AXCP Rule Language extends the

Javascript by adding a set of object types wrapping the

AXMEDIS data types and MPEG-21 data types provided by

the AXMEDIS framework. In addition, a specific javascript

object was defined in order to link dynamically different

AXMEDIS plugins that allow extending capabilities and

functionalities without changing the system. The full

documentation can be recovered on AXMEDIS portal

http://www.axmedis.org. AXMEDIS is an open platform in

the sense that you can join the AXMEDIS community.

6. ACKNOWLEDGMENTS

The authors would like to thanks to all AXMEDIS project

partners including the Expert User Group and all affiliated

members, for their contributions, funding and

collaborations. A specific acknowledgment to EC IST FP6

for partial funding of AXMEDIS project. A warm thanks to

all AXMEDIS people that have helped us in starting up the

project and sorry if they have not been involved in the paper

and have not been mentioned. We trust in their

understanding.

7. REFERENCES
[1] D. W. Erwin and D. F. Snelling. “UNICORE: A Grid

computing environment”. Lecture Notes in Computer

Science, 2150, 2001.

[2] Foster. The anatomy of the Grid: Enabling scalable virtual

organizations. Lecture Notes in Computer Science, 2150,

2001.

[3] J. Mathe, K. Kuntner, S. Pota, Z. Juhasz, “The use of Jini

technology in distributed and Grid multimedia systems”, in

Proc. MIPRO 2003, Hypermedia and Grid Systems, Opatija,

Croatia, 19-23. May 2003., pp. 148-151.

[4] P. Bellini and P. Nesi, “An Architecture of Automating

Production of Cross Media Content for Multi-channel

Distribution”, in Proc. AXMEDIS 2005, Florence, Italy, 30

Nov. - 2 Dec., IEEE Press, pp 123-133

[5] AXMEDIS DE3.1.2A Framework and Tools Specifications

http://www.axmedis.org/documenti/view_documenti.php?doc

_id=1379

[6] AXMEDIS DE3.1.2C Framework and Tools Specifications

http://www.axmedis.org/documenti/view_documenti.php?doc

_id=1381

[7] P. Bellini, I. Bruno and P. Nesi, “A Distributed Environment

for Automatic Multimedia Content Production based on

GRID”, in Proc. AXMEDIS 2005, Florence, Italy, 30 Nov. - 2

Dec., pp 134-142, IEEE Press.

[8] “JavaScript C Engine Embedder's Guide”,

http://www.mozilla.org/js/spidermonkey/apidoc/jsguide.html

[9] J. Thiele, “Embedding SpiderMonkey - best practice”

http://egachine.berlios.de/embedding-sm-best-

practice/embedding-sm-best-practice-index.html

[10] “Scripting C++ with JavaScript using SpiderMonkey”,

http://home.tiscali.be/franky.braem17/spidermonkey.htm

function getTitle(axObj) {
 var dc = axObj.getDC();
 return dc.getElement("dc.title");
}

function createDublinCoreTitle(axObj, title) {
 var dc = new AxDublinCore();
 dc.addElement("dc:title", title);
 axObj.addMetadata(dc);
}
/* Start of script: videos and docs arrays collect results of
two selections objects. They provide AXMEDIS Objects to
use in the composition process */

var video_axoids = videoSel.resolve();
var doc_axoids = docSel.resolve();
var template = new SMILTemplate();
var style = new SMILStyle();
var formatter = new SMILFormat();
for(v in video_ axoids) {
 var axObj = new AxmedisObject();
 var obj = new AxmedisObject (video_ axoids [v]);
 var nDoc = 0;
 var title= GetTitle(obj);
// extraction of the video resource reference
 var vRes = obj.getContent();
// adaptation of the resource
 VideoProcessing.Converting(vRes,outFormat, vRes);
// embed the adapted object
 axObj.addContent(obj);
 for (d in doc_ axoids) { // adding maxDoc documents
 axObj.addContent(doc_ axoids [d]);
 nDoc++;
 if(nDoc>maxDoc)
 break;
 }
 createDublinCoreTitle(axObj, "Collection of "+title):
 var template = new SMILTemplate(axObj);
 var style = new SMILStyle(axObj);
// the formatter return an AxResource with the SMIL
 smilRes = formatter.createSMIL(template,style);
 axObj.addContent(smilRes);
// the Axmedis Object is stored into the DB
 axObj.uploadToDB();
}

Figure 3 - Example of Script code for the production

and adaptation of AXMEDIS objects

444

